![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relelrnb | Structured version Visualization version GIF version |
Description: Membership in a range. (Contributed by Mario Carneiro, 5-Nov-2015.) |
Ref | Expression |
---|---|
relelrnb | ⊢ (Rel 𝑅 → (𝐴 ∈ ran 𝑅 ↔ ∃𝑥 𝑥𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrng 5891 | . . 3 ⊢ (𝐴 ∈ ran 𝑅 → (𝐴 ∈ ran 𝑅 ↔ ∃𝑥 𝑥𝑅𝐴)) | |
2 | 1 | ibi 266 | . 2 ⊢ (𝐴 ∈ ran 𝑅 → ∃𝑥 𝑥𝑅𝐴) |
3 | relelrn 5944 | . . . 4 ⊢ ((Rel 𝑅 ∧ 𝑥𝑅𝐴) → 𝐴 ∈ ran 𝑅) | |
4 | 3 | ex 413 | . . 3 ⊢ (Rel 𝑅 → (𝑥𝑅𝐴 → 𝐴 ∈ ran 𝑅)) |
5 | 4 | exlimdv 1936 | . 2 ⊢ (Rel 𝑅 → (∃𝑥 𝑥𝑅𝐴 → 𝐴 ∈ ran 𝑅)) |
6 | 2, 5 | impbid2 225 | 1 ⊢ (Rel 𝑅 → (𝐴 ∈ ran 𝑅 ↔ ∃𝑥 𝑥𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∃wex 1781 ∈ wcel 2106 class class class wbr 5148 ran crn 5677 Rel wrel 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-xp 5682 df-rel 5683 df-cnv 5684 df-dm 5686 df-rn 5687 |
This theorem is referenced by: iscard4 42274 |
Copyright terms: Public domain | W3C validator |