MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrn Structured version   Visualization version   GIF version

Theorem elrn 5847
Description: Membership in a range. (Contributed by NM, 2-Apr-2004.)
Hypothesis
Ref Expression
elrn.1 𝐴 ∈ V
Assertion
Ref Expression
elrn (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem elrn
StepHypRef Expression
1 elrn.1 . 2 𝐴 ∈ V
2 elrng 5845 . 2 (𝐴 ∈ V → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴))
31, 2ax-mp 5 1 (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wex 1779  wcel 2109  Vcvv 3444   class class class wbr 5102  ran crn 5632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-cnv 5639  df-dm 5641  df-rn 5642
This theorem is referenced by:  dmcosseq  5929  dmcosseqOLD  5930  inisegn0  6058  rnco  6213  dffo4  7057  fvclss  7197  rntpos  8195  fpwwe2lem10  10569  fpwwe2lem11  10570  fclim  15495  perfdvf  25780  dftr6  35711  dffr5  35714  brsset  35850  dfon3  35853  brtxpsd  35855  dffix2  35866  elsingles  35879  dfrdg4  35912  undmrnresiss  43566
  Copyright terms: Public domain W3C validator