Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infxrpnf Structured version   Visualization version   GIF version

Theorem infxrpnf 45442
Description: Adding plus infinity to a set does not affect its infimum. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Assertion
Ref Expression
infxrpnf (𝐴 ⊆ ℝ* → inf((𝐴 ∪ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < ))

Proof of Theorem infxrpnf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝐴 ⊆ ℝ*𝐴 ⊆ ℝ*)
2 pnfxr 11228 . . . . . 6 +∞ ∈ ℝ*
3 snssi 4772 . . . . . 6 (+∞ ∈ ℝ* → {+∞} ⊆ ℝ*)
42, 3ax-mp 5 . . . . 5 {+∞} ⊆ ℝ*
54a1i 11 . . . 4 (𝐴 ⊆ ℝ* → {+∞} ⊆ ℝ*)
61, 5unssd 4155 . . 3 (𝐴 ⊆ ℝ* → (𝐴 ∪ {+∞}) ⊆ ℝ*)
76infxrcld 45385 . 2 (𝐴 ⊆ ℝ* → inf((𝐴 ∪ {+∞}), ℝ*, < ) ∈ ℝ*)
8 infxrcl 13294 . 2 (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*)
9 ssun1 4141 . . . 4 𝐴 ⊆ (𝐴 ∪ {+∞})
109a1i 11 . . 3 (𝐴 ⊆ ℝ*𝐴 ⊆ (𝐴 ∪ {+∞}))
11 infxrss 13300 . . 3 ((𝐴 ⊆ (𝐴 ∪ {+∞}) ∧ (𝐴 ∪ {+∞}) ⊆ ℝ*) → inf((𝐴 ∪ {+∞}), ℝ*, < ) ≤ inf(𝐴, ℝ*, < ))
1210, 6, 11syl2anc 584 . 2 (𝐴 ⊆ ℝ* → inf((𝐴 ∪ {+∞}), ℝ*, < ) ≤ inf(𝐴, ℝ*, < ))
13 infeq1 9428 . . . . . 6 (𝐴 = ∅ → inf(𝐴, ℝ*, < ) = inf(∅, ℝ*, < ))
14 xrinf0 13299 . . . . . . . 8 inf(∅, ℝ*, < ) = +∞
1514, 2eqeltri 2824 . . . . . . 7 inf(∅, ℝ*, < ) ∈ ℝ*
1615a1i 11 . . . . . 6 (𝐴 = ∅ → inf(∅, ℝ*, < ) ∈ ℝ*)
1713, 16eqeltrd 2828 . . . . 5 (𝐴 = ∅ → inf(𝐴, ℝ*, < ) ∈ ℝ*)
18 xrltso 13101 . . . . . . . . 9 < Or ℝ*
19 infsn 9458 . . . . . . . . 9 (( < Or ℝ* ∧ +∞ ∈ ℝ*) → inf({+∞}, ℝ*, < ) = +∞)
2018, 2, 19mp2an 692 . . . . . . . 8 inf({+∞}, ℝ*, < ) = +∞
2120eqcomi 2738 . . . . . . 7 +∞ = inf({+∞}, ℝ*, < )
2221a1i 11 . . . . . 6 (𝐴 = ∅ → +∞ = inf({+∞}, ℝ*, < ))
2313, 14eqtrdi 2780 . . . . . 6 (𝐴 = ∅ → inf(𝐴, ℝ*, < ) = +∞)
24 uneq1 4124 . . . . . . . 8 (𝐴 = ∅ → (𝐴 ∪ {+∞}) = (∅ ∪ {+∞}))
25 0un 4359 . . . . . . . . 9 (∅ ∪ {+∞}) = {+∞}
2625a1i 11 . . . . . . . 8 (𝐴 = ∅ → (∅ ∪ {+∞}) = {+∞})
2724, 26eqtrd 2764 . . . . . . 7 (𝐴 = ∅ → (𝐴 ∪ {+∞}) = {+∞})
2827infeq1d 9429 . . . . . 6 (𝐴 = ∅ → inf((𝐴 ∪ {+∞}), ℝ*, < ) = inf({+∞}, ℝ*, < ))
2922, 23, 283eqtr4d 2774 . . . . 5 (𝐴 = ∅ → inf(𝐴, ℝ*, < ) = inf((𝐴 ∪ {+∞}), ℝ*, < ))
