Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmapintab Structured version   Visualization version   GIF version

Theorem elmapintab 43609
Description: Two ways to say a set is an element of mapped intersection of a class. Here 𝐹 maps elements of 𝐶 to elements of {𝑥𝜑} or 𝑥. (Contributed by RP, 19-Aug-2020.)
Hypotheses
Ref Expression
elmapintab.1 (𝐴𝐵 ↔ (𝐴𝐶 ∧ (𝐹𝐴) ∈ {𝑥𝜑}))
elmapintab.2 (𝐴𝐸 ↔ (𝐴𝐶 ∧ (𝐹𝐴) ∈ 𝑥))
Assertion
Ref Expression
elmapintab (𝐴𝐵 ↔ (𝐴𝐶 ∧ ∀𝑥(𝜑𝐴𝐸)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐹
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐸(𝑥)

Proof of Theorem elmapintab
StepHypRef Expression
1 elmapintab.1 . 2 (𝐴𝐵 ↔ (𝐴𝐶 ∧ (𝐹𝐴) ∈ {𝑥𝜑}))
2 fvex 6919 . . . 4 (𝐹𝐴) ∈ V
32elintab 4958 . . 3 ((𝐹𝐴) ∈ {𝑥𝜑} ↔ ∀𝑥(𝜑 → (𝐹𝐴) ∈ 𝑥))
43anbi2i 623 . 2 ((𝐴𝐶 ∧ (𝐹𝐴) ∈ {𝑥𝜑}) ↔ (𝐴𝐶 ∧ ∀𝑥(𝜑 → (𝐹𝐴) ∈ 𝑥)))
5 elmapintab.2 . . . . . 6 (𝐴𝐸 ↔ (𝐴𝐶 ∧ (𝐹𝐴) ∈ 𝑥))
65baibr 536 . . . . 5 (𝐴𝐶 → ((𝐹𝐴) ∈ 𝑥𝐴𝐸))
76imbi2d 340 . . . 4 (𝐴𝐶 → ((𝜑 → (𝐹𝐴) ∈ 𝑥) ↔ (𝜑𝐴𝐸)))
87albidv 1920 . . 3 (𝐴𝐶 → (∀𝑥(𝜑 → (𝐹𝐴) ∈ 𝑥) ↔ ∀𝑥(𝜑𝐴𝐸)))
98pm5.32i 574 . 2 ((𝐴𝐶 ∧ ∀𝑥(𝜑 → (𝐹𝐴) ∈ 𝑥)) ↔ (𝐴𝐶 ∧ ∀𝑥(𝜑𝐴𝐸)))
101, 4, 93bitri 297 1 (𝐴𝐵 ↔ (𝐴𝐶 ∧ ∀𝑥(𝜑𝐴𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538  wcel 2108  {cab 2714   cint 4946  cfv 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-nul 5306
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3062  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-sn 4627  df-pr 4629  df-uni 4908  df-int 4947  df-iota 6514  df-fv 6569
This theorem is referenced by:  elcnvintab  43615
  Copyright terms: Public domain W3C validator