Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvssb Structured version   Visualization version   GIF version

Theorem cnvssb 43548
Description: Subclass theorem for converse. (Contributed by RP, 22-Oct-2020.)
Assertion
Ref Expression
cnvssb (Rel 𝐴 → (𝐴𝐵𝐴𝐵))

Proof of Theorem cnvssb
StepHypRef Expression
1 cnvss 5897 . 2 (𝐴𝐵𝐴𝐵)
2 cnvss 5897 . . 3 (𝐴𝐵𝐴𝐵)
3 dfrel2 6220 . . . . . . . 8 (Rel 𝐴𝐴 = 𝐴)
43biimpi 216 . . . . . . 7 (Rel 𝐴𝐴 = 𝐴)
54eqcomd 2746 . . . . . 6 (Rel 𝐴𝐴 = 𝐴)
65adantr 480 . . . . 5 ((Rel 𝐴𝐴𝐵) → 𝐴 = 𝐴)
7 id 22 . . . . . . 7 (𝐴𝐵𝐴𝐵)
8 cnvcnvss 6225 . . . . . . 7 𝐵𝐵
97, 8sstrdi 4021 . . . . . 6 (𝐴𝐵𝐴𝐵)
109adantl 481 . . . . 5 ((Rel 𝐴𝐴𝐵) → 𝐴𝐵)
116, 10eqsstrd 4047 . . . 4 ((Rel 𝐴𝐴𝐵) → 𝐴𝐵)
1211ex 412 . . 3 (Rel 𝐴 → (𝐴𝐵𝐴𝐵))
132, 12syl5 34 . 2 (Rel 𝐴 → (𝐴𝐵𝐴𝐵))
141, 13impbid2 226 1 (Rel 𝐴 → (𝐴𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wss 3976  ccnv 5699  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator