Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimi2 Structured version   Visualization version   GIF version

Theorem rlimi2 14919
 Description: Convergence at infinity of a function on the reals. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rlimi.1 (𝜑 → ∀𝑧𝐴 𝐵𝑉)
rlimi.2 (𝜑𝑅 ∈ ℝ+)
rlimi.3 (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝐶)
rlimi.4 (𝜑𝐷 ∈ ℝ)
Assertion
Ref Expression
rlimi2 (𝜑 → ∃𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐵   𝑦,𝐶,𝑧   𝜑,𝑦   𝑦,𝑅,𝑧   𝑦,𝐷,𝑧   𝑧,𝑉
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑧)   𝑉(𝑦)

Proof of Theorem rlimi2
StepHypRef Expression
1 rlimi.1 . . 3 (𝜑 → ∀𝑧𝐴 𝐵𝑉)
2 rlimi.2 . . 3 (𝜑𝑅 ∈ ℝ+)
3 rlimi.3 . . 3 (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝐶)
41, 2, 3rlimi 14918 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅))
5 eqid 2758 . . . . . 6 (𝑧𝐴𝐵) = (𝑧𝐴𝐵)
65fnmpt 6471 . . . . 5 (∀𝑧𝐴 𝐵𝑉 → (𝑧𝐴𝐵) Fn 𝐴)
7 fndm 6436 . . . . 5 ((𝑧𝐴𝐵) Fn 𝐴 → dom (𝑧𝐴𝐵) = 𝐴)
81, 6, 73syl 18 . . . 4 (𝜑 → dom (𝑧𝐴𝐵) = 𝐴)
9 rlimss 14907 . . . . 5 ((𝑧𝐴𝐵) ⇝𝑟 𝐶 → dom (𝑧𝐴𝐵) ⊆ ℝ)
103, 9syl 17 . . . 4 (𝜑 → dom (𝑧𝐴𝐵) ⊆ ℝ)
118, 10eqsstrrd 3931 . . 3 (𝜑𝐴 ⊆ ℝ)
12 rlimi.4 . . 3 (𝜑𝐷 ∈ ℝ)
13 rexico 14761 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) → (∃𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅) ↔ ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅)))
1411, 12, 13syl2anc 587 . 2 (𝜑 → (∃𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅) ↔ ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅)))
154, 14mpbird 260 1 (𝜑 → ∃𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   = wceq 1538   ∈ wcel 2111  ∀wral 3070  ∃wrex 3071   ⊆ wss 3858   class class class wbr 5032   ↦ cmpt 5112  dom cdm 5524   Fn wfn 6330  ‘cfv 6335  (class class class)co 7150  ℝcr 10574  +∞cpnf 10710   < clt 10713   ≤ cle 10714   − cmin 10908  ℝ+crp 12430  [,)cico 12781  abscabs 14641   ⇝𝑟 crli 14890 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-pre-lttri 10649  ax-pre-lttrn 10650 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-po 5443  df-so 5444  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-ov 7153  df-oprab 7154  df-mpo 7155  df-er 8299  df-pm 8419  df-en 8528  df-dom 8529  df-sdom 8530  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-ico 12785  df-rlim 14894 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator