Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pimrecltpos Structured version   Visualization version   GIF version

Theorem pimrecltpos 43344
Description: The preimage of an unbounded below, open interval, with positive upper bound, for the reciprocal function. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
pimrecltpos.x 𝑥𝜑
pimrecltpos.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
pimrecltpos.n ((𝜑𝑥𝐴) → 𝐵 ≠ 0)
pimrecltpos.c (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
pimrecltpos (𝜑 → {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} = ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))

Proof of Theorem pimrecltpos
StepHypRef Expression
1 pimrecltpos.x . . 3 𝑥𝜑
2 rabidim1 3333 . . . . . . . . . . 11 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} → 𝑥𝐴)
32adantr 484 . . . . . . . . . 10 ((𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ∧ 𝐵 < 0) → 𝑥𝐴)
4 simpr 488 . . . . . . . . . 10 ((𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ∧ 𝐵 < 0) → 𝐵 < 0)
53, 4jca 515 . . . . . . . . 9 ((𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ∧ 𝐵 < 0) → (𝑥𝐴𝐵 < 0))
6 rabid 3331 . . . . . . . . 9 (𝑥 ∈ {𝑥𝐴𝐵 < 0} ↔ (𝑥𝐴𝐵 < 0))
75, 6sylibr 237 . . . . . . . 8 ((𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ∧ 𝐵 < 0) → 𝑥 ∈ {𝑥𝐴𝐵 < 0})
8 elun2 4104 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴𝐵 < 0} → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
97, 8syl 17 . . . . . . 7 ((𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ∧ 𝐵 < 0) → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
109adantll 713 . . . . . 6 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 𝐵 < 0) → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
11 0red 10633 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ ¬ 𝐵 < 0) → 0 ∈ ℝ)
12 pimrecltpos.b . . . . . . . . . 10 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
132, 12sylan2 595 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝐵 ∈ ℝ)
1413adantr 484 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ ¬ 𝐵 < 0) → 𝐵 ∈ ℝ)
152adantl 485 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝑥𝐴)
16 pimrecltpos.n . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵 ≠ 0)
1716necomd 3042 . . . . . . . . . 10 ((𝜑𝑥𝐴) → 0 ≠ 𝐵)
1815, 17syldan 594 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 0 ≠ 𝐵)
1918adantr 484 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ ¬ 𝐵 < 0) → 0 ≠ 𝐵)
20 simpr 488 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ ¬ 𝐵 < 0) → ¬ 𝐵 < 0)
2111, 14, 19, 20lttri5d 41931 . . . . . . 7 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ ¬ 𝐵 < 0) → 0 < 𝐵)
2215adantr 484 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → 𝑥𝐴)
2313adantr 484 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → 𝐵 ∈ ℝ)
24 simpr 488 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → 0 < 𝐵)
2523, 24elrpd 12416 . . . . . . . . . . 11 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → 𝐵 ∈ ℝ+)
26 pimrecltpos.c . . . . . . . . . . . 12 (𝜑𝐶 ∈ ℝ+)
2726ad2antrr 725 . . . . . . . . . . 11 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → 𝐶 ∈ ℝ+)
28 rabidim2 41738 . . . . . . . . . . . 12 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} → (1 / 𝐵) < 𝐶)
2928ad2antlr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → (1 / 𝐵) < 𝐶)
3025, 27, 29ltrec1d 12439 . . . . . . . . . 10 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → (1 / 𝐶) < 𝐵)
3122, 30jca 515 . . . . . . . . 9 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → (𝑥𝐴 ∧ (1 / 𝐶) < 𝐵))
32 rabid 3331 . . . . . . . . 9 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ↔ (𝑥𝐴 ∧ (1 / 𝐶) < 𝐵))
3331, 32sylibr 237 . . . . . . . 8 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵})
34 elun1 4103 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
3533, 34syl 17 . . . . . . 7 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ 0 < 𝐵) → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
3621, 35syldan 594 . . . . . 6 (((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) ∧ ¬ 𝐵 < 0) → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
3710, 36pm2.61dan 812 . . . . 5 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}) → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
3837ex 416 . . . 4 (𝜑 → (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} → 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})))
3932simplbi 501 . . . . . . . . . 10 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} → 𝑥𝐴)
4039adantl 485 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝑥𝐴)
4126adantr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝐶 ∈ ℝ+)
