![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lo1f | Structured version Visualization version GIF version |
Description: An eventually upper bounded function is a function. (Contributed by Mario Carneiro, 26-May-2016.) |
Ref | Expression |
---|---|
lo1f | ⊢ (𝐹 ∈ ≤𝑂(1) → 𝐹:dom 𝐹⟶ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ello1 15548 | . . 3 ⊢ (𝐹 ∈ ≤𝑂(1) ↔ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ 𝑚)) | |
2 | 1 | simplbi 497 | . 2 ⊢ (𝐹 ∈ ≤𝑂(1) → 𝐹 ∈ (ℝ ↑pm ℝ)) |
3 | reex 11244 | . . . 4 ⊢ ℝ ∈ V | |
4 | 3, 3 | elpm2 8913 | . . 3 ⊢ (𝐹 ∈ (ℝ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 ⊆ ℝ)) |
5 | 4 | simplbi 497 | . 2 ⊢ (𝐹 ∈ (ℝ ↑pm ℝ) → 𝐹:dom 𝐹⟶ℝ) |
6 | 2, 5 | syl 17 | 1 ⊢ (𝐹 ∈ ≤𝑂(1) → 𝐹:dom 𝐹⟶ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 ∩ cin 3962 ⊆ wss 3963 class class class wbr 5148 dom cdm 5689 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ↑pm cpm 8866 ℝcr 11152 +∞cpnf 11290 ≤ cle 11294 [,)cico 13386 ≤𝑂(1)clo1 15520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-pm 8868 df-lo1 15524 |
This theorem is referenced by: lo1res 15592 lo1mptrcl 15655 |
Copyright terms: Public domain | W3C validator |