![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrnres | Structured version Visualization version GIF version |
Description: Element of the range of a restriction. (Contributed by Peter Mazsa, 26-Dec-2018.) |
Ref | Expression |
---|---|
elrnres | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ ran (𝑅 ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑥𝑅𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrng 5896 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ ran (𝑅 ↾ 𝐴) ↔ ∃𝑥 𝑥(𝑅 ↾ 𝐴)𝐵)) | |
2 | brres 5994 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑥(𝑅 ↾ 𝐴)𝐵 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐵))) | |
3 | 2 | exbidv 1916 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (∃𝑥 𝑥(𝑅 ↾ 𝐴)𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐵))) |
4 | 1, 3 | bitrd 278 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ ran (𝑅 ↾ 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐵))) |
5 | df-rex 3067 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝑥𝑅𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐵)) | |
6 | 4, 5 | bitr4di 288 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ ran (𝑅 ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑥𝑅𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∃wex 1773 ∈ wcel 2098 ∃wrex 3066 class class class wbr 5150 ran crn 5681 ↾ cres 5682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5151 df-opab 5213 df-xp 5686 df-cnv 5688 df-dm 5690 df-rn 5691 df-res 5692 |
This theorem is referenced by: elrnressn 37749 |
Copyright terms: Public domain | W3C validator |