Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cononrel2 Structured version   Visualization version   GIF version

Theorem cononrel2 42331
Description: Composition with the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.)
Assertion
Ref Expression
cononrel2 (𝐴 ∘ (𝐵𝐵)) = ∅

Proof of Theorem cononrel2
StepHypRef Expression
1 cnvco 5883 . . . 4 (𝐴 ∘ (𝐵𝐵)) = ((𝐵𝐵) ∘ 𝐴)
2 cnvnonrel 42324 . . . . 5 (𝐵𝐵) = ∅
32coeq1i 5857 . . . 4 ((𝐵𝐵) ∘ 𝐴) = (∅ ∘ 𝐴)
4 co01 6257 . . . 4 (∅ ∘ 𝐴) = ∅
51, 3, 43eqtri 2764 . . 3 (𝐴 ∘ (𝐵𝐵)) = ∅
65cnveqi 5872 . 2 (𝐴 ∘ (𝐵𝐵)) =
7 relco 6104 . . 3 Rel (𝐴 ∘ (𝐵𝐵))
8 dfrel2 6185 . . 3 (Rel (𝐴 ∘ (𝐵𝐵)) ↔ (𝐴 ∘ (𝐵𝐵)) = (𝐴 ∘ (𝐵𝐵)))
97, 8mpbi 229 . 2 (𝐴 ∘ (𝐵𝐵)) = (𝐴 ∘ (𝐵𝐵))
10 cnv0 6137 . 2 ∅ = ∅
116, 9, 103eqtr3i 2768 1 (𝐴 ∘ (𝐵𝐵)) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cdif 3944  c0 4321  ccnv 5674  ccom 5679  Rel wrel 5680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684
This theorem is referenced by:  cnvtrcl0  42362
  Copyright terms: Public domain W3C validator