![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elmapintab | Structured version Visualization version GIF version |
Description: Two ways to say a set is an element of mapped intersection of a class. Here 𝐹 maps elements of 𝐶 to elements of ∩ {𝑥 ∣ 𝜑} or 𝑥. (Contributed by RP, 19-Aug-2020.) |
Ref | Expression |
---|---|
elmapintab.1 | ⊢ (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ 𝐶 ∧ (𝐹‘𝐴) ∈ ∩ {𝑥 ∣ 𝜑})) |
elmapintab.2 | ⊢ (𝐴 ∈ 𝐸 ↔ (𝐴 ∈ 𝐶 ∧ (𝐹‘𝐴) ∈ 𝑥)) |
Ref | Expression |
---|---|
elmapintab | ⊢ (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ 𝐶 ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝐸))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapintab.1 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ 𝐶 ∧ (𝐹‘𝐴) ∈ ∩ {𝑥 ∣ 𝜑})) | |
2 | fvex 6904 | . . . 4 ⊢ (𝐹‘𝐴) ∈ V | |
3 | 2 | elintab 4962 | . . 3 ⊢ ((𝐹‘𝐴) ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → (𝐹‘𝐴) ∈ 𝑥)) |
4 | 3 | anbi2i 623 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ (𝐹‘𝐴) ∈ ∩ {𝑥 ∣ 𝜑}) ↔ (𝐴 ∈ 𝐶 ∧ ∀𝑥(𝜑 → (𝐹‘𝐴) ∈ 𝑥))) |
5 | elmapintab.2 | . . . . . 6 ⊢ (𝐴 ∈ 𝐸 ↔ (𝐴 ∈ 𝐶 ∧ (𝐹‘𝐴) ∈ 𝑥)) | |
6 | 5 | baibr 537 | . . . . 5 ⊢ (𝐴 ∈ 𝐶 → ((𝐹‘𝐴) ∈ 𝑥 ↔ 𝐴 ∈ 𝐸)) |
7 | 6 | imbi2d 340 | . . . 4 ⊢ (𝐴 ∈ 𝐶 → ((𝜑 → (𝐹‘𝐴) ∈ 𝑥) ↔ (𝜑 → 𝐴 ∈ 𝐸))) |
8 | 7 | albidv 1923 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (∀𝑥(𝜑 → (𝐹‘𝐴) ∈ 𝑥) ↔ ∀𝑥(𝜑 → 𝐴 ∈ 𝐸))) |
9 | 8 | pm5.32i 575 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ ∀𝑥(𝜑 → (𝐹‘𝐴) ∈ 𝑥)) ↔ (𝐴 ∈ 𝐶 ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝐸))) |
10 | 1, 4, 9 | 3bitri 296 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ 𝐶 ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝐸))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1539 ∈ wcel 2106 {cab 2709 ∩ cint 4950 ‘cfv 6543 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-nul 5306 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-sn 4629 df-pr 4631 df-uni 4909 df-int 4951 df-iota 6495 df-fv 6551 |
This theorem is referenced by: elcnvintab 42343 |
Copyright terms: Public domain | W3C validator |