Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrnres Structured version   Visualization version   GIF version

Theorem elrnres 37127
Description: Element of the range of a restriction. (Contributed by Peter Mazsa, 26-Dec-2018.)
Assertion
Ref Expression
elrnres (𝐵𝑉 → (𝐵 ∈ ran (𝑅𝐴) ↔ ∃𝑥𝐴 𝑥𝑅𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑉

Proof of Theorem elrnres
StepHypRef Expression
1 elrng 5889 . . 3 (𝐵𝑉 → (𝐵 ∈ ran (𝑅𝐴) ↔ ∃𝑥 𝑥(𝑅𝐴)𝐵))
2 brres 5986 . . . 4 (𝐵𝑉 → (𝑥(𝑅𝐴)𝐵 ↔ (𝑥𝐴𝑥𝑅𝐵)))
32exbidv 1924 . . 3 (𝐵𝑉 → (∃𝑥 𝑥(𝑅𝐴)𝐵 ↔ ∃𝑥(𝑥𝐴𝑥𝑅𝐵)))
41, 3bitrd 278 . 2 (𝐵𝑉 → (𝐵 ∈ ran (𝑅𝐴) ↔ ∃𝑥(𝑥𝐴𝑥𝑅𝐵)))
5 df-rex 3071 . 2 (∃𝑥𝐴 𝑥𝑅𝐵 ↔ ∃𝑥(𝑥𝐴𝑥𝑅𝐵))
64, 5bitr4di 288 1 (𝐵𝑉 → (𝐵 ∈ ran (𝑅𝐴) ↔ ∃𝑥𝐴 𝑥𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wex 1781  wcel 2106  wrex 3070   class class class wbr 5147  ran crn 5676  cres 5677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148  df-opab 5210  df-xp 5681  df-cnv 5683  df-dm 5685  df-rn 5686  df-res 5687
This theorem is referenced by:  elrnressn  37129
  Copyright terms: Public domain W3C validator