MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1f Structured version   Visualization version   GIF version

Theorem lo1f 15443
Description: An eventually upper bounded function is a function. (Contributed by Mario Carneiro, 26-May-2016.)
Assertion
Ref Expression
lo1f (𝐹 ∈ ≤𝑂(1) → 𝐹:dom 𝐹⟶ℝ)

Proof of Theorem lo1f
Dummy variables 𝑥 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ello1 15440 . . 3 (𝐹 ∈ ≤𝑂(1) ↔ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ 𝑚))
21simplbi 497 . 2 (𝐹 ∈ ≤𝑂(1) → 𝐹 ∈ (ℝ ↑pm ℝ))
3 reex 11119 . . . 4 ℝ ∈ V
43, 3elpm2 8808 . . 3 (𝐹 ∈ (ℝ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 ⊆ ℝ))
54simplbi 497 . 2 (𝐹 ∈ (ℝ ↑pm ℝ) → 𝐹:dom 𝐹⟶ℝ)
62, 5syl 17 1 (𝐹 ∈ ≤𝑂(1) → 𝐹:dom 𝐹⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wral 3044  wrex 3053  cin 3904  wss 3905   class class class wbr 5095  dom cdm 5623  wf 6482  cfv 6486  (class class class)co 7353  pm cpm 8761  cr 11027  +∞cpnf 11165  cle 11169  [,)cico 13268  ≤𝑂(1)clo1 15412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-pm 8763  df-lo1 15416
This theorem is referenced by:  lo1res  15484  lo1mptrcl  15547
  Copyright terms: Public domain W3C validator