Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrnres Structured version   Visualization version   GIF version

Theorem elrnres 38246
Description: Element of the range of a restriction. (Contributed by Peter Mazsa, 26-Dec-2018.)
Assertion
Ref Expression
elrnres (𝐵𝑉 → (𝐵 ∈ ran (𝑅𝐴) ↔ ∃𝑥𝐴 𝑥𝑅𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑉

Proof of Theorem elrnres
StepHypRef Expression
1 elrng 5834 . . 3 (𝐵𝑉 → (𝐵 ∈ ran (𝑅𝐴) ↔ ∃𝑥 𝑥(𝑅𝐴)𝐵))
2 brres 5937 . . . 4 (𝐵𝑉 → (𝑥(𝑅𝐴)𝐵 ↔ (𝑥𝐴𝑥𝑅𝐵)))
32exbidv 1921 . . 3 (𝐵𝑉 → (∃𝑥 𝑥(𝑅𝐴)𝐵 ↔ ∃𝑥(𝑥𝐴𝑥𝑅𝐵)))
41, 3bitrd 279 . 2 (𝐵𝑉 → (𝐵 ∈ ran (𝑅𝐴) ↔ ∃𝑥(𝑥𝐴𝑥𝑅𝐵)))
5 df-rex 3054 . 2 (∃𝑥𝐴 𝑥𝑅𝐵 ↔ ∃𝑥(𝑥𝐴𝑥𝑅𝐵))
64, 5bitr4di 289 1 (𝐵𝑉 → (𝐵 ∈ ran (𝑅𝐴) ↔ ∃𝑥𝐴 𝑥𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1779  wcel 2109  wrex 3053   class class class wbr 5092  ran crn 5620  cres 5621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-xp 5625  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631
This theorem is referenced by:  elrnressn  38248
  Copyright terms: Public domain W3C validator