![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldmres | Structured version Visualization version GIF version |
Description: Elementhood in the domain of a restriction. (Contributed by Peter Mazsa, 9-Jan-2019.) |
Ref | Expression |
---|---|
eldmres | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ ∃𝑦 𝐵𝑅𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmg 5916 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ↾ 𝐴) ↔ ∃𝑦 𝐵(𝑅 ↾ 𝐴)𝑦)) | |
2 | brres 6011 | . . . . 5 ⊢ (𝑦 ∈ V → (𝐵(𝑅 ↾ 𝐴)𝑦 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝑦))) | |
3 | 2 | elv 3486 | . . . 4 ⊢ (𝐵(𝑅 ↾ 𝐴)𝑦 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝑦)) |
4 | 3 | exbii 1847 | . . 3 ⊢ (∃𝑦 𝐵(𝑅 ↾ 𝐴)𝑦 ↔ ∃𝑦(𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝑦)) |
5 | 19.42v 1953 | . . 3 ⊢ (∃𝑦(𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝑦) ↔ (𝐵 ∈ 𝐴 ∧ ∃𝑦 𝐵𝑅𝑦)) | |
6 | 4, 5 | bitri 275 | . 2 ⊢ (∃𝑦 𝐵(𝑅 ↾ 𝐴)𝑦 ↔ (𝐵 ∈ 𝐴 ∧ ∃𝑦 𝐵𝑅𝑦)) |
7 | 1, 6 | bitrdi 287 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ ∃𝑦 𝐵𝑅𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1778 ∈ wcel 2108 Vcvv 3481 class class class wbr 5151 dom cdm 5693 ↾ cres 5695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3483 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-br 5152 df-opab 5214 df-xp 5699 df-dm 5703 df-res 5705 |
This theorem is referenced by: eldmressnALTV 38268 eldmres2 38271 |
Copyright terms: Public domain | W3C validator |