Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elmapintab | Structured version Visualization version GIF version |
Description: Two ways to say a set is an element of mapped intersection of a class. Here 𝐹 maps elements of 𝐶 to elements of ∩ {𝑥 ∣ 𝜑} or 𝑥. (Contributed by RP, 19-Aug-2020.) |
Ref | Expression |
---|---|
elmapintab.1 | ⊢ (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ 𝐶 ∧ (𝐹‘𝐴) ∈ ∩ {𝑥 ∣ 𝜑})) |
elmapintab.2 | ⊢ (𝐴 ∈ 𝐸 ↔ (𝐴 ∈ 𝐶 ∧ (𝐹‘𝐴) ∈ 𝑥)) |
Ref | Expression |
---|---|
elmapintab | ⊢ (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ 𝐶 ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝐸))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elmapintab.1 | . 2 ⊢ (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ 𝐶 ∧ (𝐹‘𝐴) ∈ ∩ {𝑥 ∣ 𝜑})) | |
2 | fvex 6769 | . . . 4 ⊢ (𝐹‘𝐴) ∈ V | |
3 | 2 | elintab 4887 | . . 3 ⊢ ((𝐹‘𝐴) ∈ ∩ {𝑥 ∣ 𝜑} ↔ ∀𝑥(𝜑 → (𝐹‘𝐴) ∈ 𝑥)) |
4 | 3 | anbi2i 622 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ (𝐹‘𝐴) ∈ ∩ {𝑥 ∣ 𝜑}) ↔ (𝐴 ∈ 𝐶 ∧ ∀𝑥(𝜑 → (𝐹‘𝐴) ∈ 𝑥))) |
5 | elmapintab.2 | . . . . . 6 ⊢ (𝐴 ∈ 𝐸 ↔ (𝐴 ∈ 𝐶 ∧ (𝐹‘𝐴) ∈ 𝑥)) | |
6 | 5 | baibr 536 | . . . . 5 ⊢ (𝐴 ∈ 𝐶 → ((𝐹‘𝐴) ∈ 𝑥 ↔ 𝐴 ∈ 𝐸)) |
7 | 6 | imbi2d 340 | . . . 4 ⊢ (𝐴 ∈ 𝐶 → ((𝜑 → (𝐹‘𝐴) ∈ 𝑥) ↔ (𝜑 → 𝐴 ∈ 𝐸))) |
8 | 7 | albidv 1924 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (∀𝑥(𝜑 → (𝐹‘𝐴) ∈ 𝑥) ↔ ∀𝑥(𝜑 → 𝐴 ∈ 𝐸))) |
9 | 8 | pm5.32i 574 | . 2 ⊢ ((𝐴 ∈ 𝐶 ∧ ∀𝑥(𝜑 → (𝐹‘𝐴) ∈ 𝑥)) ↔ (𝐴 ∈ 𝐶 ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝐸))) |
10 | 1, 4, 9 | 3bitri 296 | 1 ⊢ (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ 𝐶 ∧ ∀𝑥(𝜑 → 𝐴 ∈ 𝐸))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 ∈ wcel 2108 {cab 2715 ∩ cint 4876 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-nul 5225 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-sn 4559 df-pr 4561 df-uni 4837 df-int 4877 df-iota 6376 df-fv 6426 |
This theorem is referenced by: elcnvintab 41099 |
Copyright terms: Public domain | W3C validator |