Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infxrpnf Structured version   Visualization version   GIF version

Theorem infxrpnf 45457
Description: Adding plus infinity to a set does not affect its infimum. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Assertion
Ref Expression
infxrpnf (𝐴 ⊆ ℝ* → inf((𝐴 ∪ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < ))

Proof of Theorem infxrpnf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝐴 ⊆ ℝ*𝐴 ⊆ ℝ*)
2 pnfxr 11315 . . . . . 6 +∞ ∈ ℝ*
3 snssi 4808 . . . . . 6 (+∞ ∈ ℝ* → {+∞} ⊆ ℝ*)
42, 3ax-mp 5 . . . . 5 {+∞} ⊆ ℝ*
54a1i 11 . . . 4 (𝐴 ⊆ ℝ* → {+∞} ⊆ ℝ*)
61, 5unssd 4192 . . 3 (𝐴 ⊆ ℝ* → (𝐴 ∪ {+∞}) ⊆ ℝ*)
76infxrcld 45400 . 2 (𝐴 ⊆ ℝ* → inf((𝐴 ∪ {+∞}), ℝ*, < ) ∈ ℝ*)
8 infxrcl 13375 . 2 (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*)
9 ssun1 4178 . . . 4 𝐴 ⊆ (𝐴 ∪ {+∞})
109a1i 11 . . 3 (𝐴 ⊆ ℝ*𝐴 ⊆ (𝐴 ∪ {+∞}))
11 infxrss 13381 . . 3 ((𝐴 ⊆ (𝐴 ∪ {+∞}) ∧ (𝐴 ∪ {+∞}) ⊆ ℝ*) → inf((𝐴 ∪ {+∞}), ℝ*, < ) ≤ inf(𝐴, ℝ*, < ))
1210, 6, 11syl2anc 584 . 2 (𝐴 ⊆ ℝ* → inf((𝐴 ∪ {+∞}), ℝ*, < ) ≤ inf(𝐴, ℝ*, < ))
13 infeq1 9516 . . . . . 6 (𝐴 = ∅ → inf(𝐴, ℝ*, < ) = inf(∅, ℝ*, < ))
14 xrinf0 13380 . . . . . . . 8 inf(∅, ℝ*, < ) = +∞
1514, 2eqeltri 2837 . . . . . . 7 inf(∅, ℝ*, < ) ∈ ℝ*
1615a1i 11 . . . . . 6 (𝐴 = ∅ → inf(∅, ℝ*, < ) ∈ ℝ*)
1713, 16eqeltrd 2841 . . . . 5 (𝐴 = ∅ → inf(𝐴, ℝ*, < ) ∈ ℝ*)
18 xrltso 13183 . . . . . . . . 9 < Or ℝ*
19 infsn 9545 . . . . . . . . 9 (( < Or ℝ* ∧ +∞ ∈ ℝ*) → inf({+∞}, ℝ*, < ) = +∞)
2018, 2, 19mp2an 692 . . . . . . . 8 inf({+∞}, ℝ*, < ) = +∞
2120eqcomi 2746 . . . . . . 7 +∞ = inf({+∞}, ℝ*, < )
2221a1i 11 . . . . . 6 (𝐴 = ∅ → +∞ = inf({+∞}, ℝ*, < ))
2313, 14eqtrdi 2793 . . . . . 6 (𝐴 = ∅ → inf(𝐴, ℝ*, < ) = +∞)
24 uneq1 4161 . . . . . . . 8 (𝐴 = ∅ → (𝐴 ∪ {+∞}) = (∅ ∪ {+∞}))
25 0un 4396 . . . . . . . . 9 (∅ ∪ {+∞}) = {+∞}
2625a1i 11 . . . . . . . 8 (𝐴 = ∅ → (∅ ∪ {+∞}) = {+∞})
2724, 26eqtrd 2777 . . . . . . 7 (𝐴 = ∅ → (𝐴 ∪ {+∞}) = {+∞})
2827infeq1d 9517 . . . . . 6 (𝐴 = ∅ → inf((𝐴 ∪ {+∞}), ℝ*, < ) = inf({+∞}, ℝ*, < ))
2922, 23, 283eqtr4d 2787 . . . . 5 (𝐴 = ∅ → inf(𝐴, ℝ*, < ) = inf((𝐴 ∪ {+∞}), ℝ*, < ))
3017, 29xreqled 45341 . . . 4 (𝐴 = ∅ → inf(𝐴, ℝ*, < ) ≤ inf((𝐴 ∪ {+∞}), ℝ*, < ))
3130adantl 481 . . 3 ((𝐴 ⊆ ℝ*𝐴 = ∅) → inf(𝐴, ℝ*, < ) ≤ inf((𝐴 ∪ {+∞}), ℝ*, < ))
32 neqne 2948 . . . 4 𝐴 = ∅ → 𝐴 ≠ ∅)
33 nfv 1914 . . . . 5 𝑥(𝐴 ⊆ ℝ*𝐴 ≠ ∅)
34 nfv 1914 . . . . 5 𝑦(𝐴 ⊆ ℝ*𝐴 ≠ ∅)
35 simpl 482 . . . . 5 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅) → 𝐴 ⊆ ℝ*)
3635, 6syl 17 . . . . 5 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅) → (𝐴 ∪ {+∞}) ⊆ ℝ*)
