Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrnres Structured version   Visualization version   GIF version

Theorem elrnres 37045
Description: Element of the range of a restriction. (Contributed by Peter Mazsa, 26-Dec-2018.)
Assertion
Ref Expression
elrnres (𝐵𝑉 → (𝐵 ∈ ran (𝑅𝐴) ↔ ∃𝑥𝐴 𝑥𝑅𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅   𝑥,𝑉

Proof of Theorem elrnres
StepHypRef Expression
1 elrng 5886 . . 3 (𝐵𝑉 → (𝐵 ∈ ran (𝑅𝐴) ↔ ∃𝑥 𝑥(𝑅𝐴)𝐵))
2 brres 5983 . . . 4 (𝐵𝑉 → (𝑥(𝑅𝐴)𝐵 ↔ (𝑥𝐴𝑥𝑅𝐵)))
32exbidv 1925 . . 3 (𝐵𝑉 → (∃𝑥 𝑥(𝑅𝐴)𝐵 ↔ ∃𝑥(𝑥𝐴𝑥𝑅𝐵)))
41, 3bitrd 279 . 2 (𝐵𝑉 → (𝐵 ∈ ran (𝑅𝐴) ↔ ∃𝑥(𝑥𝐴𝑥𝑅𝐵)))
5 df-rex 3072 . 2 (∃𝑥𝐴 𝑥𝑅𝐵 ↔ ∃𝑥(𝑥𝐴𝑥𝑅𝐵))
64, 5bitr4di 289 1 (𝐵𝑉 → (𝐵 ∈ ran (𝑅𝐴) ↔ ∃𝑥𝐴 𝑥𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wex 1782  wcel 2107  wrex 3071   class class class wbr 5144  ran crn 5673  cres 5674
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pr 5423
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-br 5145  df-opab 5207  df-xp 5678  df-cnv 5680  df-dm 5682  df-rn 5683  df-res 5684
This theorem is referenced by:  elrnressn  37047
  Copyright terms: Public domain W3C validator