![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvssb | Structured version Visualization version GIF version |
Description: Subclass theorem for converse. (Contributed by RP, 22-Oct-2020.) |
Ref | Expression |
---|---|
cnvssb | ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ◡𝐴 ⊆ ◡𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvss 5897 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | |
2 | cnvss 5897 | . . 3 ⊢ (◡𝐴 ⊆ ◡𝐵 → ◡◡𝐴 ⊆ ◡◡𝐵) | |
3 | dfrel2 6220 | . . . . . . . 8 ⊢ (Rel 𝐴 ↔ ◡◡𝐴 = 𝐴) | |
4 | 3 | biimpi 216 | . . . . . . 7 ⊢ (Rel 𝐴 → ◡◡𝐴 = 𝐴) |
5 | 4 | eqcomd 2746 | . . . . . 6 ⊢ (Rel 𝐴 → 𝐴 = ◡◡𝐴) |
6 | 5 | adantr 480 | . . . . 5 ⊢ ((Rel 𝐴 ∧ ◡◡𝐴 ⊆ ◡◡𝐵) → 𝐴 = ◡◡𝐴) |
7 | id 22 | . . . . . . 7 ⊢ (◡◡𝐴 ⊆ ◡◡𝐵 → ◡◡𝐴 ⊆ ◡◡𝐵) | |
8 | cnvcnvss 6225 | . . . . . . 7 ⊢ ◡◡𝐵 ⊆ 𝐵 | |
9 | 7, 8 | sstrdi 4021 | . . . . . 6 ⊢ (◡◡𝐴 ⊆ ◡◡𝐵 → ◡◡𝐴 ⊆ 𝐵) |
10 | 9 | adantl 481 | . . . . 5 ⊢ ((Rel 𝐴 ∧ ◡◡𝐴 ⊆ ◡◡𝐵) → ◡◡𝐴 ⊆ 𝐵) |
11 | 6, 10 | eqsstrd 4047 | . . . 4 ⊢ ((Rel 𝐴 ∧ ◡◡𝐴 ⊆ ◡◡𝐵) → 𝐴 ⊆ 𝐵) |
12 | 11 | ex 412 | . . 3 ⊢ (Rel 𝐴 → (◡◡𝐴 ⊆ ◡◡𝐵 → 𝐴 ⊆ 𝐵)) |
13 | 2, 12 | syl5 34 | . 2 ⊢ (Rel 𝐴 → (◡𝐴 ⊆ ◡𝐵 → 𝐴 ⊆ 𝐵)) |
14 | 1, 13 | impbid2 226 | 1 ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ◡𝐴 ⊆ ◡𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ⊆ wss 3976 ◡ccnv 5699 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |