| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlimi2 | Structured version Visualization version GIF version | ||
| Description: Convergence at infinity of a function on the reals. (Contributed by Mario Carneiro, 12-May-2016.) |
| Ref | Expression |
|---|---|
| rlimi.1 | ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ 𝑉) |
| rlimi.2 | ⊢ (𝜑 → 𝑅 ∈ ℝ+) |
| rlimi.3 | ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) |
| rlimi.4 | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
| Ref | Expression |
|---|---|
| rlimi2 | ⊢ (𝜑 → ∃𝑦 ∈ (𝐷[,)+∞)∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimi.1 | . . 3 ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ 𝑉) | |
| 2 | rlimi.2 | . . 3 ⊢ (𝜑 → 𝑅 ∈ ℝ+) | |
| 3 | rlimi.3 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) | |
| 4 | 1, 2, 3 | rlimi 15479 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅)) |
| 5 | eqid 2729 | . . . . . 6 ⊢ (𝑧 ∈ 𝐴 ↦ 𝐵) = (𝑧 ∈ 𝐴 ↦ 𝐵) | |
| 6 | 5 | fnmpt 6658 | . . . . 5 ⊢ (∀𝑧 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑧 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
| 7 | fndm 6621 | . . . . 5 ⊢ ((𝑧 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 → dom (𝑧 ∈ 𝐴 ↦ 𝐵) = 𝐴) | |
| 8 | 1, 6, 7 | 3syl 18 | . . . 4 ⊢ (𝜑 → dom (𝑧 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| 9 | rlimss 15468 | . . . . 5 ⊢ ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 → dom (𝑧 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) | |
| 10 | 3, 9 | syl 17 | . . . 4 ⊢ (𝜑 → dom (𝑧 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) |
| 11 | 8, 10 | eqsstrrd 3982 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 12 | rlimi.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
| 13 | rexico 15320 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) → (∃𝑦 ∈ (𝐷[,)+∞)∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅) ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅))) | |
| 14 | 11, 12, 13 | syl2anc 584 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ (𝐷[,)+∞)∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅) ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅))) |
| 15 | 4, 14 | mpbird 257 | 1 ⊢ (𝜑 → ∃𝑦 ∈ (𝐷[,)+∞)∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3914 class class class wbr 5107 ↦ cmpt 5188 dom cdm 5638 Fn wfn 6506 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 +∞cpnf 11205 < clt 11208 ≤ cle 11209 − cmin 11405 ℝ+crp 12951 [,)cico 13308 abscabs 15200 ⇝𝑟 crli 15451 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-pre-lttri 11142 ax-pre-lttrn 11143 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-er 8671 df-pm 8802 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-ico 13312 df-rlim 15455 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |