Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elcnvintab Structured version   Visualization version   GIF version

Theorem elcnvintab 40796
Description: Two ways of saying a set is an element of the converse of the intersection of a class. (Contributed by RP, 19-Aug-2020.)
Assertion
Ref Expression
elcnvintab (𝐴 {𝑥𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑𝐴𝑥)))
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem elcnvintab
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqid 2739 . . 3 (𝑦 ∈ (V × V) ↦ ⟨(2nd𝑦), (1st𝑦)⟩) = (𝑦 ∈ (V × V) ↦ ⟨(2nd𝑦), (1st𝑦)⟩)
21elcnvlem 40795 . 2 (𝐴 {𝑥𝜑} ↔ (𝐴 ∈ (V × V) ∧ ((𝑦 ∈ (V × V) ↦ ⟨(2nd𝑦), (1st𝑦)⟩)‘𝐴) ∈ {𝑥𝜑}))
31elcnvlem 40795 . 2 (𝐴𝑥 ↔ (𝐴 ∈ (V × V) ∧ ((𝑦 ∈ (V × V) ↦ ⟨(2nd𝑦), (1st𝑦)⟩)‘𝐴) ∈ 𝑥))
42, 3elmapintab 40790 1 (𝐴 {𝑥𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑𝐴𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wal 1540  wcel 2114  {cab 2717  Vcvv 3400  cop 4532   cint 4846  cmpt 5120   × cxp 5533  ccnv 5534  cfv 6350  1st c1st 7725  2nd c2nd 7726
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pr 5306  ax-un 7492
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3402  df-sbc 3686  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-int 4847  df-br 5041  df-opab 5103  df-mpt 5121  df-id 5439  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-iota 6308  df-fun 6352  df-fv 6358  df-1st 7727  df-2nd 7728
This theorem is referenced by:  cnvintabd  40797
  Copyright terms: Public domain W3C validator