Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimrecltpos Structured version   Visualization version   GIF version

Theorem pimrecltpos 46629
Description: The preimage of an unbounded below, open interval, with positive upper bound, for the reciprocal function. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimrecltpos.x 𝑥𝜑
pimrecltpos.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
pimrecltpos.n ((𝜑𝑥𝐴) → 𝐵 ≠ 0)
pimrecltpos.c (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
pimrecltpos (𝜑 → {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} = ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))

Proof of Theorem pimrecltpos
StepHypRef Expression
1 pimrecltpos.x . . 3 𝑥𝜑
2 rabidim1 3466 . . . . . . . . . . 11 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} → 𝑥𝐴)
32adantr 480 . . . . . . . . . 10 ((𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ∧ 𝐵 < 0) → 𝑥𝐴)
4 simpr 484 . . . . . . . . . 10 ((𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ∧ 𝐵 < 0) → 𝐵 < 0)
53, 4jca 511 . . . . . . . . 9 ((𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ∧ 𝐵 < 0) → (𝑥𝐴𝐵 < 0))
6 rabid 3465 . . . . . . . . 9 (𝑥 ∈ {𝑥𝐴𝐵 < 0} ↔ (𝑥𝐴𝐵 < 0))
75, 6sylibr 234 . . . . . . . 8 ((𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ∧ 𝐵 < 0) → 𝑥 ∈ {𝑥𝐴𝐵 < 0})
8 elun2 4206 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴𝐵 < 0} → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
97, 8syl 17 . . . . . . 7 ((𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ∧ 𝐵 < 0) → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
109adantll 713 . . . . . 6 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 𝐵 < 0) → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
11 0red 11293 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ ¬ 𝐵 < 0) → 0 ∈ ℝ)
12 pimrecltpos.b . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
132, 12sylan2 592 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝐵 ∈ ℝ)
1413adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ ¬ 𝐵 < 0) → 𝐵 ∈ ℝ)
152adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝑥𝐴)
16 pimrecltpos.n . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵 ≠ 0)
1716necomd 3002 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 0 ≠ 𝐵)
1815, 17syldan 590 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 0 ≠ 𝐵)
1918adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ ¬ 𝐵 < 0) → 0 ≠ 𝐵)
20 simpr 484 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ ¬ 𝐵 < 0) → ¬ 𝐵 < 0)
2111, 14, 19, 20lttri5d 45214 . . . . . . 7 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ ¬ 𝐵 < 0) → 0 < 𝐵)
2215adantr 480 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → 𝑥𝐴)
2313adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → 𝐵 ∈ ℝ)
24 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → 0 < 𝐵)
2523, 24elrpd 13096 . . . . . . . . . . 11 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → 𝐵 ∈ ℝ+)
26 pimrecltpos.c . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℝ+)
2726ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → 𝐶 ∈ ℝ+)
28 rabidim2 45004 . . . . . . . . . . . 12 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} → (1 / 𝐵) < 𝐶)
2928ad2antlr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → (1 / 𝐵) < 𝐶)
3025, 27, 29ltrec1d 13119 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → (1 / 𝐶) < 𝐵)
3122, 30jca 511 . . . . . . . . 9 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → (𝑥𝐴 ∧ (1 / 𝐶) < 𝐵))
32 rabid 3465 . . . . . . . . 9 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ↔ (𝑥𝐴 ∧ (1 / 𝐶) < 𝐵))
3331, 32sylibr 234 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵})
34 elun1 4205 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
3533, 34syl 17 . . . . . . 7 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
3621, 35syldan 590 . . . . . 6 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ ¬ 𝐵 < 0) → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
3710, 36pm2.61dan 812 . . . . 5 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
3837ex 412 . . . 4 (𝜑 → (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})))
3932simplbi 497 . . . . . . . . . 10 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} → 𝑥𝐴)
4039adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝑥𝐴)
4126adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝐶 ∈ ℝ+)
