Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldmres | Structured version Visualization version GIF version |
Description: Elementhood in the domain of a restriction. (Contributed by Peter Mazsa, 9-Jan-2019.) |
Ref | Expression |
---|---|
eldmres | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ ∃𝑦 𝐵𝑅𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmg 5796 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ↾ 𝐴) ↔ ∃𝑦 𝐵(𝑅 ↾ 𝐴)𝑦)) | |
2 | brres 5887 | . . . . 5 ⊢ (𝑦 ∈ V → (𝐵(𝑅 ↾ 𝐴)𝑦 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝑦))) | |
3 | 2 | elv 3428 | . . . 4 ⊢ (𝐵(𝑅 ↾ 𝐴)𝑦 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝑦)) |
4 | 3 | exbii 1851 | . . 3 ⊢ (∃𝑦 𝐵(𝑅 ↾ 𝐴)𝑦 ↔ ∃𝑦(𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝑦)) |
5 | 19.42v 1958 | . . 3 ⊢ (∃𝑦(𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝑦) ↔ (𝐵 ∈ 𝐴 ∧ ∃𝑦 𝐵𝑅𝑦)) | |
6 | 4, 5 | bitri 274 | . 2 ⊢ (∃𝑦 𝐵(𝑅 ↾ 𝐴)𝑦 ↔ (𝐵 ∈ 𝐴 ∧ ∃𝑦 𝐵𝑅𝑦)) |
7 | 1, 6 | bitrdi 286 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ ∃𝑦 𝐵𝑅𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∃wex 1783 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 dom cdm 5580 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-dm 5590 df-res 5592 |
This theorem is referenced by: eldmres2 36337 |
Copyright terms: Public domain | W3C validator |