![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cononrel2 | Structured version Visualization version GIF version |
Description: Composition with the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
Ref | Expression |
---|---|
cononrel2 | ⊢ (𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvco 5511 | . . . 4 ⊢ ◡(𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = (◡(𝐵 ∖ ◡◡𝐵) ∘ ◡𝐴) | |
2 | cnvnonrel 38677 | . . . . 5 ⊢ ◡(𝐵 ∖ ◡◡𝐵) = ∅ | |
3 | 2 | coeq1i 5485 | . . . 4 ⊢ (◡(𝐵 ∖ ◡◡𝐵) ∘ ◡𝐴) = (∅ ∘ ◡𝐴) |
4 | co01 5869 | . . . 4 ⊢ (∅ ∘ ◡𝐴) = ∅ | |
5 | 1, 3, 4 | 3eqtri 2825 | . . 3 ⊢ ◡(𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = ∅ |
6 | 5 | cnveqi 5500 | . 2 ⊢ ◡◡(𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = ◡∅ |
7 | relco 5852 | . . 3 ⊢ Rel (𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) | |
8 | dfrel2 5800 | . . 3 ⊢ (Rel (𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) ↔ ◡◡(𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = (𝐴 ∘ (𝐵 ∖ ◡◡𝐵))) | |
9 | 7, 8 | mpbi 222 | . 2 ⊢ ◡◡(𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = (𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) |
10 | cnv0 5753 | . 2 ⊢ ◡∅ = ∅ | |
11 | 6, 9, 10 | 3eqtr3i 2829 | 1 ⊢ (𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 ∖ cdif 3766 ∅c0 4115 ◡ccnv 5311 ∘ ccom 5316 Rel wrel 5317 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rab 3098 df-v 3387 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-br 4844 df-opab 4906 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 |
This theorem is referenced by: cnvtrcl0 38716 |
Copyright terms: Public domain | W3C validator |