| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvssb | Structured version Visualization version GIF version | ||
| Description: Subclass theorem for converse. (Contributed by RP, 22-Oct-2020.) |
| Ref | Expression |
|---|---|
| cnvssb | ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ◡𝐴 ⊆ ◡𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvss 5839 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | |
| 2 | cnvss 5839 | . . 3 ⊢ (◡𝐴 ⊆ ◡𝐵 → ◡◡𝐴 ⊆ ◡◡𝐵) | |
| 3 | dfrel2 6165 | . . . . . . . 8 ⊢ (Rel 𝐴 ↔ ◡◡𝐴 = 𝐴) | |
| 4 | 3 | biimpi 216 | . . . . . . 7 ⊢ (Rel 𝐴 → ◡◡𝐴 = 𝐴) |
| 5 | 4 | eqcomd 2736 | . . . . . 6 ⊢ (Rel 𝐴 → 𝐴 = ◡◡𝐴) |
| 6 | 5 | adantr 480 | . . . . 5 ⊢ ((Rel 𝐴 ∧ ◡◡𝐴 ⊆ ◡◡𝐵) → 𝐴 = ◡◡𝐴) |
| 7 | id 22 | . . . . . . 7 ⊢ (◡◡𝐴 ⊆ ◡◡𝐵 → ◡◡𝐴 ⊆ ◡◡𝐵) | |
| 8 | cnvcnvss 6170 | . . . . . . 7 ⊢ ◡◡𝐵 ⊆ 𝐵 | |
| 9 | 7, 8 | sstrdi 3962 | . . . . . 6 ⊢ (◡◡𝐴 ⊆ ◡◡𝐵 → ◡◡𝐴 ⊆ 𝐵) |
| 10 | 9 | adantl 481 | . . . . 5 ⊢ ((Rel 𝐴 ∧ ◡◡𝐴 ⊆ ◡◡𝐵) → ◡◡𝐴 ⊆ 𝐵) |
| 11 | 6, 10 | eqsstrd 3984 | . . . 4 ⊢ ((Rel 𝐴 ∧ ◡◡𝐴 ⊆ ◡◡𝐵) → 𝐴 ⊆ 𝐵) |
| 12 | 11 | ex 412 | . . 3 ⊢ (Rel 𝐴 → (◡◡𝐴 ⊆ ◡◡𝐵 → 𝐴 ⊆ 𝐵)) |
| 13 | 2, 12 | syl5 34 | . 2 ⊢ (Rel 𝐴 → (◡𝐴 ⊆ ◡𝐵 → 𝐴 ⊆ 𝐵)) |
| 14 | 1, 13 | impbid2 226 | 1 ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ◡𝐴 ⊆ ◡𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ⊆ wss 3917 ◡ccnv 5640 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |