MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cicsym Structured version   Visualization version   GIF version

Theorem cicsym 17703
Description: Isomorphism is symmetric. (Contributed by AV, 5-Apr-2020.)
Assertion
Ref Expression
cicsym ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆) → 𝑆( ≃𝑐𝐶)𝑅)

Proof of Theorem cicsym
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cicrcl 17702 . 2 ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆) → 𝑆 ∈ (Base‘𝐶))
2 ciclcl 17701 . 2 ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆) → 𝑅 ∈ (Base‘𝐶))
3 eqid 2730 . . . . 5 (Iso‘𝐶) = (Iso‘𝐶)
4 eqid 2730 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
5 simpl 482 . . . . 5 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
6 simpr 484 . . . . . 6 ((𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶)) → 𝑅 ∈ (Base‘𝐶))
76adantl 481 . . . . 5 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → 𝑅 ∈ (Base‘𝐶))
8 simpl 482 . . . . . 6 ((𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶)) → 𝑆 ∈ (Base‘𝐶))
98adantl 481 . . . . 5 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → 𝑆 ∈ (Base‘𝐶))
103, 4, 5, 7, 9cic 17698 . . . 4 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑅( ≃𝑐𝐶)𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)))
11 eqid 2730 . . . . . . . . . 10 (Inv‘𝐶) = (Inv‘𝐶)
124, 11, 5, 7, 9, 3isoval 17664 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑅(Iso‘𝐶)𝑆) = dom (𝑅(Inv‘𝐶)𝑆))
134, 11, 5, 9, 7invsym2 17662 . . . . . . . . . . . 12 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑆(Inv‘𝐶)𝑅) = (𝑅(Inv‘𝐶)𝑆))
1413eqcomd 2736 . . . . . . . . . . 11 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑅(Inv‘𝐶)𝑆) = (𝑆(Inv‘𝐶)𝑅))
1514dmeqd 5843 . . . . . . . . . 10 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → dom (𝑅(Inv‘𝐶)𝑆) = dom (𝑆(Inv‘𝐶)𝑅))
16 df-rn 5625 . . . . . . . . . 10 ran (𝑆(Inv‘𝐶)𝑅) = dom (𝑆(Inv‘𝐶)𝑅)
1715, 16eqtr4di 2783 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → dom (𝑅(Inv‘𝐶)𝑆) = ran (𝑆(Inv‘𝐶)𝑅))
1812, 17eqtrd 2765 . . . . . . . 8 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑅(Iso‘𝐶)𝑆) = ran (𝑆(Inv‘𝐶)𝑅))
1918eleq2d 2815 . . . . . . 7 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) ↔ 𝑓 ∈ ran (𝑆(Inv‘𝐶)𝑅)))
20 vex 3438 . . . . . . . 8 𝑓 ∈ V
21 elrng 5829 . . . . . . . 8 (𝑓 ∈ V → (𝑓 ∈ ran (𝑆(Inv‘𝐶)𝑅) ↔ ∃𝑔 𝑔(𝑆(Inv‘𝐶)𝑅)𝑓))
2220, 21mp1i 13 . . . . . . 7 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑓 ∈ ran (𝑆(Inv‘𝐶)𝑅) ↔ ∃𝑔 𝑔(𝑆(Inv‘𝐶)𝑅)𝑓))
2319, 22bitrd 279 . . . . . 6 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) ↔ ∃𝑔 𝑔(𝑆(Inv‘𝐶)𝑅)𝑓))
24 df-br 5090 . . . . . . . 8 (𝑔(𝑆(Inv‘𝐶)𝑅)𝑓 ↔ ⟨𝑔, 𝑓⟩ ∈ (𝑆(Inv‘𝐶)𝑅))
2524exbii 1849 . . . . . . 7 (∃𝑔 𝑔(𝑆(Inv‘𝐶)𝑅)𝑓 ↔ ∃𝑔𝑔, 𝑓⟩ ∈ (𝑆(Inv‘𝐶)𝑅))
26 vex 3438 . . . . . . . . . . 11 𝑔 ∈ V
2726, 20opeldm 5845 . . . . . . . . . 10 (⟨𝑔, 𝑓⟩ ∈ (𝑆(Inv‘𝐶)𝑅) → 𝑔 ∈ dom (𝑆(Inv‘𝐶)𝑅))
