| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eldmres | Structured version Visualization version GIF version | ||
| Description: Elementhood in the domain of a restriction. (Contributed by Peter Mazsa, 9-Jan-2019.) |
| Ref | Expression |
|---|---|
| eldmres | ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ ∃𝑦 𝐵𝑅𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldmg 5864 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ↾ 𝐴) ↔ ∃𝑦 𝐵(𝑅 ↾ 𝐴)𝑦)) | |
| 2 | brres 5959 | . . . . 5 ⊢ (𝑦 ∈ V → (𝐵(𝑅 ↾ 𝐴)𝑦 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝑦))) | |
| 3 | 2 | elv 3455 | . . . 4 ⊢ (𝐵(𝑅 ↾ 𝐴)𝑦 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝑦)) |
| 4 | 3 | exbii 1848 | . . 3 ⊢ (∃𝑦 𝐵(𝑅 ↾ 𝐴)𝑦 ↔ ∃𝑦(𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝑦)) |
| 5 | 19.42v 1953 | . . 3 ⊢ (∃𝑦(𝐵 ∈ 𝐴 ∧ 𝐵𝑅𝑦) ↔ (𝐵 ∈ 𝐴 ∧ ∃𝑦 𝐵𝑅𝑦)) | |
| 6 | 4, 5 | bitri 275 | . 2 ⊢ (∃𝑦 𝐵(𝑅 ↾ 𝐴)𝑦 ↔ (𝐵 ∈ 𝐴 ∧ ∃𝑦 𝐵𝑅𝑦)) |
| 7 | 1, 6 | bitrdi 287 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐵 ∈ dom (𝑅 ↾ 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ ∃𝑦 𝐵𝑅𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 Vcvv 3450 class class class wbr 5109 dom cdm 5640 ↾ cres 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-opab 5172 df-xp 5646 df-dm 5650 df-res 5652 |
| This theorem is referenced by: eldmressnALTV 38256 eldmres2 38259 eldmxrncnvepres2 38392 |
| Copyright terms: Public domain | W3C validator |