Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrnres Structured version   Visualization version   GIF version

Theorem elrnres 36487
Description: Element of the range of a restriction. (Contributed by Peter Mazsa, 26-Dec-2018.)
Assertion
Ref Expression
elrnres (𝐵𝑉 → (𝐵 ∈ ran (𝑅𝐴) ↔ ∃𝑥𝐴 𝑥𝑅𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑉

Proof of Theorem elrnres
StepHypRef Expression
1 elrng 5813 . . 3 (𝐵𝑉 → (𝐵 ∈ ran (𝑅𝐴) ↔ ∃𝑥 𝑥(𝑅𝐴)𝐵))
2 brres 5910 . . . 4 (𝐵𝑉 → (𝑥(𝑅𝐴)𝐵 ↔ (𝑥𝐴𝑥𝑅𝐵)))
32exbidv 1922 . . 3 (𝐵𝑉 → (∃𝑥 𝑥(𝑅𝐴)𝐵 ↔ ∃𝑥(𝑥𝐴𝑥𝑅𝐵)))
41, 3bitrd 279 . 2 (𝐵𝑉 → (𝐵 ∈ ran (𝑅𝐴) ↔ ∃𝑥(𝑥𝐴𝑥𝑅𝐵)))
5 df-rex 3071 . 2 (∃𝑥𝐴 𝑥𝑅𝐵 ↔ ∃𝑥(𝑥𝐴𝑥𝑅𝐵))
64, 5bitr4di 289 1 (𝐵𝑉 → (𝐵 ∈ ran (𝑅𝐴) ↔ ∃𝑥𝐴 𝑥𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wex 1779  wcel 2104  wrex 3070   class class class wbr 5081  ran crn 5601  cres 5602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-rab 3341  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-xp 5606  df-cnv 5608  df-dm 5610  df-rn 5611  df-res 5612
This theorem is referenced by:  elrnressn  36489
  Copyright terms: Public domain W3C validator