| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elcnvintab | Structured version Visualization version GIF version | ||
| Description: Two ways of saying a set is an element of the converse of the intersection of a class. (Contributed by RP, 19-Aug-2020.) |
| Ref | Expression |
|---|---|
| elcnvintab | ⊢ (𝐴 ∈ ◡∩ {𝑥 ∣ 𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑 → 𝐴 ∈ ◡𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (𝑦 ∈ (V × V) ↦ 〈(2nd ‘𝑦), (1st ‘𝑦)〉) = (𝑦 ∈ (V × V) ↦ 〈(2nd ‘𝑦), (1st ‘𝑦)〉) | |
| 2 | 1 | elcnvlem 43693 | . 2 ⊢ (𝐴 ∈ ◡∩ {𝑥 ∣ 𝜑} ↔ (𝐴 ∈ (V × V) ∧ ((𝑦 ∈ (V × V) ↦ 〈(2nd ‘𝑦), (1st ‘𝑦)〉)‘𝐴) ∈ ∩ {𝑥 ∣ 𝜑})) |
| 3 | 1 | elcnvlem 43693 | . 2 ⊢ (𝐴 ∈ ◡𝑥 ↔ (𝐴 ∈ (V × V) ∧ ((𝑦 ∈ (V × V) ↦ 〈(2nd ‘𝑦), (1st ‘𝑦)〉)‘𝐴) ∈ 𝑥)) |
| 4 | 2, 3 | elmapintab 43688 | 1 ⊢ (𝐴 ∈ ◡∩ {𝑥 ∣ 𝜑} ↔ (𝐴 ∈ (V × V) ∧ ∀𝑥(𝜑 → 𝐴 ∈ ◡𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 ∈ wcel 2111 {cab 2709 Vcvv 3436 〈cop 4579 ∩ cint 4895 ↦ cmpt 5170 × cxp 5612 ◡ccnv 5613 ‘cfv 6481 1st c1st 7919 2nd c2nd 7920 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-iota 6437 df-fun 6483 df-fv 6489 df-1st 7921 df-2nd 7922 |
| This theorem is referenced by: cnvintabd 43695 |
| Copyright terms: Public domain | W3C validator |