Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimrecltpos Structured version   Visualization version   GIF version

Theorem pimrecltpos 46816
Description: The preimage of an unbounded below, open interval, with positive upper bound, for the reciprocal function. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimrecltpos.x 𝑥𝜑
pimrecltpos.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
pimrecltpos.n ((𝜑𝑥𝐴) → 𝐵 ≠ 0)
pimrecltpos.c (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
pimrecltpos (𝜑 → {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} = ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))

Proof of Theorem pimrecltpos
StepHypRef Expression
1 pimrecltpos.x . . 3 𝑥𝜑
2 rabidim1 3417 . . . . . . . . . . 11 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} → 𝑥𝐴)
32adantr 480 . . . . . . . . . 10 ((𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ∧ 𝐵 < 0) → 𝑥𝐴)
4 simpr 484 . . . . . . . . . 10 ((𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ∧ 𝐵 < 0) → 𝐵 < 0)
53, 4jca 511 . . . . . . . . 9 ((𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ∧ 𝐵 < 0) → (𝑥𝐴𝐵 < 0))
6 rabid 3416 . . . . . . . . 9 (𝑥 ∈ {𝑥𝐴𝐵 < 0} ↔ (𝑥𝐴𝐵 < 0))
75, 6sylibr 234 . . . . . . . 8 ((𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ∧ 𝐵 < 0) → 𝑥 ∈ {𝑥𝐴𝐵 < 0})
8 elun2 4130 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴𝐵 < 0} → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
97, 8syl 17 . . . . . . 7 ((𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ∧ 𝐵 < 0) → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
109adantll 714 . . . . . 6 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 𝐵 < 0) → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
11 0red 11115 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ ¬ 𝐵 < 0) → 0 ∈ ℝ)
12 pimrecltpos.b . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
132, 12sylan2 593 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝐵 ∈ ℝ)
1413adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ ¬ 𝐵 < 0) → 𝐵 ∈ ℝ)
152adantl 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝑥𝐴)
16 pimrecltpos.n . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵 ≠ 0)
1716necomd 2983 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 0 ≠ 𝐵)
1815, 17syldan 591 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 0 ≠ 𝐵)
1918adantr 480 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ ¬ 𝐵 < 0) → 0 ≠ 𝐵)
20 simpr 484 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ ¬ 𝐵 < 0) → ¬ 𝐵 < 0)
2111, 14, 19, 20lttri5d 45410 . . . . . . 7 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ ¬ 𝐵 < 0) → 0 < 𝐵)
2215adantr 480 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → 𝑥𝐴)
2313adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → 𝐵 ∈ ℝ)
24 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → 0 < 𝐵)
2523, 24elrpd 12931 . . . . . . . . . . 11 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → 𝐵 ∈ ℝ+)
26 pimrecltpos.c . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℝ+)
2726ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → 𝐶 ∈ ℝ+)
28 rabidim2 45209 . . . . . . . . . . . 12 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} → (1 / 𝐵) < 𝐶)
2928ad2antlr 727 . . . . . . . . . . 11 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → (1 / 𝐵) < 𝐶)
3025, 27, 29ltrec1d 12954 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → (1 / 𝐶) < 𝐵)
3122, 30jca 511 . . . . . . . . 9 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → (𝑥𝐴 ∧ (1 / 𝐶) < 𝐵))
32 rabid 3416 . . . . . . . . 9 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ↔ (𝑥𝐴 ∧ (1 / 𝐶) < 𝐵))
3331, 32sylibr 234 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵})
34 elun1 4129 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
3533, 34syl 17 . . . . . . 7 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
3621, 35syldan 591 . . . . . 6 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ ¬ 𝐵 < 0) → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
3710, 36pm2.61dan 812 . . . . 5 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
3837ex 412 . . . 4 (𝜑 → (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})))
3932simplbi 497 . . . . . . . . . 10 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} → 𝑥𝐴)
4039adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝑥𝐴)
4126adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝐶 ∈ ℝ+)
