| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrn | Structured version Visualization version GIF version | ||
| Description: Membership in a range. (Contributed by NM, 2-Apr-2004.) |
| Ref | Expression |
|---|---|
| elrn.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elrn | ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elrng 5834 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1779 ∈ wcel 2109 Vcvv 3436 class class class wbr 5092 ran crn 5620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-cnv 5627 df-dm 5629 df-rn 5630 |
| This theorem is referenced by: dmcosseq 5919 dmcosseqOLD 5920 dmcosseqOLDOLD 5921 inisegn0 6049 rnco 6201 dffo4 7037 fvclss 7177 rntpos 8172 fpwwe2lem10 10534 fpwwe2lem11 10535 fclim 15460 perfdvf 25802 dftr6 35728 dffr5 35731 brsset 35867 dfon3 35870 brtxpsd 35872 dffix2 35883 elsingles 35896 dfrdg4 35929 undmrnresiss 43581 |
| Copyright terms: Public domain | W3C validator |