|   | Mathbox for Peter Mazsa | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elrnres | Structured version Visualization version GIF version | ||
| Description: Element of the range of a restriction. (Contributed by Peter Mazsa, 26-Dec-2018.) | 
| Ref | Expression | 
|---|---|
| elrnres | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ ran (𝑅 ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑥𝑅𝐵)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | elrng 5902 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ ran (𝑅 ↾ 𝐴) ↔ ∃𝑥 𝑥(𝑅 ↾ 𝐴)𝐵)) | |
| 2 | brres 6004 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑥(𝑅 ↾ 𝐴)𝐵 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐵))) | |
| 3 | 2 | exbidv 1921 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (∃𝑥 𝑥(𝑅 ↾ 𝐴)𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐵))) | 
| 4 | 1, 3 | bitrd 279 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ ran (𝑅 ↾ 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐵))) | 
| 5 | df-rex 3071 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝑥𝑅𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐵)) | |
| 6 | 4, 5 | bitr4di 289 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ ran (𝑅 ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑥𝑅𝐵)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2108 ∃wrex 3070 class class class wbr 5143 ran crn 5686 ↾ cres 5687 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-xp 5691 df-cnv 5693 df-dm 5695 df-rn 5696 df-res 5697 | 
| This theorem is referenced by: elrnressn 38274 | 
| Copyright terms: Public domain | W3C validator |