| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relelrnb | Structured version Visualization version GIF version | ||
| Description: Membership in a range. (Contributed by Mario Carneiro, 5-Nov-2015.) |
| Ref | Expression |
|---|---|
| relelrnb | ⊢ (Rel 𝑅 → (𝐴 ∈ ran 𝑅 ↔ ∃𝑥 𝑥𝑅𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrng 5826 | . . 3 ⊢ (𝐴 ∈ ran 𝑅 → (𝐴 ∈ ran 𝑅 ↔ ∃𝑥 𝑥𝑅𝐴)) | |
| 2 | 1 | ibi 267 | . 2 ⊢ (𝐴 ∈ ran 𝑅 → ∃𝑥 𝑥𝑅𝐴) |
| 3 | relelrn 5880 | . . . 4 ⊢ ((Rel 𝑅 ∧ 𝑥𝑅𝐴) → 𝐴 ∈ ran 𝑅) | |
| 4 | 3 | ex 412 | . . 3 ⊢ (Rel 𝑅 → (𝑥𝑅𝐴 → 𝐴 ∈ ran 𝑅)) |
| 5 | 4 | exlimdv 1934 | . 2 ⊢ (Rel 𝑅 → (∃𝑥 𝑥𝑅𝐴 → 𝐴 ∈ ran 𝑅)) |
| 6 | 2, 5 | impbid2 226 | 1 ⊢ (Rel 𝑅 → (𝐴 ∈ ran 𝑅 ↔ ∃𝑥 𝑥𝑅𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∃wex 1780 ∈ wcel 2111 class class class wbr 5086 ran crn 5612 Rel wrel 5616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-xp 5617 df-rel 5618 df-cnv 5619 df-dm 5621 df-rn 5622 |
| This theorem is referenced by: iscard4 43566 |
| Copyright terms: Public domain | W3C validator |