MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1f Structured version   Visualization version   GIF version

Theorem lo1f 15484
Description: An eventually upper bounded function is a function. (Contributed by Mario Carneiro, 26-May-2016.)
Assertion
Ref Expression
lo1f (𝐹 ∈ ≤𝑂(1) → 𝐹:dom 𝐹⟶ℝ)

Proof of Theorem lo1f
Dummy variables 𝑥 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ello1 15481 . . 3 (𝐹 ∈ ≤𝑂(1) ↔ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ 𝑚))
21simplbi 497 . 2 (𝐹 ∈ ≤𝑂(1) → 𝐹 ∈ (ℝ ↑pm ℝ))
3 reex 11159 . . . 4 ℝ ∈ V
43, 3elpm2 8847 . . 3 (𝐹 ∈ (ℝ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 ⊆ ℝ))
54simplbi 497 . 2 (𝐹 ∈ (ℝ ↑pm ℝ) → 𝐹:dom 𝐹⟶ℝ)
62, 5syl 17 1 (𝐹 ∈ ≤𝑂(1) → 𝐹:dom 𝐹⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wral 3044  wrex 3053  cin 3913  wss 3914   class class class wbr 5107  dom cdm 5638  wf 6507  cfv 6511  (class class class)co 7387  pm cpm 8800  cr 11067  +∞cpnf 11205  cle 11209  [,)cico 13308  ≤𝑂(1)clo1 15453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-pm 8802  df-lo1 15457
This theorem is referenced by:  lo1res  15525  lo1mptrcl  15588
  Copyright terms: Public domain W3C validator