284, 11, 5, 9, 7, 3isoval 17664 . . . . . . . . . . . . 13 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑆(Iso‘𝐶)𝑅) = dom (𝑆(Inv‘𝐶)𝑅))
2928eqcomd 2736 . . . . . . . . . . . 12 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → dom (𝑆(Inv‘𝐶)𝑅) = (𝑆(Iso‘𝐶)𝑅))
3029eleq2d 2815 . . . . . . . . . . 11 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑔 ∈ dom (𝑆(Inv‘𝐶)𝑅) ↔ 𝑔 ∈ (𝑆(Iso‘𝐶)𝑅)))
315adantr 480 . . . . . . . . . . . . 13 (((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑆(Iso‘𝐶)𝑅)) → 𝐶 ∈ Cat)
329adantr 480 . . . . . . . . . . . . 13 (((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑆(Iso‘𝐶)𝑅)) → 𝑆 ∈ (Base‘𝐶))
337adantr 480 . . . . . . . . . . . . 13 (((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑆(Iso‘𝐶)𝑅)) → 𝑅 ∈ (Base‘𝐶))
34 simpr 484 . . . . . . . . . . . . 13 (((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑆(Iso‘𝐶)𝑅)) → 𝑔 ∈ (𝑆(Iso‘𝐶)𝑅))
353, 4, 31, 32, 33, 34brcici 17699 . . . . . . . . . . . 12 (((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑆(Iso‘𝐶)𝑅)) → 𝑆( ≃𝑐𝐶)𝑅)
3635ex 412 . . . . . . . . . . 11 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑔 ∈ (𝑆(Iso‘𝐶)𝑅) → 𝑆( ≃𝑐𝐶)𝑅))
3730, 36sylbid 240 . . . . . . . . . 10 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑔 ∈ dom (𝑆(Inv‘𝐶)𝑅) → 𝑆( ≃𝑐𝐶)𝑅))
3827, 37syl5com 31 . . . . . . . . 9 (⟨𝑔, 𝑓⟩ ∈ (𝑆(Inv‘𝐶)𝑅) → ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → 𝑆( ≃𝑐𝐶)𝑅))
3938exlimiv 1931 . . . . . . . 8 (∃𝑔𝑔, 𝑓⟩ ∈ (𝑆(Inv‘𝐶)𝑅) → ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → 𝑆( ≃𝑐𝐶)𝑅))
4039com12 32 . . . . . . 7 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (∃𝑔𝑔, 𝑓⟩ ∈ (𝑆(Inv‘𝐶)𝑅) → 𝑆( ≃𝑐𝐶)𝑅))
4125, 40biimtrid 242 . . . . . 6 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (∃𝑔 𝑔(𝑆(Inv‘𝐶)𝑅)𝑓𝑆( ≃𝑐𝐶)𝑅))
4223, 41sylbid 240 . . . . 5 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) → 𝑆( ≃𝑐𝐶)𝑅))
4342exlimdv 1934 . . . 4 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (∃𝑓 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) → 𝑆( ≃𝑐𝐶)𝑅))
4410, 43sylbid 240 . . 3 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑅( ≃𝑐𝐶)𝑆𝑆( ≃𝑐𝐶)𝑅))
4544impancom 451 . 2 ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆) → ((𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶)) → 𝑆( ≃𝑐𝐶)𝑅))
461, 2, 45mp2and 699 1 ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆) → 𝑆( ≃𝑐𝐶)𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1780  wcel 2110  Vcvv 3434  cop 4580   class class class wbr 5089  ccnv 5613  dom cdm 5614  ran crn 5615  cfv 6477  (class class class)co 7341  Basecbs 17112  Catccat 17562  Invcinv 17644  Isociso 17645  𝑐 ccic 17694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-supp 8086  df-sect 17646  df-inv 17647  df-iso 17648  df-cic 17695
This theorem is referenced by:  cicer  17705  initoeu2  17915  oppccic  49055  cicerALT  49057
  Copyright terms: Public domain W3C validator