Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmapintab Structured version   Visualization version   GIF version

Theorem elmapintab 42337
Description: Two ways to say a set is an element of mapped intersection of a class. Here 𝐹 maps elements of 𝐶 to elements of {𝑥𝜑} or 𝑥. (Contributed by RP, 19-Aug-2020.)
Hypotheses
Ref Expression
elmapintab.1 (𝐴𝐵 ↔ (𝐴𝐶 ∧ (𝐹𝐴) ∈ {𝑥𝜑}))
elmapintab.2 (𝐴𝐸 ↔ (𝐴𝐶 ∧ (𝐹𝐴) ∈ 𝑥))
Assertion
Ref Expression
elmapintab (𝐴𝐵 ↔ (𝐴𝐶 ∧ ∀𝑥(𝜑𝐴𝐸)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝑥,𝐹
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐸(𝑥)

Proof of Theorem elmapintab
StepHypRef Expression
1 elmapintab.1 . 2 (𝐴𝐵 ↔ (𝐴𝐶 ∧ (𝐹𝐴) ∈ {𝑥𝜑}))
2 fvex 6904 . . . 4 (𝐹𝐴) ∈ V
32elintab 4962 . . 3 ((𝐹𝐴) ∈ {𝑥𝜑} ↔ ∀𝑥(𝜑 → (𝐹𝐴) ∈ 𝑥))
43anbi2i 623 . 2 ((𝐴𝐶 ∧ (𝐹𝐴) ∈ {𝑥𝜑}) ↔ (𝐴𝐶 ∧ ∀𝑥(𝜑 → (𝐹𝐴) ∈ 𝑥)))
5 elmapintab.2 . . . . . 6 (𝐴𝐸 ↔ (𝐴𝐶 ∧ (𝐹𝐴) ∈ 𝑥))
65baibr 537 . . . . 5 (𝐴𝐶 → ((𝐹𝐴) ∈ 𝑥𝐴𝐸))
76imbi2d 340 . . . 4 (𝐴𝐶 → ((𝜑 → (𝐹𝐴) ∈ 𝑥) ↔ (𝜑𝐴𝐸)))
87albidv 1923 . . 3 (𝐴𝐶 → (∀𝑥(𝜑 → (𝐹𝐴) ∈ 𝑥) ↔ ∀𝑥(𝜑𝐴𝐸)))
98pm5.32i 575 . 2 ((𝐴𝐶 ∧ ∀𝑥(𝜑 → (𝐹𝐴) ∈ 𝑥)) ↔ (𝐴𝐶 ∧ ∀𝑥(𝜑𝐴𝐸)))
101, 4, 93bitri 296 1 (𝐴𝐵 ↔ (𝐴𝐶 ∧ ∀𝑥(𝜑𝐴𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1539  wcel 2106  {cab 2709   cint 4950  cfv 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-nul 5306
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ne 2941  df-ral 3062  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-sn 4629  df-pr 4631  df-uni 4909  df-int 4951  df-iota 6495  df-fv 6551
This theorem is referenced by:  elcnvintab  42343
  Copyright terms: Public domain W3C validator