MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cicsym Structured version   Visualization version   GIF version

Theorem cicsym 17861
Description: Isomorphism is symmetric. (Contributed by AV, 5-Apr-2020.)
Assertion
Ref Expression
cicsym ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆) → 𝑆( ≃𝑐𝐶)𝑅)

Proof of Theorem cicsym
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cicrcl 17860 . 2 ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆) → 𝑆 ∈ (Base‘𝐶))
2 ciclcl 17859 . 2 ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆) → 𝑅 ∈ (Base‘𝐶))
3 eqid 2737 . . . . 5 (Iso‘𝐶) = (Iso‘𝐶)
4 eqid 2737 . . . . 5 (Base‘𝐶) = (Base‘𝐶)
5 simpl 482 . . . . 5 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → 𝐶 ∈ Cat)
6 simpr 484 . . . . . 6 ((𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶)) → 𝑅 ∈ (Base‘𝐶))
76adantl 481 . . . . 5 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → 𝑅 ∈ (Base‘𝐶))
8 simpl 482 . . . . . 6 ((𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶)) → 𝑆 ∈ (Base‘𝐶))
98adantl 481 . . . . 5 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → 𝑆 ∈ (Base‘𝐶))
103, 4, 5, 7, 9cic 17856 . . . 4 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑅( ≃𝑐𝐶)𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆)))
11 eqid 2737 . . . . . . . . . 10 (Inv‘𝐶) = (Inv‘𝐶)
124, 11, 5, 7, 9, 3isoval 17822 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑅(Iso‘𝐶)𝑆) = dom (𝑅(Inv‘𝐶)𝑆))
134, 11, 5, 9, 7invsym2 17820 . . . . . . . . . . . 12 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑆(Inv‘𝐶)𝑅) = (𝑅(Inv‘𝐶)𝑆))
1413eqcomd 2743 . . . . . . . . . . 11 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑅(Inv‘𝐶)𝑆) = (𝑆(Inv‘𝐶)𝑅))
1514dmeqd 5923 . . . . . . . . . 10 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → dom (𝑅(Inv‘𝐶)𝑆) = dom (𝑆(Inv‘𝐶)𝑅))
16 df-rn 5704 . . . . . . . . . 10 ran (𝑆(Inv‘𝐶)𝑅) = dom (𝑆(Inv‘𝐶)𝑅)
1715, 16eqtr4di 2795 . . . . . . . . 9 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → dom (𝑅(Inv‘𝐶)𝑆) = ran (𝑆(Inv‘𝐶)𝑅))
1812, 17eqtrd 2777 . . . . . . . 8 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑅(Iso‘𝐶)𝑆) = ran (𝑆(Inv‘𝐶)𝑅))
1918eleq2d 2827 . . . . . . 7 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) ↔ 𝑓 ∈ ran (𝑆(Inv‘𝐶)𝑅)))
20 vex 3485 . . . . . . . 8 𝑓 ∈ V
21 elrng 5909 . . . . . . . 8 (𝑓 ∈ V → (𝑓 ∈ ran (𝑆(Inv‘𝐶)𝑅) ↔ ∃𝑔 𝑔(𝑆(Inv‘𝐶)𝑅)𝑓))
2220, 21mp1i 13 . . . . . . 7 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑓 ∈ ran (𝑆(Inv‘𝐶)𝑅) ↔ ∃𝑔 𝑔(𝑆(Inv‘𝐶)𝑅)𝑓))
2319, 22bitrd 279 . . . . . 6 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) ↔ ∃𝑔 𝑔(𝑆(Inv‘𝐶)𝑅)𝑓))
24 df-br 5152 . . . . . . . 8 (𝑔(𝑆(Inv‘𝐶)𝑅)𝑓 ↔ ⟨𝑔, 𝑓⟩ ∈ (𝑆(Inv‘𝐶)𝑅))
2524exbii 1847 . . . . . . 7 (∃𝑔 𝑔(𝑆(Inv‘𝐶)𝑅)𝑓 ↔ ∃𝑔𝑔, 𝑓⟩ ∈ (𝑆(Inv‘𝐶)𝑅))
26 vex 3485 . . . . . . . . . . 11 𝑔 ∈ V
2726, 20opeldm 5925 . . . . . . . . . 10 (⟨𝑔, 𝑓⟩ ∈ (𝑆(Inv‘𝐶)𝑅) → 𝑔 ∈ dom (𝑆(Inv‘𝐶)𝑅))
284, 11, 5, 9, 7, 3isoval 17822 . . . . . . . . . . . . 13 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑆(Iso‘𝐶)𝑅) = dom (𝑆(Inv‘𝐶)𝑅))
