MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lo1dm Structured version   Visualization version   GIF version

Theorem lo1dm 15436
Description: An eventually upper bounded function's domain is a subset of the reals. (Contributed by Mario Carneiro, 26-May-2016.)
Assertion
Ref Expression
lo1dm (𝐹 ∈ ≤𝑂(1) → dom 𝐹 ⊆ ℝ)

Proof of Theorem lo1dm
Dummy variables 𝑥 𝑚 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ello1 15432 . . 3 (𝐹 ∈ ≤𝑂(1) ↔ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹𝑦) ≤ 𝑚))
21simplbi 497 . 2 (𝐹 ∈ ≤𝑂(1) → 𝐹 ∈ (ℝ ↑pm ℝ))
3 reex 11107 . . . 4 ℝ ∈ V
43, 3elpm2 8807 . . 3 (𝐹 ∈ (ℝ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 ⊆ ℝ))
54simprbi 496 . 2 (𝐹 ∈ (ℝ ↑pm ℝ) → dom 𝐹 ⊆ ℝ)
62, 5syl 17 1 (𝐹 ∈ ≤𝑂(1) → dom 𝐹 ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  wral 3049  wrex 3058  cin 3898  wss 3899   class class class wbr 5095  dom cdm 5621  wf 6485  cfv 6489  (class class class)co 7355  pm cpm 8760  cr 11015  +∞cpnf 11153  cle 11157  [,)cico 13257  ≤𝑂(1)clo1 15404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11072  ax-resscn 11073
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-sbc 3739  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-pm 8762  df-lo1 15408
This theorem is referenced by:  lo1bdd  15437  lo1o1  15449  o1lo1  15454  o1lo12  15455  lo1res  15476  lo1eq  15485  lo1add  15544  lo1mul  15545  lo1le  15569
  Copyright terms: Public domain W3C validator