Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elcnvintab | Structured version Visualization version GIF version |
Description: Two ways of saying a set is an element of the converse of the intersection of a class. (Contributed by RP, 19-Aug-2020.) |
Ref | Expression |
---|---|
elcnvintab | ⊢ (𝐴 ∈ ◡∩ {𝑥 ∣ 𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑 → 𝐴 ∈ ◡𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . 3 ⊢ (𝑦 ∈ (V × V) ↦ 〈(2nd ‘𝑦), (1st ‘𝑦)〉) = (𝑦 ∈ (V × V) ↦ 〈(2nd ‘𝑦), (1st ‘𝑦)〉) | |
2 | 1 | elcnvlem 41162 | . 2 ⊢ (𝐴 ∈ ◡∩ {𝑥 ∣ 𝜑} ↔ (𝐴 ∈ (V × V) ∧ ((𝑦 ∈ (V × V) ↦ 〈(2nd ‘𝑦), (1st ‘𝑦)〉)‘𝐴) ∈ ∩ {𝑥 ∣ 𝜑})) |
3 | 1 | elcnvlem 41162 | . 2 ⊢ (𝐴 ∈ ◡𝑥 ↔ (𝐴 ∈ (V × V) ∧ ((𝑦 ∈ (V × V) ↦ 〈(2nd ‘𝑦), (1st ‘𝑦)〉)‘𝐴) ∈ 𝑥)) |
4 | 2, 3 | elmapintab 41157 | 1 ⊢ (𝐴 ∈ ◡∩ {𝑥 ∣ 𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑 → 𝐴 ∈ ◡𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1539 ∈ wcel 2109 {cab 2716 Vcvv 3430 〈cop 4572 ∩ cint 4884 ↦ cmpt 5161 × cxp 5586 ◡ccnv 5587 ‘cfv 6430 1st c1st 7815 2nd c2nd 7816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-int 4885 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-iota 6388 df-fun 6432 df-fv 6438 df-1st 7817 df-2nd 7818 |
This theorem is referenced by: cnvintabd 41164 |
Copyright terms: Public domain | W3C validator |