| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrn | Structured version Visualization version GIF version | ||
| Description: Membership in a range. (Contributed by NM, 2-Apr-2004.) |
| Ref | Expression |
|---|---|
| elrn.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elrn | ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elrng 5871 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1779 ∈ wcel 2108 Vcvv 3459 class class class wbr 5119 ran crn 5655 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-cnv 5662 df-dm 5664 df-rn 5665 |
| This theorem is referenced by: dmcosseq 5956 dmcosseqOLD 5957 inisegn0 6085 rnco 6241 dffo4 7092 fvclss 7232 rntpos 8236 fpwwe2lem10 10652 fpwwe2lem11 10653 fclim 15567 perfdvf 25854 dftr6 35714 dffr5 35717 brsset 35853 dfon3 35856 brtxpsd 35858 dffix2 35869 elsingles 35882 dfrdg4 35915 undmrnresiss 43575 |
| Copyright terms: Public domain | W3C validator |