Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cononrel2 Structured version   Visualization version   GIF version

Theorem cononrel2 43557
Description: Composition with the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.)
Assertion
Ref Expression
cononrel2 (𝐴 ∘ (𝐵𝐵)) = ∅

Proof of Theorem cononrel2
StepHypRef Expression
1 cnvco 5910 . . . 4 (𝐴 ∘ (𝐵𝐵)) = ((𝐵𝐵) ∘ 𝐴)
2 cnvnonrel 43550 . . . . 5 (𝐵𝐵) = ∅
32coeq1i 5884 . . . 4 ((𝐵𝐵) ∘ 𝐴) = (∅ ∘ 𝐴)
4 co01 6292 . . . 4 (∅ ∘ 𝐴) = ∅
51, 3, 43eqtri 2772 . . 3 (𝐴 ∘ (𝐵𝐵)) = ∅
65cnveqi 5899 . 2 (𝐴 ∘ (𝐵𝐵)) =
7 relco 6138 . . 3 Rel (𝐴 ∘ (𝐵𝐵))
8 dfrel2 6220 . . 3 (Rel (𝐴 ∘ (𝐵𝐵)) ↔ (𝐴 ∘ (𝐵𝐵)) = (𝐴 ∘ (𝐵𝐵)))
97, 8mpbi 230 . 2 (𝐴 ∘ (𝐵𝐵)) = (𝐴 ∘ (𝐵𝐵))
10 cnv0 6172 . 2 ∅ = ∅
116, 9, 103eqtr3i 2776 1 (𝐴 ∘ (𝐵𝐵)) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cdif 3973  c0 4352  ccnv 5699  ccom 5704  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709
This theorem is referenced by:  cnvtrcl0  43588
  Copyright terms: Public domain W3C validator