Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elrn | Structured version Visualization version GIF version |
Description: Membership in a range. (Contributed by NM, 2-Apr-2004.) |
Ref | Expression |
---|---|
elrn.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elrn | ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elrng 5789 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wex 1783 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 ran crn 5581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-cnv 5588 df-dm 5590 df-rn 5591 |
This theorem is referenced by: dmcosseq 5871 inisegn0 5995 rnco 6145 dffo4 6961 fvclss 7097 rntpos 8026 fpwwe2lem10 10327 fpwwe2lem11 10328 fclim 15190 perfdvf 24972 dftr6 33624 dffr5 33627 brsset 34118 dfon3 34121 brtxpsd 34123 dffix2 34134 elsingles 34147 dfrdg4 34180 undmrnresiss 41101 |
Copyright terms: Public domain | W3C validator |