MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsumsplitsn Structured version   Visualization version   GIF version

Theorem fsumsplitsn 15762
Description: Separate out a term in a finite sum. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fsumsplitsn.ph 𝑘𝜑
fsumsplitsn.kd 𝑘𝐷
fsumsplitsn.a (𝜑𝐴 ∈ Fin)
fsumsplitsn.b (𝜑𝐵𝑉)
fsumsplitsn.ba (𝜑 → ¬ 𝐵𝐴)
fsumsplitsn.c ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
fsumsplitsn.d (𝑘 = 𝐵𝐶 = 𝐷)
fsumsplitsn.dcn (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
fsumsplitsn (𝜑 → Σ𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (Σ𝑘𝐴 𝐶 + 𝐷))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑉
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑘)   𝐷(𝑘)

Proof of Theorem fsumsplitsn
StepHypRef Expression
1 fsumsplitsn.ph . . 3 𝑘𝜑
2 fsumsplitsn.ba . . . 4 (𝜑 → ¬ 𝐵𝐴)
3 disjsn 4691 . . . 4 ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵𝐴)
42, 3sylibr 234 . . 3 (𝜑 → (𝐴 ∩ {𝐵}) = ∅)
5 eqidd 2735 . . 3 (𝜑 → (𝐴 ∪ {𝐵}) = (𝐴 ∪ {𝐵}))
6 fsumsplitsn.a . . . 4 (𝜑𝐴 ∈ Fin)
7 snfi 9065 . . . 4 {𝐵} ∈ Fin
8 unfi 9193 . . . 4 ((𝐴 ∈ Fin ∧ {𝐵} ∈ Fin) → (𝐴 ∪ {𝐵}) ∈ Fin)
96, 7, 8sylancl 586 . . 3 (𝜑 → (𝐴 ∪ {𝐵}) ∈ Fin)
10 fsumsplitsn.c . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
1110adantlr 715 . . . 4 (((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
12 simpll 766 . . . . 5 (((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘𝐴) → 𝜑)
13 elunnel1 4134 . . . . . . 7 ((𝑘 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑘𝐴) → 𝑘 ∈ {𝐵})
14 elsni 4623 . . . . . . 7 (𝑘 ∈ {𝐵} → 𝑘 = 𝐵)
1513, 14syl 17 . . . . . 6 ((𝑘 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑘𝐴) → 𝑘 = 𝐵)
1615adantll 714 . . . . 5 (((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘𝐴) → 𝑘 = 𝐵)
17 fsumsplitsn.d . . . . . . 7 (𝑘 = 𝐵𝐶 = 𝐷)
1817adantl 481 . . . . . 6 ((𝜑𝑘 = 𝐵) → 𝐶 = 𝐷)
19 fsumsplitsn.dcn . . . . . . 7 (𝜑𝐷 ∈ ℂ)
2019adantr 480 . . . . . 6 ((𝜑𝑘 = 𝐵) → 𝐷 ∈ ℂ)
2118, 20eqeltrd 2833 . . . . 5 ((𝜑𝑘 = 𝐵) → 𝐶 ∈ ℂ)
2212, 16, 21syl2anc 584 . . . 4 (((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘𝐴) → 𝐶 ∈ ℂ)
2311, 22pm2.61dan 812 . . 3 ((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) → 𝐶 ∈ ℂ)
241, 4, 5, 9, 23fsumsplitf 15760 . 2 (𝜑 → Σ𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (Σ𝑘𝐴 𝐶 + Σ𝑘 ∈ {𝐵}𝐶))
25 fsumsplitsn.b . . . 4 (𝜑𝐵𝑉)
26 fsumsplitsn.kd . . . . 5 𝑘𝐷
2726, 17sumsnf 15761 . . . 4 ((𝐵𝑉𝐷 ∈ ℂ) → Σ𝑘 ∈ {𝐵}𝐶 = 𝐷)
2825, 19, 27syl2anc 584 . . 3 (𝜑 → Σ𝑘 ∈ {𝐵}𝐶 = 𝐷)
2928oveq2d 7429 . 2 (𝜑 → (Σ𝑘𝐴 𝐶 + Σ𝑘 ∈ {𝐵}𝐶) = (Σ𝑘𝐴 𝐶 + 𝐷))
3024, 29eqtrd 2769 1 (𝜑 → Σ𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (Σ𝑘𝐴 𝐶 + 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wnf 1782  wcel 2107  wnfc 2882  cun 3929  cin 3930  c0 4313  {csn 4606  (class class class)co 7413  Fincfn 8967  cc 11135   + caddc 11140  Σcsu 15704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-inf2 9663  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214  ax-pre-sup 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-int 4927  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-se 5618  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-isom 6550  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-1st 7996  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-fin 8971  df-sup 9464  df-oi 9532  df-card 9961  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-div 11903  df-nn 12249  df-2 12311  df-3 12312  df-n0 12510  df-z 12597  df-uz 12861  df-rp 13017  df-fz 13530  df-fzo 13677  df-seq 14025  df-exp 14085  df-hash 14352  df-cj 15120  df-re 15121  df-im 15122  df-sqrt 15256  df-abs 15257  df-clim 15506  df-sum 15705
This theorem is referenced by:  fsumsplit1  15763  reprsuc  34589  hgt750lemd  34622  deg1gprod  42100  unitscyglem2  42156  fsumnncl  45544  mccllem  45569  dvmptfprodlem  45916  dvnprodlem1  45918  sge0iunmptlemfi  46385
  Copyright terms: Public domain W3C validator