![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cononrel2 | Structured version Visualization version GIF version |
Description: Composition with the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
Ref | Expression |
---|---|
cononrel2 | ⊢ (𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvco 5882 | . . . 4 ⊢ ◡(𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = (◡(𝐵 ∖ ◡◡𝐵) ∘ ◡𝐴) | |
2 | cnvnonrel 43083 | . . . . 5 ⊢ ◡(𝐵 ∖ ◡◡𝐵) = ∅ | |
3 | 2 | coeq1i 5856 | . . . 4 ⊢ (◡(𝐵 ∖ ◡◡𝐵) ∘ ◡𝐴) = (∅ ∘ ◡𝐴) |
4 | co01 6260 | . . . 4 ⊢ (∅ ∘ ◡𝐴) = ∅ | |
5 | 1, 3, 4 | 3eqtri 2757 | . . 3 ⊢ ◡(𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = ∅ |
6 | 5 | cnveqi 5871 | . 2 ⊢ ◡◡(𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = ◡∅ |
7 | relco 6107 | . . 3 ⊢ Rel (𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) | |
8 | dfrel2 6188 | . . 3 ⊢ (Rel (𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) ↔ ◡◡(𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = (𝐴 ∘ (𝐵 ∖ ◡◡𝐵))) | |
9 | 7, 8 | mpbi 229 | . 2 ⊢ ◡◡(𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = (𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) |
10 | cnv0 6140 | . 2 ⊢ ◡∅ = ∅ | |
11 | 6, 9, 10 | 3eqtr3i 2761 | 1 ⊢ (𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∖ cdif 3936 ∅c0 4318 ◡ccnv 5671 ∘ ccom 5676 Rel wrel 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-rab 3420 df-v 3465 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5144 df-opab 5206 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 |
This theorem is referenced by: cnvtrcl0 43121 |
Copyright terms: Public domain | W3C validator |