![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lo1f | Structured version Visualization version GIF version |
Description: An eventually upper bounded function is a function. (Contributed by Mario Carneiro, 26-May-2016.) |
Ref | Expression |
---|---|
lo1f | β’ (πΉ β β€π(1) β πΉ:dom πΉβΆβ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ello1 15485 | . . 3 β’ (πΉ β β€π(1) β (πΉ β (β βpm β) β§ βπ₯ β β βπ β β βπ¦ β (dom πΉ β© (π₯[,)+β))(πΉβπ¦) β€ π)) | |
2 | 1 | simplbi 497 | . 2 β’ (πΉ β β€π(1) β πΉ β (β βpm β)) |
3 | reex 11223 | . . . 4 β’ β β V | |
4 | 3, 3 | elpm2 8886 | . . 3 β’ (πΉ β (β βpm β) β (πΉ:dom πΉβΆβ β§ dom πΉ β β)) |
5 | 4 | simplbi 497 | . 2 β’ (πΉ β (β βpm β) β πΉ:dom πΉβΆβ) |
6 | 2, 5 | syl 17 | 1 β’ (πΉ β β€π(1) β πΉ:dom πΉβΆβ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wcel 2099 βwral 3057 βwrex 3066 β© cin 3944 β wss 3945 class class class wbr 5142 dom cdm 5672 βΆwf 6538 βcfv 6542 (class class class)co 7414 βpm cpm 8839 βcr 11131 +βcpnf 11269 β€ cle 11273 [,)cico 13352 β€π(1)clo1 15457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11188 ax-resscn 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-sbc 3776 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-pm 8841 df-lo1 15461 |
This theorem is referenced by: lo1res 15529 lo1mptrcl 15592 |
Copyright terms: Public domain | W3C validator |