| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrn | Structured version Visualization version GIF version | ||
| Description: Membership in a range. (Contributed by NM, 2-Apr-2004.) |
| Ref | Expression |
|---|---|
| elrn.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elrn | ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elrng 5830 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 class class class wbr 5089 ran crn 5615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-cnv 5622 df-dm 5624 df-rn 5625 |
| This theorem is referenced by: dmcosseq 5916 dmcosseqOLD 5917 dmcosseqOLDOLD 5918 inisegn0 6046 rnco 6199 rncoOLD 6200 dffo4 7036 fvclss 7175 rntpos 8169 fpwwe2lem10 10531 fpwwe2lem11 10532 fclim 15460 perfdvf 25831 dftr6 35795 dffr5 35798 brsset 35931 dfon3 35934 brtxpsd 35936 dffix2 35947 elsingles 35960 dfrdg4 35995 undmrnresiss 43707 |
| Copyright terms: Public domain | W3C validator |