37 simpr 484 . . . . . . . 8 ((𝐴 ⊆ ℝ*𝑥𝐴) → 𝑥𝐴)
38 ssel2 3978 . . . . . . . . 9 ((𝐴 ⊆ ℝ*𝑥𝐴) → 𝑥 ∈ ℝ*)
3938xrleidd 13194 . . . . . . . 8 ((𝐴 ⊆ ℝ*𝑥𝐴) → 𝑥𝑥)
40 breq1 5146 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦𝑥𝑥𝑥))
4140rspcev 3622 . . . . . . . 8 ((𝑥𝐴𝑥𝑥) → ∃𝑦𝐴 𝑦𝑥)
4237, 39, 41syl2anc 584 . . . . . . 7 ((𝐴 ⊆ ℝ*𝑥𝐴) → ∃𝑦𝐴 𝑦𝑥)
4342ad4ant14 752 . . . . . 6 ((((𝐴 ⊆ ℝ*𝐴 ≠ ∅) ∧ 𝑥 ∈ (𝐴 ∪ {+∞})) ∧ 𝑥𝐴) → ∃𝑦𝐴 𝑦𝑥)
44 simpll 767 . . . . . . 7 ((((𝐴 ⊆ ℝ*𝐴 ≠ ∅) ∧ 𝑥 ∈ (𝐴 ∪ {+∞})) ∧ ¬ 𝑥𝐴) → (𝐴 ⊆ ℝ*𝐴 ≠ ∅))
45 elunnel1 4154 . . . . . . . . 9 ((𝑥 ∈ (𝐴 ∪ {+∞}) ∧ ¬ 𝑥𝐴) → 𝑥 ∈ {+∞})
46 elsni 4643 . . . . . . . . 9 (𝑥 ∈ {+∞} → 𝑥 = +∞)
4745, 46syl 17 . . . . . . . 8 ((𝑥 ∈ (𝐴 ∪ {+∞}) ∧ ¬ 𝑥𝐴) → 𝑥 = +∞)
4847adantll 714 . . . . . . 7 ((((𝐴 ⊆ ℝ*𝐴 ≠ ∅) ∧ 𝑥 ∈ (𝐴 ∪ {+∞})) ∧ ¬ 𝑥𝐴) → 𝑥 = +∞)
49 simplr 769 . . . . . . . 8 (((𝐴 ⊆ ℝ*𝐴 ≠ ∅) ∧ 𝑥 = +∞) → 𝐴 ≠ ∅)
50 ssel2 3978 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ∈ ℝ*)
51 pnfge 13172 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ*𝑦 ≤ +∞)
5250, 51syl 17 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ≤ +∞)
5352adantlr 715 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ*𝑥 = +∞) ∧ 𝑦𝐴) → 𝑦 ≤ +∞)
54 simplr 769 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ*𝑥 = +∞) ∧ 𝑦𝐴) → 𝑥 = +∞)
5553, 54breqtrrd 5171 . . . . . . . . . 10 (((𝐴 ⊆ ℝ*𝑥 = +∞) ∧ 𝑦𝐴) → 𝑦𝑥)
5655ralrimiva 3146 . . . . . . . . 9 ((𝐴 ⊆ ℝ*𝑥 = +∞) → ∀𝑦𝐴 𝑦𝑥)
5756adantlr 715 . . . . . . . 8 (((𝐴 ⊆ ℝ*𝐴 ≠ ∅) ∧ 𝑥 = +∞) → ∀𝑦𝐴 𝑦𝑥)
58 r19.2z 4495 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ ∀𝑦𝐴 𝑦𝑥) → ∃𝑦𝐴 𝑦𝑥)
5949, 57, 58syl2anc 584 . . . . . . 7 (((𝐴 ⊆ ℝ*𝐴 ≠ ∅) ∧ 𝑥 = +∞) → ∃𝑦𝐴 𝑦𝑥)
6044, 48, 59syl2anc 584 . . . . . 6 ((((𝐴 ⊆ ℝ*𝐴 ≠ ∅) ∧ 𝑥 ∈ (𝐴 ∪ {+∞})) ∧ ¬ 𝑥𝐴) → ∃𝑦𝐴 𝑦𝑥)
6143, 60pm2.61dan 813 . . . . 5 (((𝐴 ⊆ ℝ*𝐴 ≠ ∅) ∧ 𝑥 ∈ (𝐴 ∪ {+∞})) → ∃𝑦𝐴 𝑦𝑥)
6233, 34, 35, 36, 61infleinf2 45425 . . . 4 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅) → inf(𝐴, ℝ*, < ) ≤ inf((𝐴 ∪ {+∞}), ℝ*, < ))
6332, 62sylan2 593 . . 3 ((𝐴 ⊆ ℝ* ∧ ¬ 𝐴 = ∅) → inf(𝐴, ℝ*, < ) ≤ inf((𝐴 ∪ {+∞}), ℝ*, < ))
6431, 63pm2.61dan 813 . 2 (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ≤ inf((𝐴 ∪ {+∞}), ℝ*, < ))
657, 8, 12, 64xrletrid 13197 1 (𝐴 ⊆ ℝ* → inf((𝐴 ∪ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  cun 3949  wss 3951  c0 4333  {csn 4626   class class class wbr 5143   Or wor 5591  infcinf 9481  +∞cpnf 11292  *cxr 11294   < clt 11295  cle 11296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495
This theorem is referenced by:  infxrpnf2  45474
  Copyright terms: Public domain W3C validator