Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvssb | Structured version Visualization version GIF version |
Description: Subclass theorem for converse. (Contributed by RP, 22-Oct-2020.) |
Ref | Expression |
---|---|
cnvssb | ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ◡𝐴 ⊆ ◡𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvss 5770 | . 2 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) | |
2 | cnvss 5770 | . . 3 ⊢ (◡𝐴 ⊆ ◡𝐵 → ◡◡𝐴 ⊆ ◡◡𝐵) | |
3 | dfrel2 6081 | . . . . . . . 8 ⊢ (Rel 𝐴 ↔ ◡◡𝐴 = 𝐴) | |
4 | 3 | biimpi 215 | . . . . . . 7 ⊢ (Rel 𝐴 → ◡◡𝐴 = 𝐴) |
5 | 4 | eqcomd 2744 | . . . . . 6 ⊢ (Rel 𝐴 → 𝐴 = ◡◡𝐴) |
6 | 5 | adantr 480 | . . . . 5 ⊢ ((Rel 𝐴 ∧ ◡◡𝐴 ⊆ ◡◡𝐵) → 𝐴 = ◡◡𝐴) |
7 | id 22 | . . . . . . 7 ⊢ (◡◡𝐴 ⊆ ◡◡𝐵 → ◡◡𝐴 ⊆ ◡◡𝐵) | |
8 | cnvcnvss 6086 | . . . . . . 7 ⊢ ◡◡𝐵 ⊆ 𝐵 | |
9 | 7, 8 | sstrdi 3929 | . . . . . 6 ⊢ (◡◡𝐴 ⊆ ◡◡𝐵 → ◡◡𝐴 ⊆ 𝐵) |
10 | 9 | adantl 481 | . . . . 5 ⊢ ((Rel 𝐴 ∧ ◡◡𝐴 ⊆ ◡◡𝐵) → ◡◡𝐴 ⊆ 𝐵) |
11 | 6, 10 | eqsstrd 3955 | . . . 4 ⊢ ((Rel 𝐴 ∧ ◡◡𝐴 ⊆ ◡◡𝐵) → 𝐴 ⊆ 𝐵) |
12 | 11 | ex 412 | . . 3 ⊢ (Rel 𝐴 → (◡◡𝐴 ⊆ ◡◡𝐵 → 𝐴 ⊆ 𝐵)) |
13 | 2, 12 | syl5 34 | . 2 ⊢ (Rel 𝐴 → (◡𝐴 ⊆ ◡𝐵 → 𝐴 ⊆ 𝐵)) |
14 | 1, 13 | impbid2 225 | 1 ⊢ (Rel 𝐴 → (𝐴 ⊆ 𝐵 ↔ ◡𝐴 ⊆ ◡𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ⊆ wss 3883 ◡ccnv 5579 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |