Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cononrel2 | Structured version Visualization version GIF version |
Description: Composition with the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
Ref | Expression |
---|---|
cononrel2 | ⊢ (𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvco 5827 | . . . 4 ⊢ ◡(𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = (◡(𝐵 ∖ ◡◡𝐵) ∘ ◡𝐴) | |
2 | cnvnonrel 41525 | . . . . 5 ⊢ ◡(𝐵 ∖ ◡◡𝐵) = ∅ | |
3 | 2 | coeq1i 5801 | . . . 4 ⊢ (◡(𝐵 ∖ ◡◡𝐵) ∘ ◡𝐴) = (∅ ∘ ◡𝐴) |
4 | co01 6199 | . . . 4 ⊢ (∅ ∘ ◡𝐴) = ∅ | |
5 | 1, 3, 4 | 3eqtri 2768 | . . 3 ⊢ ◡(𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = ∅ |
6 | 5 | cnveqi 5816 | . 2 ⊢ ◡◡(𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = ◡∅ |
7 | relco 6046 | . . 3 ⊢ Rel (𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) | |
8 | dfrel2 6127 | . . 3 ⊢ (Rel (𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) ↔ ◡◡(𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = (𝐴 ∘ (𝐵 ∖ ◡◡𝐵))) | |
9 | 7, 8 | mpbi 229 | . 2 ⊢ ◡◡(𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = (𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) |
10 | cnv0 6079 | . 2 ⊢ ◡∅ = ∅ | |
11 | 6, 9, 10 | 3eqtr3i 2772 | 1 ⊢ (𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∖ cdif 3895 ∅c0 4269 ◡ccnv 5619 ∘ ccom 5624 Rel wrel 5625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-br 5093 df-opab 5155 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 |
This theorem is referenced by: cnvtrcl0 41563 |
Copyright terms: Public domain | W3C validator |