![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elcnvintab | Structured version Visualization version GIF version |
Description: Two ways of saying a set is an element of the converse of the intersection of a class. (Contributed by RP, 19-Aug-2020.) |
Ref | Expression |
---|---|
elcnvintab | ⊢ (𝐴 ∈ ◡∩ {𝑥 ∣ 𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑 → 𝐴 ∈ ◡𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2731 | . . 3 ⊢ (𝑦 ∈ (V × V) ↦ ⟨(2nd ‘𝑦), (1st ‘𝑦)⟩) = (𝑦 ∈ (V × V) ↦ ⟨(2nd ‘𝑦), (1st ‘𝑦)⟩) | |
2 | 1 | elcnvlem 42655 | . 2 ⊢ (𝐴 ∈ ◡∩ {𝑥 ∣ 𝜑} ↔ (𝐴 ∈ (V × V) ∧ ((𝑦 ∈ (V × V) ↦ ⟨(2nd ‘𝑦), (1st ‘𝑦)⟩)‘𝐴) ∈ ∩ {𝑥 ∣ 𝜑})) |
3 | 1 | elcnvlem 42655 | . 2 ⊢ (𝐴 ∈ ◡𝑥 ↔ (𝐴 ∈ (V × V) ∧ ((𝑦 ∈ (V × V) ↦ ⟨(2nd ‘𝑦), (1st ‘𝑦)⟩)‘𝐴) ∈ 𝑥)) |
4 | 2, 3 | elmapintab 42650 | 1 ⊢ (𝐴 ∈ ◡∩ {𝑥 ∣ 𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑 → 𝐴 ∈ ◡𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1538 ∈ wcel 2105 {cab 2708 Vcvv 3473 ⟨cop 4635 ∩ cint 4951 ↦ cmpt 5232 × cxp 5675 ◡ccnv 5676 ‘cfv 6544 1st c1st 7976 2nd c2nd 7977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7728 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fv 6552 df-1st 7978 df-2nd 7979 |
This theorem is referenced by: cnvintabd 42657 |
Copyright terms: Public domain | W3C validator |