4240, 12syldan 594 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝐵 ∈ ℝ)
43 0red 10633 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 0 ∈ ℝ)
4441rprecred 12430 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → (1 / 𝐶) ∈ ℝ)
4526rpred 12419 . . . . . . . . . . . . . 14 (𝜑𝐶 ∈ ℝ)
4626rpgt0d 12422 . . . . . . . . . . . . . 14 (𝜑 → 0 < 𝐶)
4745, 46recgt0d 11563 . . . . . . . . . . . . 13 (𝜑 → 0 < (1 / 𝐶))
4847adantr 484 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 0 < (1 / 𝐶))
4932simprbi 500 . . . . . . . . . . . . 13 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} → (1 / 𝐶) < 𝐵)
5049adantl 485 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → (1 / 𝐶) < 𝐵)
5143, 44, 42, 48, 50lttrd 10790 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 0 < 𝐵)
5242, 51elrpd 12416 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝐵 ∈ ℝ+)
5341, 52, 50ltrec1d 12439 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → (1 / 𝐵) < 𝐶)
5440, 53jca 515 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → (𝑥𝐴 ∧ (1 / 𝐵) < 𝐶))
55 rabid 3331 . . . . . . . 8 (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ (𝑥𝐴 ∧ (1 / 𝐵) < 𝐶))
5654, 55sylibr 237 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶})
5756adantlr 714 . . . . . 6 (((𝜑𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})) ∧ 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶})
58 simpll 766 . . . . . . 7 (((𝜑𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})) ∧ ¬ 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝜑)
59 elunnel1 4077 . . . . . . . 8 ((𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}) ∧ ¬ 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝑥 ∈ {𝑥𝐴𝐵 < 0})
6059adantll 713 . . . . . . 7 (((𝜑𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})) ∧ ¬ 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝑥 ∈ {𝑥𝐴𝐵 < 0})
616simplbi 501 . . . . . . . . . 10 (𝑥 ∈ {𝑥𝐴𝐵 < 0} → 𝑥𝐴)
6261adantl 485 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → 𝑥𝐴)
6312, 16rereccld 11456 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (1 / 𝐵) ∈ ℝ)
6462, 63syldan 594 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → (1 / 𝐵) ∈ ℝ)
65 0red 10633 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → 0 ∈ ℝ)
6645adantr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → 𝐶 ∈ ℝ)
6762, 12syldan 594 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → 𝐵 ∈ ℝ)
686simprbi 500 . . . . . . . . . . . 12 (𝑥 ∈ {𝑥𝐴𝐵 < 0} → 𝐵 < 0)
6968adantl 485 . . . . . . . . . . 11 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → 𝐵 < 0)
7067, 69reclt0d 42022 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → (1 / 𝐵) < 0)
7146adantr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → 0 < 𝐶)
7264, 65, 66, 70, 71lttrd 10790 . . . . . . . . 9 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → (1 / 𝐵) < 𝐶)
7362, 72jca 515 . . . . . . . 8 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → (𝑥𝐴 ∧ (1 / 𝐵) < 𝐶))
7473, 55sylibr 237 . . . . . . 7 ((𝜑𝑥 ∈ {𝑥𝐴𝐵 < 0}) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶})
7558, 60, 74syl2anc 587 . . . . . 6 (((𝜑𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})) ∧ ¬ 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶})
7657, 75pm2.61dan 812 . . . . 5 ((𝜑𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶})
7776ex 416 . . . 4 (𝜑 → (𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}) → 𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}))
7838, 77impbid 215 . . 3 (𝜑 → (𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})))
791, 78alrimi 2211 . 2 (𝜑 → ∀𝑥(𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})))
80 nfrab1 3337 . . 3 𝑥{𝑥𝐴 ∣ (1 / 𝐵) < 𝐶}
81 nfrab1 3337 . . . 4 𝑥{𝑥𝐴 ∣ (1 / 𝐶) < 𝐵}
82 nfrab1 3337 . . . 4 𝑥{𝑥𝐴𝐵 < 0}
8381, 82nfun 4092 . . 3 𝑥({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})
8480, 83cleqf 2983 . 2 ({𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} = ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}) ↔ ∀𝑥(𝑥 ∈ {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} ↔ 𝑥 ∈ ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0})))
8579, 84sylibr 237 1 (𝜑 → {𝑥𝐴 ∣ (1 / 𝐵) < 𝐶} = ({𝑥𝐴 ∣ (1 / 𝐶) < 𝐵} ∪ {𝑥𝐴𝐵 < 0}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wal 1536   = wceq 1538  wnf 1785  wcel 2111  wne 2987  {crab 3110  cun 3879   class class class wbr 5030  (class class class)co 7135  cr 10525  0cc0 10526  1c1 10527   < clt 10664   / cdiv 11286  +crp 12377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-rp 12378
This theorem is referenced by:  smfrec  43421
  Copyright terms: Public domain W3C validator