| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rlimi2 | Structured version Visualization version GIF version | ||
| Description: Convergence at infinity of a function on the reals. (Contributed by Mario Carneiro, 12-May-2016.) |
| Ref | Expression |
|---|---|
| rlimi.1 | ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ 𝑉) |
| rlimi.2 | ⊢ (𝜑 → 𝑅 ∈ ℝ+) |
| rlimi.3 | ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) |
| rlimi.4 | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
| Ref | Expression |
|---|---|
| rlimi2 | ⊢ (𝜑 → ∃𝑦 ∈ (𝐷[,)+∞)∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rlimi.1 | . . 3 ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ 𝑉) | |
| 2 | rlimi.2 | . . 3 ⊢ (𝜑 → 𝑅 ∈ ℝ+) | |
| 3 | rlimi.3 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) | |
| 4 | 1, 2, 3 | rlimi 15550 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅)) |
| 5 | eqid 2736 | . . . . . 6 ⊢ (𝑧 ∈ 𝐴 ↦ 𝐵) = (𝑧 ∈ 𝐴 ↦ 𝐵) | |
| 6 | 5 | fnmpt 6707 | . . . . 5 ⊢ (∀𝑧 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑧 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
| 7 | fndm 6670 | . . . . 5 ⊢ ((𝑧 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 → dom (𝑧 ∈ 𝐴 ↦ 𝐵) = 𝐴) | |
| 8 | 1, 6, 7 | 3syl 18 | . . . 4 ⊢ (𝜑 → dom (𝑧 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| 9 | rlimss 15539 | . . . . 5 ⊢ ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 → dom (𝑧 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) | |
| 10 | 3, 9 | syl 17 | . . . 4 ⊢ (𝜑 → dom (𝑧 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) |
| 11 | 8, 10 | eqsstrrd 4018 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
| 12 | rlimi.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
| 13 | rexico 15393 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) → (∃𝑦 ∈ (𝐷[,)+∞)∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅) ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅))) | |
| 14 | 11, 12, 13 | syl2anc 584 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ (𝐷[,)+∞)∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅) ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅))) |
| 15 | 4, 14 | mpbird 257 | 1 ⊢ (𝜑 → ∃𝑦 ∈ (𝐷[,)+∞)∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∀wral 3060 ∃wrex 3069 ⊆ wss 3950 class class class wbr 5142 ↦ cmpt 5224 dom cdm 5684 Fn wfn 6555 ‘cfv 6560 (class class class)co 7432 ℝcr 11155 +∞cpnf 11293 < clt 11296 ≤ cle 11297 − cmin 11493 ℝ+crp 13035 [,)cico 13390 abscabs 15274 ⇝𝑟 crli 15522 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-pre-lttri 11230 ax-pre-lttrn 11231 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-po 5591 df-so 5592 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-er 8746 df-pm 8870 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-ico 13394 df-rlim 15526 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |