Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcnvintab Structured version   Visualization version   GIF version

Theorem elcnvintab 43694
Description: Two ways of saying a set is an element of the converse of the intersection of a class. (Contributed by RP, 19-Aug-2020.)
Assertion
Ref Expression
elcnvintab (𝐴 {𝑥𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑𝐴𝑥)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem elcnvintab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . 3 (𝑦 ∈ (V × V) ↦ ⟨(2nd𝑦), (1st𝑦)⟩) = (𝑦 ∈ (V × V) ↦ ⟨(2nd𝑦), (1st𝑦)⟩)
21elcnvlem 43693 . 2 (𝐴 {𝑥𝜑} ↔ (𝐴 ∈ (V × V) ∧ ((𝑦 ∈ (V × V) ↦ ⟨(2nd𝑦), (1st𝑦)⟩)‘𝐴) ∈ {𝑥𝜑}))
31elcnvlem 43693 . 2 (𝐴𝑥 ↔ (𝐴 ∈ (V × V) ∧ ((𝑦 ∈ (V × V) ↦ ⟨(2nd𝑦), (1st𝑦)⟩)‘𝐴) ∈ 𝑥))
42, 3elmapintab 43688 1 (𝐴 {𝑥𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑𝐴𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539  wcel 2111  {cab 2709  Vcvv 3436  cop 4579   cint 4895  cmpt 5170   × cxp 5612  ccnv 5613  cfv 6481  1st c1st 7919  2nd c2nd 7920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fv 6489  df-1st 7921  df-2nd 7922
This theorem is referenced by:  cnvintabd  43695
  Copyright terms: Public domain W3C validator