| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cononrel2 | Structured version Visualization version GIF version | ||
| Description: Composition with the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
| Ref | Expression |
|---|---|
| cononrel2 | ⊢ (𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvco 5829 | . . . 4 ⊢ ◡(𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = (◡(𝐵 ∖ ◡◡𝐵) ∘ ◡𝐴) | |
| 2 | cnvnonrel 43705 | . . . . 5 ⊢ ◡(𝐵 ∖ ◡◡𝐵) = ∅ | |
| 3 | 2 | coeq1i 5803 | . . . 4 ⊢ (◡(𝐵 ∖ ◡◡𝐵) ∘ ◡𝐴) = (∅ ∘ ◡𝐴) |
| 4 | co01 6214 | . . . 4 ⊢ (∅ ∘ ◡𝐴) = ∅ | |
| 5 | 1, 3, 4 | 3eqtri 2760 | . . 3 ⊢ ◡(𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = ∅ |
| 6 | 5 | cnveqi 5818 | . 2 ⊢ ◡◡(𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = ◡∅ |
| 7 | relco 6061 | . . 3 ⊢ Rel (𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) | |
| 8 | dfrel2 6141 | . . 3 ⊢ (Rel (𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) ↔ ◡◡(𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = (𝐴 ∘ (𝐵 ∖ ◡◡𝐵))) | |
| 9 | 7, 8 | mpbi 230 | . 2 ⊢ ◡◡(𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = (𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) |
| 10 | cnv0 6091 | . 2 ⊢ ◡∅ = ∅ | |
| 11 | 6, 9, 10 | 3eqtr3i 2764 | 1 ⊢ (𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∖ cdif 3895 ∅c0 4282 ◡ccnv 5618 ∘ ccom 5623 Rel wrel 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 |
| This theorem is referenced by: cnvtrcl0 43743 |
| Copyright terms: Public domain | W3C validator |