| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elmapintab | Structured version Visualization version GIF version | ||
| Description: Two ways to say a set is an element of mapped intersection of a class. Here 𝐹 maps elements of 𝐶 to elements of ∩ {𝑥 ∣ 𝜑} or 𝑥. (Contributed by RP, 19-Aug-2020.) |
| Ref | Expression |
|---|---|
| elmapintab.1 | ⊢ (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ 𝐶 ∧ (𝐹‘𝐴) ∈ ∩ {𝑥 ∣ 𝜑})) |
| elmapintab.2 | ⊢ (𝐴 ∈ 𝐸 ↔ (𝐴 ∈ 𝐶 ∧ (𝐹‘𝐴) ∈ 𝑥)) |
| Ref | Expression |
|---|---|
| elmapintab | ⊢ (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ 𝐶 ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝐸))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elmapintab.1 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ 𝐶 ∧ (𝐹‘𝐴) ∈ ∩ {𝑥 ∣ 𝜑})) | |
| 2 | fvex 6871 | . . . 4 ⊢ (𝐹‘𝐴) ∈ V | |
| 3 | 2 | elintab 4922 | . . 3 ⊢ ((𝐹‘𝐴) ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → (𝐹‘𝐴) ∈ 𝑥)) |
| 4 | 3 | anbi2i 623 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ (𝐹‘𝐴) ∈ ∩ {𝑥 ∣ 𝜑}) ↔ (𝐴 ∈ 𝐶 ∧ ∀𝑥(𝜑 → (𝐹‘𝐴) ∈ 𝑥))) |
| 5 | elmapintab.2 | . . . . . 6 ⊢ (𝐴 ∈ 𝐸 ↔ (𝐴 ∈ 𝐶 ∧ (𝐹‘𝐴) ∈ 𝑥)) | |
| 6 | 5 | baibr 536 | . . . . 5 ⊢ (𝐴 ∈ 𝐶 → ((𝐹‘𝐴) ∈ 𝑥 ↔ 𝐴 ∈ 𝐸)) |
| 7 | 6 | imbi2d 340 | . . . 4 ⊢ (𝐴 ∈ 𝐶 → ((𝜑 → (𝐹‘𝐴) ∈ 𝑥) ↔ (𝜑 → 𝐴 ∈ 𝐸))) |
| 8 | 7 | albidv 1920 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (∀𝑥(𝜑 → (𝐹‘𝐴) ∈ 𝑥) ↔ ∀𝑥(𝜑 → 𝐴 ∈ 𝐸))) |
| 9 | 8 | pm5.32i 574 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ ∀𝑥(𝜑 → (𝐹‘𝐴) ∈ 𝑥)) ↔ (𝐴 ∈ 𝐶 ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝐸))) |
| 10 | 1, 4, 9 | 3bitri 297 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ 𝐶 ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝐸))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∈ wcel 2109 {cab 2707 ∩ cint 4910 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-nul 5261 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-sn 4590 df-pr 4592 df-uni 4872 df-int 4911 df-iota 6464 df-fv 6519 |
| This theorem is referenced by: elcnvintab 43591 |
| Copyright terms: Public domain | W3C validator |