Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cononrel2 | Structured version Visualization version GIF version |
Description: Composition with the non-relation part of a class is empty. (Contributed by RP, 22-Oct-2020.) |
Ref | Expression |
---|---|
cononrel2 | ⊢ (𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvco 5791 | . . . 4 ⊢ ◡(𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = (◡(𝐵 ∖ ◡◡𝐵) ∘ ◡𝐴) | |
2 | cnvnonrel 41149 | . . . . 5 ⊢ ◡(𝐵 ∖ ◡◡𝐵) = ∅ | |
3 | 2 | coeq1i 5765 | . . . 4 ⊢ (◡(𝐵 ∖ ◡◡𝐵) ∘ ◡𝐴) = (∅ ∘ ◡𝐴) |
4 | co01 6162 | . . . 4 ⊢ (∅ ∘ ◡𝐴) = ∅ | |
5 | 1, 3, 4 | 3eqtri 2771 | . . 3 ⊢ ◡(𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = ∅ |
6 | 5 | cnveqi 5780 | . 2 ⊢ ◡◡(𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = ◡∅ |
7 | relco 6145 | . . 3 ⊢ Rel (𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) | |
8 | dfrel2 6089 | . . 3 ⊢ (Rel (𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) ↔ ◡◡(𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = (𝐴 ∘ (𝐵 ∖ ◡◡𝐵))) | |
9 | 7, 8 | mpbi 229 | . 2 ⊢ ◡◡(𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = (𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) |
10 | cnv0 6041 | . 2 ⊢ ◡∅ = ∅ | |
11 | 6, 9, 10 | 3eqtr3i 2775 | 1 ⊢ (𝐴 ∘ (𝐵 ∖ ◡◡𝐵)) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∖ cdif 3888 ∅c0 4261 ◡ccnv 5587 ∘ ccom 5592 Rel wrel 5593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 |
This theorem is referenced by: cnvtrcl0 41187 |
Copyright terms: Public domain | W3C validator |