MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumsplitsn Structured version   Visualization version   GIF version

Theorem fsumsplitsn 15456
Description: Separate out a term in a finite sum. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fsumsplitsn.ph 𝑘𝜑
fsumsplitsn.kd 𝑘𝐷
fsumsplitsn.a (𝜑𝐴 ∈ Fin)
fsumsplitsn.b (𝜑𝐵𝑉)
fsumsplitsn.ba (𝜑 → ¬ 𝐵𝐴)
fsumsplitsn.c ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
fsumsplitsn.d (𝑘 = 𝐵𝐶 = 𝐷)
fsumsplitsn.dcn (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
fsumsplitsn (𝜑 → Σ𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (Σ𝑘𝐴 𝐶 + 𝐷))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑉
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑘)   𝐷(𝑘)

Proof of Theorem fsumsplitsn
StepHypRef Expression
1 fsumsplitsn.ph . . 3 𝑘𝜑
2 fsumsplitsn.ba . . . 4 (𝜑 → ¬ 𝐵𝐴)
3 disjsn 4647 . . . 4 ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵𝐴)
42, 3sylibr 233 . . 3 (𝜑 → (𝐴 ∩ {𝐵}) = ∅)
5 eqidd 2739 . . 3 (𝜑 → (𝐴 ∪ {𝐵}) = (𝐴 ∪ {𝐵}))
6 fsumsplitsn.a . . . 4 (𝜑𝐴 ∈ Fin)
7 snfi 8834 . . . 4 {𝐵} ∈ Fin
8 unfi 8955 . . . 4 ((𝐴 ∈ Fin ∧ {𝐵} ∈ Fin) → (𝐴 ∪ {𝐵}) ∈ Fin)
96, 7, 8sylancl 586 . . 3 (𝜑 → (𝐴 ∪ {𝐵}) ∈ Fin)
10 fsumsplitsn.c . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
1110adantlr 712 . . . 4 (((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
12 simpll 764 . . . . 5 (((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘𝐴) → 𝜑)
13 elunnel1 4084 . . . . . . 7 ((𝑘 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑘𝐴) → 𝑘 ∈ {𝐵})
14 elsni 4578 . . . . . . 7 (𝑘 ∈ {𝐵} → 𝑘 = 𝐵)
1513, 14syl 17 . . . . . 6 ((𝑘 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑘𝐴) → 𝑘 = 𝐵)
1615adantll 711 . . . . 5 (((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘𝐴) → 𝑘 = 𝐵)
17 fsumsplitsn.d . . . . . . 7 (𝑘 = 𝐵𝐶 = 𝐷)
1817adantl 482 . . . . . 6 ((𝜑𝑘 = 𝐵) → 𝐶 = 𝐷)
19 fsumsplitsn.dcn . . . . . . 7 (𝜑𝐷 ∈ ℂ)
2019adantr 481 . . . . . 6 ((𝜑𝑘 = 𝐵) → 𝐷 ∈ ℂ)
2118, 20eqeltrd 2839 . . . . 5 ((𝜑𝑘 = 𝐵) → 𝐶 ∈ ℂ)
2212, 16, 21syl2anc 584 . . . 4 (((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘𝐴) → 𝐶 ∈ ℂ)
2311, 22pm2.61dan 810 . . 3 ((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) → 𝐶 ∈ ℂ)
241, 4, 5, 9, 23fsumsplitf 15454 . 2 (𝜑 → Σ𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘 ∈ {𝐵}𝐶))
25 fsumsplitsn.b . . . 4 (𝜑𝐵𝑉)
26 fsumsplitsn.kd . . . . 5 𝑘𝐷
2726, 17sumsnf 15455 . . . 4 ((𝐵𝑉𝐷 ∈ ℂ) → Σ𝑘 ∈ {𝐵}𝐶 = 𝐷)
2825, 19, 27syl2anc 584 . . 3 (𝜑 → Σ𝑘 ∈ {𝐵}𝐶 = 𝐷)
2928oveq2d 7291 . 2 (𝜑 → (Σ𝑘𝐴 𝐶 + Σ𝑘 ∈ {𝐵}𝐶) = (Σ𝑘𝐴 𝐶 + 𝐷))
3024, 29eqtrd 2778 1 (𝜑 → Σ𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (Σ𝑘𝐴 𝐶 + 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wnf 1786  wcel 2106  wnfc 2887  cun 3885  cin 3886  c0 4256  {csn 4561  (class class class)co 7275  Fincfn 8733  cc 10869   + caddc 10874  Σcsu 15397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398
This theorem is referenced by:  fsumsplit1  15457  reprsuc  32595  hgt750lemd  32628  fsumnncl  43113  mccllem  43138  dvmptfprodlem  43485  dvnprodlem1  43487  sge0iunmptlemfi  43951
  Copyright terms: Public domain W3C validator