![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrnres | Structured version Visualization version GIF version |
Description: Element of the range of a restriction. (Contributed by Peter Mazsa, 26-Dec-2018.) |
Ref | Expression |
---|---|
elrnres | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ ran (𝑅 ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑥𝑅𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrng 5889 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ ran (𝑅 ↾ 𝐴) ↔ ∃𝑥 𝑥(𝑅 ↾ 𝐴)𝐵)) | |
2 | brres 5986 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑥(𝑅 ↾ 𝐴)𝐵 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐵))) | |
3 | 2 | exbidv 1924 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (∃𝑥 𝑥(𝑅 ↾ 𝐴)𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐵))) |
4 | 1, 3 | bitrd 278 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ ran (𝑅 ↾ 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐵))) |
5 | df-rex 3071 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝑥𝑅𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐵)) | |
6 | 4, 5 | bitr4di 288 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ ran (𝑅 ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑥𝑅𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∃wex 1781 ∈ wcel 2106 ∃wrex 3070 class class class wbr 5147 ran crn 5676 ↾ cres 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-xp 5681 df-cnv 5683 df-dm 5685 df-rn 5686 df-res 5687 |
This theorem is referenced by: elrnressn 37129 |
Copyright terms: Public domain | W3C validator |