Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrnressn Structured version   Visualization version   GIF version

Theorem elrnressn 36483
Description: Element of the range of a restriction to a singleton. (Contributed by Peter Mazsa, 12-Jun-2024.)
Assertion
Ref Expression
elrnressn ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ ran (𝑅 ↾ {𝐴}) ↔ 𝐴𝑅𝐵))

Proof of Theorem elrnressn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elrnres 36481 . 2 (𝐵𝑊 → (𝐵 ∈ ran (𝑅 ↾ {𝐴}) ↔ ∃𝑥 ∈ {𝐴}𝑥𝑅𝐵))
2 breq1 5084 . . 3 (𝑥 = 𝐴 → (𝑥𝑅𝐵𝐴𝑅𝐵))
32rexsng 4614 . 2 (𝐴𝑉 → (∃𝑥 ∈ {𝐴}𝑥𝑅𝐵𝐴𝑅𝐵))
41, 3sylan9bbr 512 1 ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ ran (𝑅 ↾ {𝐴}) ↔ 𝐴𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2104  wrex 3070  {csn 4565   class class class wbr 5081  ran crn 5601  cres 5602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ral 3062  df-rex 3071  df-rab 3333  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-xp 5606  df-cnv 5608  df-dm 5610  df-rn 5611  df-res 5612
This theorem is referenced by:  refressn  36657
  Copyright terms: Public domain W3C validator