![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lo1dm | Structured version Visualization version GIF version |
Description: An eventually upper bounded function's domain is a subset of the reals. (Contributed by Mario Carneiro, 26-May-2016.) |
Ref | Expression |
---|---|
lo1dm | ⊢ (𝐹 ∈ ≤𝑂(1) → dom 𝐹 ⊆ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ello1 15456 | . . 3 ⊢ (𝐹 ∈ ≤𝑂(1) ↔ (𝐹 ∈ (ℝ ↑pm ℝ) ∧ ∃𝑥 ∈ ℝ ∃𝑚 ∈ ℝ ∀𝑦 ∈ (dom 𝐹 ∩ (𝑥[,)+∞))(𝐹‘𝑦) ≤ 𝑚)) | |
2 | 1 | simplbi 497 | . 2 ⊢ (𝐹 ∈ ≤𝑂(1) → 𝐹 ∈ (ℝ ↑pm ℝ)) |
3 | reex 11197 | . . . 4 ⊢ ℝ ∈ V | |
4 | 3, 3 | elpm2 8864 | . . 3 ⊢ (𝐹 ∈ (ℝ ↑pm ℝ) ↔ (𝐹:dom 𝐹⟶ℝ ∧ dom 𝐹 ⊆ ℝ)) |
5 | 4 | simprbi 496 | . 2 ⊢ (𝐹 ∈ (ℝ ↑pm ℝ) → dom 𝐹 ⊆ ℝ) |
6 | 2, 5 | syl 17 | 1 ⊢ (𝐹 ∈ ≤𝑂(1) → dom 𝐹 ⊆ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 ∀wral 3053 ∃wrex 3062 ∩ cin 3939 ⊆ wss 3940 class class class wbr 5138 dom cdm 5666 ⟶wf 6529 ‘cfv 6533 (class class class)co 7401 ↑pm cpm 8817 ℝcr 11105 +∞cpnf 11242 ≤ cle 11246 [,)cico 13323 ≤𝑂(1)clo1 15428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-sbc 3770 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-br 5139 df-opab 5201 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-fv 6541 df-ov 7404 df-oprab 7405 df-mpo 7406 df-pm 8819 df-lo1 15432 |
This theorem is referenced by: lo1bdd 15461 lo1o1 15473 o1lo1 15478 o1lo12 15479 lo1res 15500 lo1eq 15509 lo1add 15568 lo1mul 15569 lo1le 15595 |
Copyright terms: Public domain | W3C validator |