MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1f Structured version   Visualization version   GIF version

Theorem lo1f 14877
Description: An eventually upper bounded function is a function. (Contributed by Mario Carneiro, 26-May-2016.)
Assertion
Ref Expression
lo1f (𝐹 ∈ ≤𝑂(1) → 𝐹:dom 𝐹⟶ℝ)

Proof of Theorem lo1f
Dummy variables 𝑥 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ello1 14874 . . 3 (𝐹 ∈ ≤𝑂(1) ↔ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ 𝑚))
21simplbi 500 . 2 (𝐹 ∈ ≤𝑂(1) → 𝐹 ∈ (ℝ ↑pm ℝ))
3 reex 10630 . . . 4 ℝ ∈ V
43, 3elpm2 8440 . . 3 (𝐹 ∈ (ℝ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 ⊆ ℝ))
54simplbi 500 . 2 (𝐹 ∈ (ℝ ↑pm ℝ) → 𝐹:dom 𝐹⟶ℝ)
62, 5syl 17 1 (𝐹 ∈ ≤𝑂(1) → 𝐹:dom 𝐹⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2114  wral 3140  wrex 3141  cin 3937  wss 3938   class class class wbr 5068  dom cdm 5557  wf 6353  cfv 6357  (class class class)co 7158  pm cpm 8409  cr 10538  +∞cpnf 10674  cle 10678  [,)cico 12743  ≤𝑂(1)clo1 14846
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-pm 8411  df-lo1 14850
This theorem is referenced by:  lo1res  14918  lo1mptrcl  14980
  Copyright terms: Public domain W3C validator