Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldmres Structured version   Visualization version   GIF version

Theorem eldmres 38230
Description: Elementhood in the domain of a restriction. (Contributed by Peter Mazsa, 9-Jan-2019.)
Assertion
Ref Expression
eldmres (𝐵𝑉 → (𝐵 ∈ dom (𝑅𝐴) ↔ (𝐵𝐴 ∧ ∃𝑦 𝐵𝑅𝑦)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝑅
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem eldmres
StepHypRef Expression
1 eldmg 5889 . 2 (𝐵𝑉 → (𝐵 ∈ dom (𝑅𝐴) ↔ ∃𝑦 𝐵(𝑅𝐴)𝑦))
2 brres 5984 . . . . 5 (𝑦 ∈ V → (𝐵(𝑅𝐴)𝑦 ↔ (𝐵𝐴𝐵𝑅𝑦)))
32elv 3468 . . . 4 (𝐵(𝑅𝐴)𝑦 ↔ (𝐵𝐴𝐵𝑅𝑦))
43exbii 1847 . . 3 (∃𝑦 𝐵(𝑅𝐴)𝑦 ↔ ∃𝑦(𝐵𝐴𝐵𝑅𝑦))
5 19.42v 1952 . . 3 (∃𝑦(𝐵𝐴𝐵𝑅𝑦) ↔ (𝐵𝐴 ∧ ∃𝑦 𝐵𝑅𝑦))
64, 5bitri 275 . 2 (∃𝑦 𝐵(𝑅𝐴)𝑦 ↔ (𝐵𝐴 ∧ ∃𝑦 𝐵𝑅𝑦))
71, 6bitrdi 287 1 (𝐵𝑉 → (𝐵 ∈ dom (𝑅𝐴) ↔ (𝐵𝐴 ∧ ∃𝑦 𝐵𝑅𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wex 1778  wcel 2107  Vcvv 3463   class class class wbr 5123  dom cdm 5665  cres 5667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-xp 5671  df-dm 5675  df-res 5677
This theorem is referenced by:  eldmressnALTV  38232  eldmres2  38235
  Copyright terms: Public domain W3C validator