Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrnressn Structured version   Visualization version   GIF version

Theorem elrnressn 38296
Description: Element of the range of a restriction to a singleton. (Contributed by Peter Mazsa, 12-Jun-2024.)
Assertion
Ref Expression
elrnressn ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ ran (𝑅 ↾ {𝐴}) ↔ 𝐴𝑅𝐵))

Proof of Theorem elrnressn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elrnres 38294 . 2 (𝐵𝑊 → (𝐵 ∈ ran (𝑅 ↾ {𝐴}) ↔ ∃𝑥 ∈ {𝐴}𝑥𝑅𝐵))
2 breq1 5127 . . 3 (𝑥 = 𝐴 → (𝑥𝑅𝐵𝐴𝑅𝐵))
32rexsng 4657 . 2 (𝐴𝑉 → (∃𝑥 ∈ {𝐴}𝑥𝑅𝐵𝐴𝑅𝐵))
41, 3sylan9bbr 510 1 ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ ran (𝑅 ↾ {𝐴}) ↔ 𝐴𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wrex 3061  {csn 4606   class class class wbr 5124  ran crn 5660  cres 5661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-xp 5665  df-cnv 5667  df-dm 5669  df-rn 5670  df-res 5671
This theorem is referenced by:  refressn  38466
  Copyright terms: Public domain W3C validator