Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rlimi2 | Structured version Visualization version GIF version |
Description: Convergence at infinity of a function on the reals. (Contributed by Mario Carneiro, 12-May-2016.) |
Ref | Expression |
---|---|
rlimi.1 | ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ 𝑉) |
rlimi.2 | ⊢ (𝜑 → 𝑅 ∈ ℝ+) |
rlimi.3 | ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) |
rlimi.4 | ⊢ (𝜑 → 𝐷 ∈ ℝ) |
Ref | Expression |
---|---|
rlimi2 | ⊢ (𝜑 → ∃𝑦 ∈ (𝐷[,)+∞)∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rlimi.1 | . . 3 ⊢ (𝜑 → ∀𝑧 ∈ 𝐴 𝐵 ∈ 𝑉) | |
2 | rlimi.2 | . . 3 ⊢ (𝜑 → 𝑅 ∈ ℝ+) | |
3 | rlimi.3 | . . 3 ⊢ (𝜑 → (𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶) | |
4 | 1, 2, 3 | rlimi 15150 | . 2 ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅)) |
5 | eqid 2738 | . . . . . 6 ⊢ (𝑧 ∈ 𝐴 ↦ 𝐵) = (𝑧 ∈ 𝐴 ↦ 𝐵) | |
6 | 5 | fnmpt 6557 | . . . . 5 ⊢ (∀𝑧 ∈ 𝐴 𝐵 ∈ 𝑉 → (𝑧 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
7 | fndm 6520 | . . . . 5 ⊢ ((𝑧 ∈ 𝐴 ↦ 𝐵) Fn 𝐴 → dom (𝑧 ∈ 𝐴 ↦ 𝐵) = 𝐴) | |
8 | 1, 6, 7 | 3syl 18 | . . . 4 ⊢ (𝜑 → dom (𝑧 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
9 | rlimss 15139 | . . . . 5 ⊢ ((𝑧 ∈ 𝐴 ↦ 𝐵) ⇝𝑟 𝐶 → dom (𝑧 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) | |
10 | 3, 9 | syl 17 | . . . 4 ⊢ (𝜑 → dom (𝑧 ∈ 𝐴 ↦ 𝐵) ⊆ ℝ) |
11 | 8, 10 | eqsstrrd 3956 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ℝ) |
12 | rlimi.4 | . . 3 ⊢ (𝜑 → 𝐷 ∈ ℝ) | |
13 | rexico 14993 | . . 3 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐷 ∈ ℝ) → (∃𝑦 ∈ (𝐷[,)+∞)∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅) ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅))) | |
14 | 11, 12, 13 | syl2anc 583 | . 2 ⊢ (𝜑 → (∃𝑦 ∈ (𝐷[,)+∞)∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅) ↔ ∃𝑦 ∈ ℝ ∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅))) |
15 | 4, 14 | mpbird 256 | 1 ⊢ (𝜑 → ∃𝑦 ∈ (𝐷[,)+∞)∀𝑧 ∈ 𝐴 (𝑦 ≤ 𝑧 → (abs‘(𝐵 − 𝐶)) < 𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 class class class wbr 5070 ↦ cmpt 5153 dom cdm 5580 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 +∞cpnf 10937 < clt 10940 ≤ cle 10941 − cmin 11135 ℝ+crp 12659 [,)cico 13010 abscabs 14873 ⇝𝑟 crli 15122 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-pre-lttri 10876 ax-pre-lttrn 10877 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-er 8456 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-ico 13014 df-rlim 15126 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |