Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relelrnb | Structured version Visualization version GIF version |
Description: Membership in a range. (Contributed by Mario Carneiro, 5-Nov-2015.) |
Ref | Expression |
---|---|
relelrnb | ⊢ (Rel 𝑅 → (𝐴 ∈ ran 𝑅 ↔ ∃𝑥 𝑥𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrng 5737 | . . 3 ⊢ (𝐴 ∈ ran 𝑅 → (𝐴 ∈ ran 𝑅 ↔ ∃𝑥 𝑥𝑅𝐴)) | |
2 | 1 | ibi 270 | . 2 ⊢ (𝐴 ∈ ran 𝑅 → ∃𝑥 𝑥𝑅𝐴) |
3 | relelrn 5791 | . . . 4 ⊢ ((Rel 𝑅 ∧ 𝑥𝑅𝐴) → 𝐴 ∈ ran 𝑅) | |
4 | 3 | ex 416 | . . 3 ⊢ (Rel 𝑅 → (𝑥𝑅𝐴 → 𝐴 ∈ ran 𝑅)) |
5 | 4 | exlimdv 1934 | . 2 ⊢ (Rel 𝑅 → (∃𝑥 𝑥𝑅𝐴 → 𝐴 ∈ ran 𝑅)) |
6 | 2, 5 | impbid2 229 | 1 ⊢ (Rel 𝑅 → (𝐴 ∈ ran 𝑅 ↔ ∃𝑥 𝑥𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∃wex 1781 ∈ wcel 2111 class class class wbr 5036 ran crn 5529 Rel wrel 5533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-sb 2070 df-clab 2736 df-cleq 2750 df-clel 2830 df-ral 3075 df-rex 3076 df-v 3411 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-br 5037 df-opab 5099 df-xp 5534 df-rel 5535 df-cnv 5536 df-dm 5538 df-rn 5539 |
This theorem is referenced by: iscard4 40649 |
Copyright terms: Public domain | W3C validator |