![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eldmres | Structured version Visualization version GIF version |
Description: Elementhood in the domain of a restriction. (Contributed by Peter Mazsa, 9-Jan-2019.) |
Ref | Expression |
---|---|
eldmres | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ ∃𝑦 𝐵𝑅𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldmg 5899 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ↾ 𝐴) ↔ ∃𝑦 𝐵(𝑅 ↾ 𝐴)𝑦)) | |
2 | brres 5989 | . . . . 5 ⊢ (𝑦 ∈ V → (𝐵(𝑅 ↾ 𝐴)𝑦 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝑦))) | |
3 | 2 | elv 3481 | . . . 4 ⊢ (𝐵(𝑅 ↾ 𝐴)𝑦 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝑦)) |
4 | 3 | exbii 1851 | . . 3 ⊢ (∃𝑦 𝐵(𝑅 ↾ 𝐴)𝑦 ↔ ∃𝑦(𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝑦)) |
5 | 19.42v 1958 | . . 3 ⊢ (∃𝑦(𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝑦) ↔ (𝐵 ∈ 𝐴 ∧ ∃𝑦 𝐵𝑅𝑦)) | |
6 | 4, 5 | bitri 275 | . 2 ⊢ (∃𝑦 𝐵(𝑅 ↾ 𝐴)𝑦 ↔ (𝐵 ∈ 𝐴 ∧ ∃𝑦 𝐵𝑅𝑦)) |
7 | 1, 6 | bitrdi 287 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ ∃𝑦 𝐵𝑅𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∃wex 1782 ∈ wcel 2107 Vcvv 3475 class class class wbr 5149 dom cdm 5677 ↾ cres 5679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-xp 5683 df-dm 5687 df-res 5689 |
This theorem is referenced by: eldmressnALTV 37140 eldmres2 37143 |
Copyright terms: Public domain | W3C validator |