4240, 12syldan 591 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝐵 ∈ ℝ)
43 0red 11115 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 0 ∈ ℝ)
4441rprecred 12945 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → (1 / 𝐶) ∈ ℝ)
4526rpred 12934 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ ℝ)
4626rpgt0d 12937 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝐶)
4745, 46recgt0d 12056 . . . . . . . . . . . . 13 (𝜑 → 0 < (1 / 𝐶))
4847adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 0 < (1 / 𝐶))
4932simprbi 496 . . . . . . . . . . . . 13 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} → (1 / 𝐶) < 𝐵)
5049adantl 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → (1 / 𝐶) < 𝐵)
5143, 44, 42, 48, 50lttrd 11274 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 0 < 𝐵)
5242, 51elrpd 12931 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝐵 ∈ ℝ+)
5341, 52, 50ltrec1d 12954 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → (1 / 𝐵) < 𝐶)
5440, 53jca 511 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → (𝑥𝐴 ∧ (1 / 𝐵) < 𝐶))
55 rabid 3416 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ (𝑥𝐴 ∧ (1 / 𝐵) < 𝐶))
5654, 55sylibr 234 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶})
5756adantlr 715 . . . . . 6 (((𝜑𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})) ∧ 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶})
58 simpll 766 . . . . . . 7 (((𝜑𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})) ∧ ¬ 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝜑)
59 elunnel1 4101 . . . . . . . 8 ((𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}) ∧ ¬ 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝑥 ∈ {𝑥𝐴𝐵 < 0})
6059adantll 714 . . . . . . 7 (((𝜑𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})) ∧ ¬ 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝑥 ∈ {𝑥𝐴𝐵 < 0})
616simplbi 497 . . . . . . . . . 10 (𝑥 ∈ {𝑥𝐴𝐵 < 0} → 𝑥𝐴)
6261adantl 481 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → 𝑥𝐴)
6312, 16rereccld 11948 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (1 / 𝐵) ∈ ℝ)
6462, 63syldan 591 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → (1 / 𝐵) ∈ ℝ)
65 0red 11115 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → 0 ∈ ℝ)
6645adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → 𝐶 ∈ ℝ)
6762, 12syldan 591 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → 𝐵 ∈ ℝ)
686simprbi 496 . . . . . . . . . . . 12 (𝑥 ∈ {𝑥𝐴𝐵 < 0} → 𝐵 < 0)
6968adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → 𝐵 < 0)
7067, 69reclt0d 45495 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → (1 / 𝐵) < 0)
7146adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → 0 < 𝐶)
7264, 65, 66, 70, 71lttrd 11274 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → (1 / 𝐵) < 𝐶)
7362, 72jca 511 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → (𝑥𝐴 ∧ (1 / 𝐵) < 𝐶))
7473, 55sylibr 234 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶})
7558, 60, 74syl2anc 584 . . . . . 6 (((𝜑𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})) ∧ ¬ 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶})
7657, 75pm2.61dan 812 . . . . 5 ((𝜑𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶})
7776ex 412 . . . 4 (𝜑 → (𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}))
7838, 77impbid 212 . . 3 (𝜑 → (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})))
791, 78alrimi 2216 . 2 (𝜑 → ∀𝑥(𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})))
80 nfrab1 3415 . . 3 𝑥{𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}
81 nfrab1 3415 . . . 4 𝑥{𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}
82 nfrab1 3415 . . . 4 𝑥{𝑥𝐴𝐵 < 0}
8381, 82nfun 4117 . . 3 𝑥({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})
8480, 83cleqf 2923 . 2 ({𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} = ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}) ↔ ∀𝑥(𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})))
8579, 84sylibr 234 1 (𝜑 → {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} = ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wnf 1784  wcel 2111  wne 2928  {crab 3395  cun 3895   class class class wbr 5089  (class class class)co 7346  cr 11005  0cc0 11006  1c1 11007   < clt 11146   / cdiv 11774  +crp 12890
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-rp 12891
This theorem is referenced by:  smfrec  46897
  Copyright terms: Public domain W3C validator