2928eqcomd 2743 . . . . . . . . . . . 12 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → dom (𝑆(Inv‘𝐶)𝑅) = (𝑆(Iso‘𝐶)𝑅))
3029eleq2d 2827 . . . . . . . . . . 11 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑔 ∈ dom (𝑆(Inv‘𝐶)𝑅) ↔ 𝑔 ∈ (𝑆(Iso‘𝐶)𝑅)))
315adantr 480 . . . . . . . . . . . . 13 (((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑆(Iso‘𝐶)𝑅)) → 𝐶 ∈ Cat)
329adantr 480 . . . . . . . . . . . . 13 (((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑆(Iso‘𝐶)𝑅)) → 𝑆 ∈ (Base‘𝐶))
337adantr 480 . . . . . . . . . . . . 13 (((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑆(Iso‘𝐶)𝑅)) → 𝑅 ∈ (Base‘𝐶))
34 simpr 484 . . . . . . . . . . . . 13 (((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑆(Iso‘𝐶)𝑅)) → 𝑔 ∈ (𝑆(Iso‘𝐶)𝑅))
353, 4, 31, 32, 33, 34brcici 17857 . . . . . . . . . . . 12 (((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) ∧ 𝑔 ∈ (𝑆(Iso‘𝐶)𝑅)) → 𝑆( ≃𝑐𝐶)𝑅)
3635ex 412 . . . . . . . . . . 11 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑔 ∈ (𝑆(Iso‘𝐶)𝑅) → 𝑆( ≃𝑐𝐶)𝑅))
3730, 36sylbid 240 . . . . . . . . . 10 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑔 ∈ dom (𝑆(Inv‘𝐶)𝑅) → 𝑆( ≃𝑐𝐶)𝑅))
3827, 37syl5com 31 . . . . . . . . 9 (⟨𝑔, 𝑓⟩ ∈ (𝑆(Inv‘𝐶)𝑅) → ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → 𝑆( ≃𝑐𝐶)𝑅))
3938exlimiv 1930 . . . . . . . 8 (∃𝑔𝑔, 𝑓⟩ ∈ (𝑆(Inv‘𝐶)𝑅) → ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → 𝑆( ≃𝑐𝐶)𝑅))
4039com12 32 . . . . . . 7 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (∃𝑔𝑔, 𝑓⟩ ∈ (𝑆(Inv‘𝐶)𝑅) → 𝑆( ≃𝑐𝐶)𝑅))
4125, 40biimtrid 242 . . . . . 6 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (∃𝑔 𝑔(𝑆(Inv‘𝐶)𝑅)𝑓𝑆( ≃𝑐𝐶)𝑅))
4223, 41sylbid 240 . . . . 5 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) → 𝑆( ≃𝑐𝐶)𝑅))
4342exlimdv 1933 . . . 4 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (∃𝑓 𝑓 ∈ (𝑅(Iso‘𝐶)𝑆) → 𝑆( ≃𝑐𝐶)𝑅))
4410, 43sylbid 240 . . 3 ((𝐶 ∈ Cat ∧ (𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶))) → (𝑅( ≃𝑐𝐶)𝑆𝑆( ≃𝑐𝐶)𝑅))
4544impancom 451 . 2 ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆) → ((𝑆 ∈ (Base‘𝐶) ∧ 𝑅 ∈ (Base‘𝐶)) → 𝑆( ≃𝑐𝐶)𝑅))
461, 2, 45mp2and 699 1 ((𝐶 ∈ Cat ∧ 𝑅( ≃𝑐𝐶)𝑆) → 𝑆( ≃𝑐𝐶)𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1778  wcel 2108  Vcvv 3481  cop 4640   class class class wbr 5151  ccnv 5692  dom cdm 5693  ran crn 5694  cfv 6569  (class class class)co 7438  Basecbs 17254  Catccat 17718  Invcinv 17802  Isociso 17803  𝑐 ccic 17852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5288  ax-sep 5305  ax-nul 5315  ax-pow 5374  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-csb 3912  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-iun 5001  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-1st 8022  df-2nd 8023  df-supp 8194  df-sect 17804  df-inv 17805  df-iso 17806  df-cic 17853
This theorem is referenced by:  cicer  17863  initoeu2  18079
  Copyright terms: Public domain W3C validator