Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldmres Structured version   Visualization version   GIF version

Theorem eldmres 38254
Description: Elementhood in the domain of a restriction. (Contributed by Peter Mazsa, 9-Jan-2019.)
Assertion
Ref Expression
eldmres (𝐵𝑉 → (𝐵 ∈ dom (𝑅𝐴) ↔ (𝐵𝐴 ∧ ∃𝑦 𝐵𝑅𝑦)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝑅
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem eldmres
StepHypRef Expression
1 eldmg 5864 . 2 (𝐵𝑉 → (𝐵 ∈ dom (𝑅𝐴) ↔ ∃𝑦 𝐵(𝑅𝐴)𝑦))
2 brres 5959 . . . . 5 (𝑦 ∈ V → (𝐵(𝑅𝐴)𝑦 ↔ (𝐵𝐴𝐵𝑅𝑦)))
32elv 3455 . . . 4 (𝐵(𝑅𝐴)𝑦 ↔ (𝐵𝐴𝐵𝑅𝑦))
43exbii 1848 . . 3 (∃𝑦 𝐵(𝑅𝐴)𝑦 ↔ ∃𝑦(𝐵𝐴𝐵𝑅𝑦))
5 19.42v 1953 . . 3 (∃𝑦(𝐵𝐴𝐵𝑅𝑦) ↔ (𝐵𝐴 ∧ ∃𝑦 𝐵𝑅𝑦))
64, 5bitri 275 . 2 (∃𝑦 𝐵(𝑅𝐴)𝑦 ↔ (𝐵𝐴 ∧ ∃𝑦 𝐵𝑅𝑦))
71, 6bitrdi 287 1 (𝐵𝑉 → (𝐵 ∈ dom (𝑅𝐴) ↔ (𝐵𝐴 ∧ ∃𝑦 𝐵𝑅𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1779  wcel 2109  Vcvv 3450   class class class wbr 5109  dom cdm 5640  cres 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-br 5110  df-opab 5172  df-xp 5646  df-dm 5650  df-res 5652
This theorem is referenced by:  eldmressnALTV  38256  eldmres2  38259  eldmxrncnvepres2  38392
  Copyright terms: Public domain W3C validator