Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcnvintab Structured version   Visualization version   GIF version

Theorem elcnvintab 41163
Description: Two ways of saying a set is an element of the converse of the intersection of a class. (Contributed by RP, 19-Aug-2020.)
Assertion
Ref Expression
elcnvintab (𝐴 {𝑥𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑𝐴𝑥)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem elcnvintab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2739 . . 3 (𝑦 ∈ (V × V) ↦ ⟨(2nd𝑦), (1st𝑦)⟩) = (𝑦 ∈ (V × V) ↦ ⟨(2nd𝑦), (1st𝑦)⟩)
21elcnvlem 41162 . 2 (𝐴 {𝑥𝜑} ↔ (𝐴 ∈ (V × V) ∧ ((𝑦 ∈ (V × V) ↦ ⟨(2nd𝑦), (1st𝑦)⟩)‘𝐴) ∈ {𝑥𝜑}))
31elcnvlem 41162 . 2 (𝐴𝑥 ↔ (𝐴 ∈ (V × V) ∧ ((𝑦 ∈ (V × V) ↦ ⟨(2nd𝑦), (1st𝑦)⟩)‘𝐴) ∈ 𝑥))
42, 3elmapintab 41157 1 (𝐴 {𝑥𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑𝐴𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1539  wcel 2109  {cab 2716  Vcvv 3430  cop 4572   cint 4884  cmpt 5161   × cxp 5586  ccnv 5587  cfv 6430  1st c1st 7815  2nd c2nd 7816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-int 4885  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-iota 6388  df-fun 6432  df-fv 6438  df-1st 7817  df-2nd 7818
This theorem is referenced by:  cnvintabd  41164
  Copyright terms: Public domain W3C validator