![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrnres | Structured version Visualization version GIF version |
Description: Element of the range of a restriction. (Contributed by Peter Mazsa, 26-Dec-2018.) |
Ref | Expression |
---|---|
elrnres | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ ran (𝑅 ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑥𝑅𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrng 5886 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ ran (𝑅 ↾ 𝐴) ↔ ∃𝑥 𝑥(𝑅 ↾ 𝐴)𝐵)) | |
2 | brres 5983 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑥(𝑅 ↾ 𝐴)𝐵 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐵))) | |
3 | 2 | exbidv 1925 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (∃𝑥 𝑥(𝑅 ↾ 𝐴)𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐵))) |
4 | 1, 3 | bitrd 279 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ ran (𝑅 ↾ 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐵))) |
5 | df-rex 3072 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝑥𝑅𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐵)) | |
6 | 4, 5 | bitr4di 289 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ ran (𝑅 ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑥𝑅𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∃wex 1782 ∈ wcel 2107 ∃wrex 3071 class class class wbr 5144 ran crn 5673 ↾ cres 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5295 ax-nul 5302 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5145 df-opab 5207 df-xp 5678 df-cnv 5680 df-dm 5682 df-rn 5683 df-res 5684 |
This theorem is referenced by: elrnressn 37047 |
Copyright terms: Public domain | W3C validator |