| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrn | Structured version Visualization version GIF version | ||
| Description: Membership in a range. (Contributed by NM, 2-Apr-2004.) |
| Ref | Expression |
|---|---|
| elrn.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| elrn | ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrn.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | elrng 5845 | . 2 ⊢ (𝐴 ∈ V → (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ ran 𝐵 ↔ ∃𝑥 𝑥𝐵𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1779 ∈ wcel 2109 Vcvv 3444 class class class wbr 5102 ran crn 5632 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-cnv 5639 df-dm 5641 df-rn 5642 |
| This theorem is referenced by: dmcosseq 5929 dmcosseqOLD 5930 inisegn0 6058 rnco 6213 dffo4 7057 fvclss 7197 rntpos 8195 fpwwe2lem10 10569 fpwwe2lem11 10570 fclim 15495 perfdvf 25780 dftr6 35711 dffr5 35714 brsset 35850 dfon3 35853 brtxpsd 35855 dffix2 35866 elsingles 35879 dfrdg4 35912 undmrnresiss 43566 |
| Copyright terms: Public domain | W3C validator |