Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eldmres Structured version   Visualization version   GIF version

Theorem eldmres 37650
Description: Elementhood in the domain of a restriction. (Contributed by Peter Mazsa, 9-Jan-2019.)
Assertion
Ref Expression
eldmres (𝐵𝑉 → (𝐵 ∈ dom (𝑅𝐴) ↔ (𝐵𝐴 ∧ ∃𝑦 𝐵𝑅𝑦)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝑅
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem eldmres
StepHypRef Expression
1 eldmg 5891 . 2 (𝐵𝑉 → (𝐵 ∈ dom (𝑅𝐴) ↔ ∃𝑦 𝐵(𝑅𝐴)𝑦))
2 brres 5981 . . . . 5 (𝑦 ∈ V → (𝐵(𝑅𝐴)𝑦 ↔ (𝐵𝐴𝐵𝑅𝑦)))
32elv 3474 . . . 4 (𝐵(𝑅𝐴)𝑦 ↔ (𝐵𝐴𝐵𝑅𝑦))
43exbii 1842 . . 3 (∃𝑦 𝐵(𝑅𝐴)𝑦 ↔ ∃𝑦(𝐵𝐴𝐵𝑅𝑦))
5 19.42v 1949 . . 3 (∃𝑦(𝐵𝐴𝐵𝑅𝑦) ↔ (𝐵𝐴 ∧ ∃𝑦 𝐵𝑅𝑦))
64, 5bitri 275 . 2 (∃𝑦 𝐵(𝑅𝐴)𝑦 ↔ (𝐵𝐴 ∧ ∃𝑦 𝐵𝑅𝑦))
71, 6bitrdi 287 1 (𝐵𝑉 → (𝐵 ∈ dom (𝑅𝐴) ↔ (𝐵𝐴 ∧ ∃𝑦 𝐵𝑅𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wex 1773  wcel 2098  Vcvv 3468   class class class wbr 5141  dom cdm 5669  cres 5671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-br 5142  df-opab 5204  df-xp 5675  df-dm 5679  df-res 5681
This theorem is referenced by:  eldmressnALTV  37652  eldmres2  37655
  Copyright terms: Public domain W3C validator