Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvssb Structured version   Visualization version   GIF version

Theorem cnvssb 40780
Description: Subclass theorem for converse. (Contributed by RP, 22-Oct-2020.)
Assertion
Ref Expression
cnvssb (Rel 𝐴 → (𝐴𝐵𝐴𝐵))

Proof of Theorem cnvssb
StepHypRef Expression
1 cnvss 5725 . 2 (𝐴𝐵𝐴𝐵)
2 cnvss 5725 . . 3 (𝐴𝐵𝐴𝐵)
3 dfrel2 6031 . . . . . . . 8 (Rel 𝐴𝐴 = 𝐴)
43biimpi 219 . . . . . . 7 (Rel 𝐴𝐴 = 𝐴)
54eqcomd 2745 . . . . . 6 (Rel 𝐴𝐴 = 𝐴)
65adantr 484 . . . . 5 ((Rel 𝐴𝐴𝐵) → 𝐴 = 𝐴)
7 id 22 . . . . . . 7 (𝐴𝐵𝐴𝐵)
8 cnvcnvss 6036 . . . . . . 7 𝐵𝐵
97, 8sstrdi 3899 . . . . . 6 (𝐴𝐵𝐴𝐵)
109adantl 485 . . . . 5 ((Rel 𝐴𝐴𝐵) → 𝐴𝐵)
116, 10eqsstrd 3925 . . . 4 ((Rel 𝐴𝐴𝐵) → 𝐴𝐵)
1211ex 416 . . 3 (Rel 𝐴 → (𝐴𝐵𝐴𝐵))
132, 12syl5 34 . 2 (Rel 𝐴 → (𝐴𝐵𝐴𝐵))
141, 13impbid2 229 1 (Rel 𝐴 → (𝐴𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wss 3853  ccnv 5534  Rel wrel 5540
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-12 2179  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pr 5306
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-sb 2075  df-clab 2718  df-cleq 2731  df-clel 2812  df-rab 3063  df-v 3402  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-sn 4527  df-pr 4529  df-op 4533  df-br 5041  df-opab 5103  df-xp 5541  df-rel 5542  df-cnv 5543
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator