MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimi2 Structured version   Visualization version   GIF version

Theorem rlimi2 15421
Description: Convergence at infinity of a function on the reals. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rlimi.1 (𝜑 → ∀𝑧𝐴 𝐵𝑉)
rlimi.2 (𝜑𝑅 ∈ ℝ+)
rlimi.3 (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝐶)
rlimi.4 (𝜑𝐷 ∈ ℝ)
Assertion
Ref Expression
rlimi2 (𝜑 → ∃𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐵   𝑦,𝐶,𝑧   𝜑,𝑦   𝑦,𝑅,𝑧   𝑦,𝐷,𝑧   𝑧,𝑉
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑧)   𝑉(𝑦)

Proof of Theorem rlimi2
StepHypRef Expression
1 rlimi.1 . . 3 (𝜑 → ∀𝑧𝐴 𝐵𝑉)
2 rlimi.2 . . 3 (𝜑𝑅 ∈ ℝ+)
3 rlimi.3 . . 3 (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝐶)
41, 2, 3rlimi 15420 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅))
5 eqid 2731 . . . . . 6 (𝑧𝐴𝐵) = (𝑧𝐴𝐵)
65fnmpt 6621 . . . . 5 (∀𝑧𝐴 𝐵𝑉 → (𝑧𝐴𝐵) Fn 𝐴)
7 fndm 6584 . . . . 5 ((𝑧𝐴𝐵) Fn 𝐴 → dom (𝑧𝐴𝐵) = 𝐴)
81, 6, 73syl 18 . . . 4 (𝜑 → dom (𝑧𝐴𝐵) = 𝐴)
9 rlimss 15409 . . . . 5 ((𝑧𝐴𝐵) ⇝𝑟 𝐶 → dom (𝑧𝐴𝐵) ⊆ ℝ)
103, 9syl 17 . . . 4 (𝜑 → dom (𝑧𝐴𝐵) ⊆ ℝ)
118, 10eqsstrrd 3970 . . 3 (𝜑𝐴 ⊆ ℝ)
12 rlimi.4 . . 3 (𝜑𝐷 ∈ ℝ)
13 rexico 15261 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) → (∃𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅) ↔ ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅)))
1411, 12, 13syl2anc 584 . 2 (𝜑 → (∃𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅) ↔ ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅)))
154, 14mpbird 257 1 (𝜑 → ∃𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2111  wral 3047  wrex 3056  wss 3902   class class class wbr 5091  cmpt 5172  dom cdm 5616   Fn wfn 6476  cfv 6481  (class class class)co 7346  cr 11005  +∞cpnf 11143   < clt 11146  cle 11147  cmin 11344  +crp 12890  [,)cico 13247  abscabs 15141  𝑟 crli 15392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-pre-lttri 11080  ax-pre-lttrn 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-ico 13251  df-rlim 15396
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator