Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infxrpnf Structured version   Visualization version   GIF version

Theorem infxrpnf 45571
Description: Adding plus infinity to a set does not affect its infimum. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Assertion
Ref Expression
infxrpnf (𝐴 ⊆ ℝ* → inf((𝐴 ∪ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < ))

Proof of Theorem infxrpnf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝐴 ⊆ ℝ*𝐴 ⊆ ℝ*)
2 pnfxr 11175 . . . . . 6 +∞ ∈ ℝ*
3 snssi 4761 . . . . . 6 (+∞ ∈ ℝ* → {+∞} ⊆ ℝ*)
42, 3ax-mp 5 . . . . 5 {+∞} ⊆ ℝ*
54a1i 11 . . . 4 (𝐴 ⊆ ℝ* → {+∞} ⊆ ℝ*)
61, 5unssd 4141 . . 3 (𝐴 ⊆ ℝ* → (𝐴 ∪ {+∞}) ⊆ ℝ*)
76infxrcld 45514 . 2 (𝐴 ⊆ ℝ* → inf((𝐴 ∪ {+∞}), ℝ*, < ) ∈ ℝ*)
8 infxrcl 13237 . 2 (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*)
9 ssun1 4127 . . . 4 𝐴 ⊆ (𝐴 ∪ {+∞})
109a1i 11 . . 3 (𝐴 ⊆ ℝ*𝐴 ⊆ (𝐴 ∪ {+∞}))
11 infxrss 13243 . . 3 ((𝐴 ⊆ (𝐴 ∪ {+∞}) ∧ (𝐴 ∪ {+∞}) ⊆ ℝ*) → inf((𝐴 ∪ {+∞}), ℝ*, < ) ≤ inf(𝐴, ℝ*, < ))
1210, 6, 11syl2anc 584 . 2 (𝐴 ⊆ ℝ* → inf((𝐴 ∪ {+∞}), ℝ*, < ) ≤ inf(𝐴, ℝ*, < ))
13 infeq1 9370 . . . . . 6 (𝐴 = ∅ → inf(𝐴, ℝ*, < ) = inf(∅, ℝ*, < ))
14 xrinf0 13242 . . . . . . . 8 inf(∅, ℝ*, < ) = +∞
1514, 2eqeltri 2829 . . . . . . 7 inf(∅, ℝ*, < ) ∈ ℝ*
1615a1i 11 . . . . . 6 (𝐴 = ∅ → inf(∅, ℝ*, < ) ∈ ℝ*)
1713, 16eqeltrd 2833 . . . . 5 (𝐴 = ∅ → inf(𝐴, ℝ*, < ) ∈ ℝ*)
18 xrltso 13044 . . . . . . . . 9 < Or ℝ*
19 infsn 9400 . . . . . . . . 9 (( < Or ℝ* ∧ +∞ ∈ ℝ*) → inf({+∞}, ℝ*, < ) = +∞)
2018, 2, 19mp2an 692 . . . . . . . 8 inf({+∞}, ℝ*, < ) = +∞
2120eqcomi 2742 . . . . . . 7 +∞ = inf({+∞}, ℝ*, < )
2221a1i 11 . . . . . 6 (𝐴 = ∅ → +∞ = inf({+∞}, ℝ*, < ))
2313, 14eqtrdi 2784 . . . . . 6 (𝐴 = ∅ → inf(𝐴, ℝ*, < ) = +∞)
24 uneq1 4110 . . . . . . . 8 (𝐴 = ∅ → (𝐴 ∪ {+∞}) = (∅ ∪ {+∞}))
25 0un 4345 . . . . . . . . 9 (∅ ∪ {+∞}) = {+∞}
2625a1i 11 . . . . . . . 8 (𝐴 = ∅ → (∅ ∪ {+∞}) = {+∞})
2724, 26eqtrd 2768 . . . . . . 7 (𝐴 = ∅ → (𝐴 ∪ {+∞}) = {+∞})
2827infeq1d 9371 . . . . . 6 (𝐴 = ∅ → inf((𝐴 ∪ {+∞}), ℝ*, < ) = inf({+∞}, ℝ*, < ))
2922, 23, 283eqtr4d 2778 . . . . 5 (𝐴 = ∅ → inf(𝐴, ℝ*, < ) = inf((𝐴 ∪ {+∞}), ℝ*, < ))
3017, 29xreqled 45456 . . . 4 (𝐴 = ∅ → inf(𝐴, ℝ*, < ) ≤ inf((𝐴 ∪ {+∞}), ℝ*, < ))
3130adantl 481 . . 3 ((𝐴 ⊆ ℝ*𝐴 = ∅) → inf(𝐴, ℝ*, < ) ≤ inf((𝐴 ∪ {+∞}), ℝ*, < ))
32 neqne 2937 . . . 4 𝐴 = ∅ → 𝐴 ≠ ∅)
33 nfv 1915 . . . . 5 𝑥(𝐴 ⊆ ℝ*𝐴 ≠ ∅)
34 nfv 1915 . . . . 5 𝑦(𝐴 ⊆ ℝ*𝐴 ≠ ∅)
35 simpl 482 . . . . 5 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅) → 𝐴 ⊆ ℝ*)
3635, 6syl 17 . . . . 5 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅) → (𝐴 ∪ {+∞}) ⊆ ℝ*)
37 simpr 484 . . . . . . . 8 ((𝐴 ⊆ ℝ*𝑥𝐴) → 𝑥𝐴)
38 ssel2 3925 . . . . . . . . 9 ((𝐴 ⊆ ℝ*𝑥𝐴) → 𝑥 ∈ ℝ*)
