Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvssb Structured version   Visualization version   GIF version

Theorem cnvssb 41194
Description: Subclass theorem for converse. (Contributed by RP, 22-Oct-2020.)
Assertion
Ref Expression
cnvssb (Rel 𝐴 → (𝐴𝐵𝐴𝐵))

Proof of Theorem cnvssb
StepHypRef Expression
1 cnvss 5781 . 2 (𝐴𝐵𝐴𝐵)
2 cnvss 5781 . . 3 (𝐴𝐵𝐴𝐵)
3 dfrel2 6092 . . . . . . . 8 (Rel 𝐴𝐴 = 𝐴)
43biimpi 215 . . . . . . 7 (Rel 𝐴𝐴 = 𝐴)
54eqcomd 2744 . . . . . 6 (Rel 𝐴𝐴 = 𝐴)
65adantr 481 . . . . 5 ((Rel 𝐴𝐴𝐵) → 𝐴 = 𝐴)
7 id 22 . . . . . . 7 (𝐴𝐵𝐴𝐵)
8 cnvcnvss 6097 . . . . . . 7 𝐵𝐵
97, 8sstrdi 3933 . . . . . 6 (𝐴𝐵𝐴𝐵)
109adantl 482 . . . . 5 ((Rel 𝐴𝐴𝐵) → 𝐴𝐵)
116, 10eqsstrd 3959 . . . 4 ((Rel 𝐴𝐴𝐵) → 𝐴𝐵)
1211ex 413 . . 3 (Rel 𝐴 → (𝐴𝐵𝐴𝐵))
132, 12syl5 34 . 2 (Rel 𝐴 → (𝐴𝐵𝐴𝐵))
141, 13impbid2 225 1 (Rel 𝐴 → (𝐴𝐵𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wss 3887  ccnv 5588  Rel wrel 5594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator