Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elrn | Structured version Visualization version GIF version |
Description: Membership in a range. (Contributed by NM, 2-Apr-2004.) |
Ref | Expression |
---|---|
elrn.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elrn | ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elrng 5794 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wex 1783 ∈ wcel 2107 Vcvv 3427 class class class wbr 5075 ran crn 5586 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2708 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3071 df-v 3429 df-dif 3891 df-un 3893 df-nul 4259 df-if 4462 df-sn 4564 df-pr 4566 df-op 4570 df-br 5076 df-opab 5138 df-cnv 5593 df-dm 5595 df-rn 5596 |
This theorem is referenced by: dmcosseq 5876 inisegn0 6000 rnco 6150 dffo4 6966 fvclss 7102 rntpos 8031 fpwwe2lem10 10343 fpwwe2lem11 10344 fclim 15206 perfdvf 25010 dftr6 33666 dffr5 33669 brsset 34160 dfon3 34163 brtxpsd 34165 dffix2 34176 elsingles 34189 dfrdg4 34222 undmrnresiss 41143 |
Copyright terms: Public domain | W3C validator |