Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cononrel2 Structured version   Visualization version   GIF version

Theorem cononrel2 43591
Description: Composition with the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.)
Assertion
Ref Expression
cononrel2 (𝐴 ∘ (𝐵𝐵)) = ∅

Proof of Theorem cononrel2
StepHypRef Expression
1 cnvco 5852 . . . 4 (𝐴 ∘ (𝐵𝐵)) = ((𝐵𝐵) ∘ 𝐴)
2 cnvnonrel 43584 . . . . 5 (𝐵𝐵) = ∅
32coeq1i 5826 . . . 4 ((𝐵𝐵) ∘ 𝐴) = (∅ ∘ 𝐴)
4 co01 6237 . . . 4 (∅ ∘ 𝐴) = ∅
51, 3, 43eqtri 2757 . . 3 (𝐴 ∘ (𝐵𝐵)) = ∅
65cnveqi 5841 . 2 (𝐴 ∘ (𝐵𝐵)) =
7 relco 6082 . . 3 Rel (𝐴 ∘ (𝐵𝐵))
8 dfrel2 6165 . . 3 (Rel (𝐴 ∘ (𝐵𝐵)) ↔ (𝐴 ∘ (𝐵𝐵)) = (𝐴 ∘ (𝐵𝐵)))
97, 8mpbi 230 . 2 (𝐴 ∘ (𝐵𝐵)) = (𝐴 ∘ (𝐵𝐵))
10 cnv0 6116 . 2 ∅ = ∅
116, 9, 103eqtr3i 2761 1 (𝐴 ∘ (𝐵𝐵)) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cdif 3914  c0 4299  ccnv 5640  ccom 5645  Rel wrel 5646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650
This theorem is referenced by:  cnvtrcl0  43622
  Copyright terms: Public domain W3C validator