Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cononrel2 Structured version   Visualization version   GIF version

Theorem cononrel2 43712
Description: Composition with the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.)
Assertion
Ref Expression
cononrel2 (𝐴 ∘ (𝐵𝐵)) = ∅

Proof of Theorem cononrel2
StepHypRef Expression
1 cnvco 5829 . . . 4 (𝐴 ∘ (𝐵𝐵)) = ((𝐵𝐵) ∘ 𝐴)
2 cnvnonrel 43705 . . . . 5 (𝐵𝐵) = ∅
32coeq1i 5803 . . . 4 ((𝐵𝐵) ∘ 𝐴) = (∅ ∘ 𝐴)
4 co01 6214 . . . 4 (∅ ∘ 𝐴) = ∅
51, 3, 43eqtri 2760 . . 3 (𝐴 ∘ (𝐵𝐵)) = ∅
65cnveqi 5818 . 2 (𝐴 ∘ (𝐵𝐵)) =
7 relco 6061 . . 3 Rel (𝐴 ∘ (𝐵𝐵))
8 dfrel2 6141 . . 3 (Rel (𝐴 ∘ (𝐵𝐵)) ↔ (𝐴 ∘ (𝐵𝐵)) = (𝐴 ∘ (𝐵𝐵)))
97, 8mpbi 230 . 2 (𝐴 ∘ (𝐵𝐵)) = (𝐴 ∘ (𝐵𝐵))
10 cnv0 6091 . 2 ∅ = ∅
116, 9, 103eqtr3i 2764 1 (𝐴 ∘ (𝐵𝐵)) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cdif 3895  c0 4282  ccnv 5618  ccom 5623  Rel wrel 5624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-br 5094  df-opab 5156  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628
This theorem is referenced by:  cnvtrcl0  43743
  Copyright terms: Public domain W3C validator