MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  relelrnb Structured version   Visualization version   GIF version

Theorem relelrnb 5946
Description: Membership in a range. (Contributed by Mario Carneiro, 5-Nov-2015.)
Assertion
Ref Expression
relelrnb (Rel 𝑅 → (𝐴 ∈ ran 𝑅 ↔ ∃𝑥 𝑥𝑅𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅

Proof of Theorem relelrnb
StepHypRef Expression
1 elrng 5891 . . 3 (𝐴 ∈ ran 𝑅 → (𝐴 ∈ ran 𝑅 ↔ ∃𝑥 𝑥𝑅𝐴))
21ibi 266 . 2 (𝐴 ∈ ran 𝑅 → ∃𝑥 𝑥𝑅𝐴)
3 relelrn 5944 . . . 4 ((Rel 𝑅𝑥𝑅𝐴) → 𝐴 ∈ ran 𝑅)
43ex 413 . . 3 (Rel 𝑅 → (𝑥𝑅𝐴𝐴 ∈ ran 𝑅))
54exlimdv 1936 . 2 (Rel 𝑅 → (∃𝑥 𝑥𝑅𝐴𝐴 ∈ ran 𝑅))
62, 5impbid2 225 1 (Rel 𝑅 → (𝐴 ∈ ran 𝑅 ↔ ∃𝑥 𝑥𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wex 1781  wcel 2106   class class class wbr 5148  ran crn 5677  Rel wrel 5681
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-br 5149  df-opab 5211  df-xp 5682  df-rel 5683  df-cnv 5684  df-dm 5686  df-rn 5687
This theorem is referenced by:  iscard4  42274
  Copyright terms: Public domain W3C validator