![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrnres | Structured version Visualization version GIF version |
Description: Element of the range of a restriction. (Contributed by Peter Mazsa, 26-Dec-2018.) |
Ref | Expression |
---|---|
elrnres | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ ran (𝑅 ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑥𝑅𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrng 5905 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ ran (𝑅 ↾ 𝐴) ↔ ∃𝑥 𝑥(𝑅 ↾ 𝐴)𝐵)) | |
2 | brres 6007 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → (𝑥(𝑅 ↾ 𝐴)𝐵 ↔ (𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐵))) | |
3 | 2 | exbidv 1919 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (∃𝑥 𝑥(𝑅 ↾ 𝐴)𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐵))) |
4 | 1, 3 | bitrd 279 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ ran (𝑅 ↾ 𝐴) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐵))) |
5 | df-rex 3069 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝑥𝑅𝐵 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝑥𝑅𝐵)) | |
6 | 4, 5 | bitr4di 289 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ ran (𝑅 ↾ 𝐴) ↔ ∃𝑥 ∈ 𝐴 𝑥𝑅𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1776 ∈ wcel 2106 ∃wrex 3068 class class class wbr 5148 ran crn 5690 ↾ cres 5691 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-xp 5695 df-cnv 5697 df-dm 5699 df-rn 5700 df-res 5701 |
This theorem is referenced by: elrnressn 38255 |
Copyright terms: Public domain | W3C validator |