3938xrleidd 13055 . . . . . . . 8 ((𝐴 ⊆ ℝ*𝑥𝐴) → 𝑥𝑥)
40 breq1 5098 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦𝑥𝑥𝑥))
4140rspcev 3573 . . . . . . . 8 ((𝑥𝐴𝑥𝑥) → ∃𝑦𝐴 𝑦𝑥)
4237, 39, 41syl2anc 584 . . . . . . 7 ((𝐴 ⊆ ℝ*𝑥𝐴) → ∃𝑦𝐴 𝑦𝑥)
4342ad4ant14 752 . . . . . 6 ((((𝐴 ⊆ ℝ*𝐴 ≠ ∅) ∧ 𝑥 ∈ (𝐴 ∪ {+∞})) ∧ 𝑥𝐴) → ∃𝑦𝐴 𝑦𝑥)
44 simpll 766 . . . . . . 7 ((((𝐴 ⊆ ℝ*𝐴 ≠ ∅) ∧ 𝑥 ∈ (𝐴 ∪ {+∞})) ∧ ¬ 𝑥𝐴) → (𝐴 ⊆ ℝ*𝐴 ≠ ∅))
45 elunnel1 4103 . . . . . . . . 9 ((𝑥 ∈ (𝐴 ∪ {+∞}) ∧ ¬ 𝑥𝐴) → 𝑥 ∈ {+∞})
46 elsni 4594 . . . . . . . . 9 (𝑥 ∈ {+∞} → 𝑥 = +∞)
4745, 46syl 17 . . . . . . . 8 ((𝑥 ∈ (𝐴 ∪ {+∞}) ∧ ¬ 𝑥𝐴) → 𝑥 = +∞)
4847adantll 714 . . . . . . 7 ((((𝐴 ⊆ ℝ*𝐴 ≠ ∅) ∧ 𝑥 ∈ (𝐴 ∪ {+∞})) ∧ ¬ 𝑥𝐴) → 𝑥 = +∞)
49 simplr 768 . . . . . . . 8 (((𝐴 ⊆ ℝ*𝐴 ≠ ∅) ∧ 𝑥 = +∞) → 𝐴 ≠ ∅)
50 ssel2 3925 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ∈ ℝ*)
51 pnfge 13033 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ*𝑦 ≤ +∞)
5250, 51syl 17 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ≤ +∞)
5352adantlr 715 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ*𝑥 = +∞) ∧ 𝑦𝐴) → 𝑦 ≤ +∞)
54 simplr 768 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ*𝑥 = +∞) ∧ 𝑦𝐴) → 𝑥 = +∞)
5553, 54breqtrrd 5123 . . . . . . . . . 10 (((𝐴 ⊆ ℝ*𝑥 = +∞) ∧ 𝑦𝐴) → 𝑦𝑥)
5655ralrimiva 3125 . . . . . . . . 9 ((𝐴 ⊆ ℝ*𝑥 = +∞) → ∀𝑦𝐴 𝑦𝑥)
5756adantlr 715 . . . . . . . 8 (((𝐴 ⊆ ℝ*𝐴 ≠ ∅) ∧ 𝑥 = +∞) → ∀𝑦𝐴 𝑦𝑥)
58 r19.2z 4449 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ ∀𝑦𝐴 𝑦𝑥) → ∃𝑦𝐴 𝑦𝑥)
5949, 57, 58syl2anc 584 . . . . . . 7 (((𝐴 ⊆ ℝ*𝐴 ≠ ∅) ∧ 𝑥 = +∞) → ∃𝑦𝐴 𝑦𝑥)
6044, 48, 59syl2anc 584 . . . . . 6 ((((𝐴 ⊆ ℝ*𝐴 ≠ ∅) ∧ 𝑥 ∈ (𝐴 ∪ {+∞})) ∧ ¬ 𝑥𝐴) → ∃𝑦𝐴 𝑦𝑥)
6143, 60pm2.61dan 812 . . . . 5 (((𝐴 ⊆ ℝ*𝐴 ≠ ∅) ∧ 𝑥 ∈ (𝐴 ∪ {+∞})) → ∃𝑦𝐴 𝑦𝑥)
6233, 34, 35, 36, 61infleinf2 45539 . . . 4 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅) → inf(𝐴, ℝ*, < ) ≤ inf((𝐴 ∪ {+∞}), ℝ*, < ))
6332, 62sylan2 593 . . 3 ((𝐴 ⊆ ℝ* ∧ ¬ 𝐴 = ∅) → inf(𝐴, ℝ*, < ) ≤ inf((𝐴 ∪ {+∞}), ℝ*, < ))
6431, 63pm2.61dan 812 . 2 (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ≤ inf((𝐴 ∪ {+∞}), ℝ*, < ))
657, 8, 12, 64xrletrid 13058 1 (𝐴 ⊆ ℝ* → inf((𝐴 ∪ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  cun 3896  wss 3898  c0 4282  {csn 4577   class class class wbr 5095   Or wor 5528  infcinf 9334  +∞cpnf 11152  *cxr 11154   < clt 11155  cle 11156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092  ax-pre-sup 11093
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-po 5529  df-so 5530  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-sup 9335  df-inf 9336  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356
This theorem is referenced by:  infxrpnf2  45588
  Copyright terms: Public domain W3C validator