Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvssb Structured version   Visualization version   GIF version

Theorem cnvssb 42327
Description: Subclass theorem for converse. (Contributed by RP, 22-Oct-2020.)
Assertion
Ref Expression
cnvssb (Rel 𝐴 → (𝐴𝐵𝐴𝐵))

Proof of Theorem cnvssb
StepHypRef Expression
1 cnvss 5872 . 2 (𝐴𝐵𝐴𝐵)
2 cnvss 5872 . . 3 (𝐴𝐵𝐴𝐵)
3 dfrel2 6188 . . . . . . . 8 (Rel 𝐴𝐴 = 𝐴)
43biimpi 215 . . . . . . 7 (Rel 𝐴𝐴 = 𝐴)
54eqcomd 2738 . . . . . 6 (Rel 𝐴𝐴 = 𝐴)
65adantr 481 . . . . 5 ((Rel 𝐴𝐴𝐵) → 𝐴 = 𝐴)
7 id 22 . . . . . . 7 (𝐴𝐵𝐴𝐵)
8 cnvcnvss 6193 . . . . . . 7 𝐵𝐵
97, 8sstrdi 3994 . . . . . 6 (𝐴𝐵𝐴𝐵)
109adantl 482 . . . . 5 ((Rel 𝐴𝐴𝐵) → 𝐴𝐵)
116, 10eqsstrd 4020 . . . 4 ((Rel 𝐴𝐴𝐵) → 𝐴𝐵)
1211ex 413 . . 3 (Rel 𝐴 → (𝐴𝐵𝐴𝐵))
132, 12syl5 34 . 2 (Rel 𝐴 → (𝐴𝐵𝐴𝐵))
141, 13impbid2 225 1 (Rel 𝐴 → (𝐴𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wss 3948  ccnv 5675  Rel wrel 5681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator