![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrn | Structured version Visualization version GIF version |
Description: Membership in a range. (Contributed by NM, 2-Apr-2004.) |
Ref | Expression |
---|---|
elrn.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elrn | ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrn.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | elrng 5898 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wex 1773 ∈ wcel 2098 Vcvv 3473 class class class wbr 5152 ran crn 5683 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 df-opab 5215 df-cnv 5690 df-dm 5692 df-rn 5693 |
This theorem is referenced by: dmcosseq 5980 inisegn0 6107 rnco 6261 dffo4 7118 fvclss 7257 rntpos 8251 fpwwe2lem10 10671 fpwwe2lem11 10672 fclim 15537 perfdvf 25852 dftr6 35378 dffr5 35381 brsset 35518 dfon3 35521 brtxpsd 35523 dffix2 35534 elsingles 35547 dfrdg4 35580 undmrnresiss 43065 |
Copyright terms: Public domain | W3C validator |