Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrnressn Structured version   Visualization version   GIF version

Theorem elrnressn 38311
Description: Element of the range of a restriction to a singleton. (Contributed by Peter Mazsa, 12-Jun-2024.)
Assertion
Ref Expression
elrnressn ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ ran (𝑅 ↾ {𝐴}) ↔ 𝐴𝑅𝐵))

Proof of Theorem elrnressn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elrnres 38309 . 2 (𝐵𝑊 → (𝐵 ∈ ran (𝑅 ↾ {𝐴}) ↔ ∃𝑥 ∈ {𝐴}𝑥𝑅𝐵))
2 breq1 5092 . . 3 (𝑥 = 𝐴 → (𝑥𝑅𝐵𝐴𝑅𝐵))
32rexsng 4626 . 2 (𝐴𝑉 → (∃𝑥 ∈ {𝐴}𝑥𝑅𝐵𝐴𝑅𝐵))
41, 3sylan9bbr 510 1 ((𝐴𝑉𝐵𝑊) → (𝐵 ∈ ran (𝑅 ↾ {𝐴}) ↔ 𝐴𝑅𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2111  wrex 3056  {csn 4573   class class class wbr 5089  ran crn 5615  cres 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626
This theorem is referenced by:  refressn  38544
  Copyright terms: Public domain W3C validator