Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fsumsplitsn | Structured version Visualization version GIF version |
Description: Separate out a term in a finite sum. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
fsumsplitsn.ph | ⊢ Ⅎ𝑘𝜑 |
fsumsplitsn.kd | ⊢ Ⅎ𝑘𝐷 |
fsumsplitsn.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fsumsplitsn.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
fsumsplitsn.ba | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) |
fsumsplitsn.c | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
fsumsplitsn.d | ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷) |
fsumsplitsn.dcn | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
Ref | Expression |
---|---|
fsumsplitsn | ⊢ (𝜑 → Σ𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsumsplitsn.ph | . . 3 ⊢ Ⅎ𝑘𝜑 | |
2 | fsumsplitsn.ba | . . . 4 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) | |
3 | disjsn 4608 | . . . 4 ⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ 𝐴) | |
4 | 2, 3 | sylibr 237 | . . 3 ⊢ (𝜑 → (𝐴 ∩ {𝐵}) = ∅) |
5 | eqidd 2760 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝐵}) = (𝐴 ∪ {𝐵})) | |
6 | fsumsplitsn.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
7 | snfi 8628 | . . . 4 ⊢ {𝐵} ∈ Fin | |
8 | unfi 8755 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ {𝐵} ∈ Fin) → (𝐴 ∪ {𝐵}) ∈ Fin) | |
9 | 6, 7, 8 | sylancl 589 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝐵}) ∈ Fin) |
10 | fsumsplitsn.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) | |
11 | 10 | adantlr 714 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
12 | simpll 766 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘 ∈ 𝐴) → 𝜑) | |
13 | elunnel1 4058 | . . . . . . 7 ⊢ ((𝑘 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑘 ∈ 𝐴) → 𝑘 ∈ {𝐵}) | |
14 | elsni 4543 | . . . . . . 7 ⊢ (𝑘 ∈ {𝐵} → 𝑘 = 𝐵) | |
15 | 13, 14 | syl 17 | . . . . . 6 ⊢ ((𝑘 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑘 ∈ 𝐴) → 𝑘 = 𝐵) |
16 | 15 | adantll 713 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘 ∈ 𝐴) → 𝑘 = 𝐵) |
17 | fsumsplitsn.d | . . . . . . 7 ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷) | |
18 | 17 | adantl 485 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐶 = 𝐷) |
19 | fsumsplitsn.dcn | . . . . . . 7 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
20 | 19 | adantr 484 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐷 ∈ ℂ) |
21 | 18, 20 | eqeltrd 2853 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 = 𝐵) → 𝐶 ∈ ℂ) |
22 | 12, 16, 21 | syl2anc 587 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
23 | 11, 22 | pm2.61dan 812 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) → 𝐶 ∈ ℂ) |
24 | 1, 4, 5, 9, 23 | fsumsplitf 15160 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ {𝐵}𝐶)) |
25 | fsumsplitsn.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
26 | fsumsplitsn.kd | . . . . 5 ⊢ Ⅎ𝑘𝐷 | |
27 | 26, 17 | sumsnf 15161 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ ℂ) → Σ𝑘 ∈ {𝐵}𝐶 = 𝐷) |
28 | 25, 19, 27 | syl2anc 587 | . . 3 ⊢ (𝜑 → Σ𝑘 ∈ {𝐵}𝐶 = 𝐷) |
29 | 28 | oveq2d 7173 | . 2 ⊢ (𝜑 → (Σ𝑘 ∈ 𝐴 𝐶 + Σ𝑘 ∈ {𝐵}𝐶) = (Σ𝑘 ∈ 𝐴 𝐶 + 𝐷)) |
30 | 24, 29 | eqtrd 2794 | 1 ⊢ (𝜑 → Σ𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (Σ𝑘 ∈ 𝐴 𝐶 + 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2112 Ⅎwnfc 2900 ∪ cun 3859 ∩ cin 3860 ∅c0 4228 {csn 4526 (class class class)co 7157 Fincfn 8541 ℂcc 10587 + caddc 10592 Σcsu 15104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5161 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 ax-inf2 9151 ax-cnex 10645 ax-resscn 10646 ax-1cn 10647 ax-icn 10648 ax-addcl 10649 ax-addrcl 10650 ax-mulcl 10651 ax-mulrcl 10652 ax-mulcom 10653 ax-addass 10654 ax-mulass 10655 ax-distr 10656 ax-i2m1 10657 ax-1ne0 10658 ax-1rid 10659 ax-rnegex 10660 ax-rrecex 10661 ax-cnre 10662 ax-pre-lttri 10663 ax-pre-lttrn 10664 ax-pre-ltadd 10665 ax-pre-mulgt0 10666 ax-pre-sup 10667 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-pss 3880 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4803 df-int 4843 df-iun 4889 df-br 5038 df-opab 5100 df-mpt 5118 df-tr 5144 df-id 5435 df-eprel 5440 df-po 5448 df-so 5449 df-fr 5488 df-se 5489 df-we 5490 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-pred 6132 df-ord 6178 df-on 6179 df-lim 6180 df-suc 6181 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-isom 6350 df-riota 7115 df-ov 7160 df-oprab 7161 df-mpo 7162 df-om 7587 df-1st 7700 df-2nd 7701 df-wrecs 7964 df-recs 8025 df-rdg 8063 df-1o 8119 df-er 8306 df-en 8542 df-dom 8543 df-sdom 8544 df-fin 8545 df-sup 8953 df-oi 9021 df-card 9415 df-pnf 10729 df-mnf 10730 df-xr 10731 df-ltxr 10732 df-le 10733 df-sub 10924 df-neg 10925 df-div 11350 df-nn 11689 df-2 11751 df-3 11752 df-n0 11949 df-z 12035 df-uz 12297 df-rp 12445 df-fz 12954 df-fzo 13097 df-seq 13433 df-exp 13494 df-hash 13755 df-cj 14520 df-re 14521 df-im 14522 df-sqrt 14656 df-abs 14657 df-clim 14907 df-sum 15105 |
This theorem is referenced by: reprsuc 32128 hgt750lemd 32161 fsumnncl 42625 fsumsplit1 42626 mccllem 42651 dvmptfprodlem 42998 dvnprodlem1 43000 sge0iunmptlemfi 43464 |
Copyright terms: Public domain | W3C validator |