MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimi2 Structured version   Visualization version   GIF version

Theorem rlimi2 15462
Description: Convergence at infinity of a function on the reals. (Contributed by Mario Carneiro, 12-May-2016.)
Hypotheses
Ref Expression
rlimi.1 (𝜑 → ∀𝑧𝐴 𝐵𝑉)
rlimi.2 (𝜑𝑅 ∈ ℝ+)
rlimi.3 (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝐶)
rlimi.4 (𝜑𝐷 ∈ ℝ)
Assertion
Ref Expression
rlimi2 (𝜑 → ∃𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑦,𝐵   𝑦,𝐶,𝑧   𝜑,𝑦   𝑦,𝑅,𝑧   𝑦,𝐷,𝑧   𝑧,𝑉
Allowed substitution hints:   𝜑(𝑧)   𝐵(𝑧)   𝑉(𝑦)

Proof of Theorem rlimi2
StepHypRef Expression
1 rlimi.1 . . 3 (𝜑 → ∀𝑧𝐴 𝐵𝑉)
2 rlimi.2 . . 3 (𝜑𝑅 ∈ ℝ+)
3 rlimi.3 . . 3 (𝜑 → (𝑧𝐴𝐵) ⇝𝑟 𝐶)
41, 2, 3rlimi 15461 . 2 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅))
5 eqid 2732 . . . . . 6 (𝑧𝐴𝐵) = (𝑧𝐴𝐵)
65fnmpt 6690 . . . . 5 (∀𝑧𝐴 𝐵𝑉 → (𝑧𝐴𝐵) Fn 𝐴)
7 fndm 6652 . . . . 5 ((𝑧𝐴𝐵) Fn 𝐴 → dom (𝑧𝐴𝐵) = 𝐴)
81, 6, 73syl 18 . . . 4 (𝜑 → dom (𝑧𝐴𝐵) = 𝐴)
9 rlimss 15450 . . . . 5 ((𝑧𝐴𝐵) ⇝𝑟 𝐶 → dom (𝑧𝐴𝐵) ⊆ ℝ)
103, 9syl 17 . . . 4 (𝜑 → dom (𝑧𝐴𝐵) ⊆ ℝ)
118, 10eqsstrrd 4021 . . 3 (𝜑𝐴 ⊆ ℝ)
12 rlimi.4 . . 3 (𝜑𝐷 ∈ ℝ)
13 rexico 15304 . . 3 ((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) → (∃𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅) ↔ ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅)))
1411, 12, 13syl2anc 584 . 2 (𝜑 → (∃𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅) ↔ ∃𝑦 ∈ ℝ ∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅)))
154, 14mpbird 256 1 (𝜑 → ∃𝑦 ∈ (𝐷[,)+∞)∀𝑧𝐴 (𝑦𝑧 → (abs‘(𝐵𝐶)) < 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2106  wral 3061  wrex 3070  wss 3948   class class class wbr 5148  cmpt 5231  dom cdm 5676   Fn wfn 6538  cfv 6543  (class class class)co 7411  cr 11111  +∞cpnf 11249   < clt 11252  cle 11253  cmin 11448  +crp 12978  [,)cico 13330  abscabs 15185  𝑟 crli 15433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-pre-lttri 11186  ax-pre-lttrn 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7414  df-oprab 7415  df-mpo 7416  df-er 8705  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-ico 13334  df-rlim 15437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator