Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldmres Structured version   Visualization version   GIF version

Theorem eldmres 36408
Description: Elementhood in the domain of a restriction. (Contributed by Peter Mazsa, 9-Jan-2019.)
Assertion
Ref Expression
eldmres (𝐵𝑉 → (𝐵 ∈ dom (𝑅𝐴) ↔ (𝐵𝐴 ∧ ∃𝑦 𝐵𝑅𝑦)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝑅
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem eldmres
StepHypRef Expression
1 eldmg 5807 . 2 (𝐵𝑉 → (𝐵 ∈ dom (𝑅𝐴) ↔ ∃𝑦 𝐵(𝑅𝐴)𝑦))
2 brres 5898 . . . . 5 (𝑦 ∈ V → (𝐵(𝑅𝐴)𝑦 ↔ (𝐵𝐴𝐵𝑅𝑦)))
32elv 3438 . . . 4 (𝐵(𝑅𝐴)𝑦 ↔ (𝐵𝐴𝐵𝑅𝑦))
43exbii 1850 . . 3 (∃𝑦 𝐵(𝑅𝐴)𝑦 ↔ ∃𝑦(𝐵𝐴𝐵𝑅𝑦))
5 19.42v 1957 . . 3 (∃𝑦(𝐵𝐴𝐵𝑅𝑦) ↔ (𝐵𝐴 ∧ ∃𝑦 𝐵𝑅𝑦))
64, 5bitri 274 . 2 (∃𝑦 𝐵(𝑅𝐴)𝑦 ↔ (𝐵𝐴 ∧ ∃𝑦 𝐵𝑅𝑦))
71, 6bitrdi 287 1 (𝐵𝑉 → (𝐵 ∈ dom (𝑅𝐴) ↔ (𝐵𝐴 ∧ ∃𝑦 𝐵𝑅𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wex 1782  wcel 2106  Vcvv 3432   class class class wbr 5074  dom cdm 5589  cres 5591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-dm 5599  df-res 5601
This theorem is referenced by:  eldmres2  36410
  Copyright terms: Public domain W3C validator