4240, 12syldan 590 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝐵 ∈ ℝ)
43 0red 11293 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 0 ∈ ℝ)
4441rprecred 13110 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → (1 / 𝐶) ∈ ℝ)
4526rpred 13099 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ ℝ)
4626rpgt0d 13102 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝐶)
4745, 46recgt0d 12229 . . . . . . . . . . . . 13 (𝜑 → 0 < (1 / 𝐶))
4847adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 0 < (1 / 𝐶))
4932simprbi 496 . . . . . . . . . . . . 13 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} → (1 / 𝐶) < 𝐵)
5049adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → (1 / 𝐶) < 𝐵)
5143, 44, 42, 48, 50lttrd 11451 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 0 < 𝐵)
5242, 51elrpd 13096 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝐵 ∈ ℝ+)
5341, 52, 50ltrec1d 13119 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → (1 / 𝐵) < 𝐶)
5440, 53jca 511 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → (𝑥𝐴 ∧ (1 / 𝐵) < 𝐶))
55 rabid 3465 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ (𝑥𝐴 ∧ (1 / 𝐵) < 𝐶))
5654, 55sylibr 234 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶})
5756adantlr 714 . . . . . 6 (((𝜑𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})) ∧ 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶})
58 simpll 766 . . . . . . 7 (((𝜑𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})) ∧ ¬ 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝜑)
59 elunnel1 4177 . . . . . . . 8 ((𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}) ∧ ¬ 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝑥 ∈ {𝑥𝐴𝐵 < 0})
6059adantll 713 . . . . . . 7 (((𝜑𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})) ∧ ¬ 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝑥 ∈ {𝑥𝐴𝐵 < 0})
616simplbi 497 . . . . . . . . . 10 (𝑥 ∈ {𝑥𝐴𝐵 < 0} → 𝑥𝐴)
6261adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → 𝑥𝐴)
6312, 16rereccld 12121 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (1 / 𝐵) ∈ ℝ)
6462, 63syldan 590 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → (1 / 𝐵) ∈ ℝ)
65 0red 11293 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → 0 ∈ ℝ)
6645adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → 𝐶 ∈ ℝ)
6762, 12syldan 590 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → 𝐵 ∈ ℝ)
686simprbi 496 . . . . . . . . . . . 12 (𝑥 ∈ {𝑥𝐴𝐵 < 0} → 𝐵 < 0)
6968adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → 𝐵 < 0)
7067, 69reclt0d 45302 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → (1 / 𝐵) < 0)
7146adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → 0 < 𝐶)
7264, 65, 66, 70, 71lttrd 11451 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → (1 / 𝐵) < 𝐶)
7362, 72jca 511 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → (𝑥𝐴 ∧ (1 / 𝐵) < 𝐶))
7473, 55sylibr 234 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶})
7558, 60, 74syl2anc 583 . . . . . 6 (((𝜑𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})) ∧ ¬ 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶})
7657, 75pm2.61dan 812 . . . . 5 ((𝜑𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶})
7776ex 412 . . . 4 (𝜑 → (𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}))
7838, 77impbid 212 . . 3 (𝜑 → (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})))
791, 78alrimi 2214 . 2 (𝜑 → ∀𝑥(𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})))
80 nfrab1 3464 . . 3 𝑥{𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}
81 nfrab1 3464 . . . 4 𝑥{𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}
82 nfrab1 3464 . . . 4 𝑥{𝑥𝐴𝐵 < 0}
8381, 82nfun 4193 . . 3 𝑥({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})
8480, 83cleqf 2940 . 2 ({𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} = ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}) ↔ ∀𝑥(𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})))
8579, 84sylibr 234 1 (𝜑 → {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} = ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wnf 1781  wcel 2108  wne 2946  {crab 3443  cun 3974   class class class wbr 5166  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   < clt 11324   / cdiv 11947  +crp 13057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-rp 13058
This theorem is referenced by:  smfrec  46710
  Copyright terms: Public domain W3C validator