3017, 29xreqled 45326 . . . 4 (𝐴 = ∅ → inf(𝐴, ℝ*, < ) ≤ inf((𝐴 ∪ {+∞}), ℝ*, < ))
3130adantl 481 . . 3 ((𝐴 ⊆ ℝ*𝐴 = ∅) → inf(𝐴, ℝ*, < ) ≤ inf((𝐴 ∪ {+∞}), ℝ*, < ))
32 neqne 2933 . . . 4 𝐴 = ∅ → 𝐴 ≠ ∅)
33 nfv 1914 . . . . 5 𝑥(𝐴 ⊆ ℝ*𝐴 ≠ ∅)
34 nfv 1914 . . . . 5 𝑦(𝐴 ⊆ ℝ*𝐴 ≠ ∅)
35 simpl 482 . . . . 5 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅) → 𝐴 ⊆ ℝ*)
3635, 6syl 17 . . . . 5 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅) → (𝐴 ∪ {+∞}) ⊆ ℝ*)
37 simpr 484 . . . . . . . 8 ((𝐴 ⊆ ℝ*𝑥𝐴) → 𝑥𝐴)
38 ssel2 3941 . . . . . . . . 9 ((𝐴 ⊆ ℝ*𝑥𝐴) → 𝑥 ∈ ℝ*)
3938xrleidd 13112 . . . . . . . 8 ((𝐴 ⊆ ℝ*𝑥𝐴) → 𝑥𝑥)
40 breq1 5110 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦𝑥𝑥𝑥))
4140rspcev 3588 . . . . . . . 8 ((𝑥𝐴𝑥𝑥) → ∃𝑦𝐴 𝑦𝑥)
4237, 39, 41syl2anc 584 . . . . . . 7 ((𝐴 ⊆ ℝ*𝑥𝐴) → ∃𝑦𝐴 𝑦𝑥)
4342ad4ant14 752 . . . . . 6 ((((𝐴 ⊆ ℝ*𝐴 ≠ ∅) ∧ 𝑥 ∈ (𝐴 ∪ {+∞})) ∧ 𝑥𝐴) → ∃𝑦𝐴 𝑦𝑥)
44 simpll 766 . . . . . . 7 ((((𝐴 ⊆ ℝ*𝐴 ≠ ∅) ∧ 𝑥 ∈ (𝐴 ∪ {+∞})) ∧ ¬ 𝑥𝐴) → (𝐴 ⊆ ℝ*𝐴 ≠ ∅))
45 elunnel1 4117 . . . . . . . . 9 ((𝑥 ∈ (𝐴 ∪ {+∞}) ∧ ¬ 𝑥𝐴) → 𝑥 ∈ {+∞})
46 elsni 4606 . . . . . . . . 9 (𝑥 ∈ {+∞} → 𝑥 = +∞)
4745, 46syl 17 . . . . . . . 8 ((𝑥 ∈ (𝐴 ∪ {+∞}) ∧ ¬ 𝑥𝐴) → 𝑥 = +∞)
4847adantll 714 . . . . . . 7 ((((𝐴 ⊆ ℝ*𝐴 ≠ ∅) ∧ 𝑥 ∈ (𝐴 ∪ {+∞})) ∧ ¬ 𝑥𝐴) → 𝑥 = +∞)
49 simplr 768 . . . . . . . 8 (((𝐴 ⊆ ℝ*𝐴 ≠ ∅) ∧ 𝑥 = +∞) → 𝐴 ≠ ∅)
50 ssel2 3941 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ∈ ℝ*)
51 pnfge 13090 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ*𝑦 ≤ +∞)
5250, 51syl 17 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ≤ +∞)
5352adantlr 715 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ*𝑥 = +∞) ∧ 𝑦𝐴) → 𝑦 ≤ +∞)
54 simplr 768 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ*𝑥 = +∞) ∧ 𝑦𝐴) → 𝑥 = +∞)
5553, 54breqtrrd 5135 . . . . . . . . . 10 (((𝐴 ⊆ ℝ*𝑥 = +∞) ∧ 𝑦𝐴) → 𝑦𝑥)
5655ralrimiva 3125 . . . . . . . . 9 ((𝐴 ⊆ ℝ*𝑥 = +∞) → ∀𝑦𝐴 𝑦𝑥)
5756adantlr 715 . . . . . . . 8 (((𝐴 ⊆ ℝ*𝐴 ≠ ∅) ∧ 𝑥 = +∞) → ∀𝑦𝐴 𝑦𝑥)
58 r19.2z 4458 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ ∀𝑦𝐴 𝑦𝑥) → ∃𝑦𝐴 𝑦𝑥)
5949, 57, 58syl2anc 584 . . . . . . 7 (((𝐴 ⊆ ℝ*𝐴 ≠ ∅) ∧ 𝑥 = +∞) → ∃𝑦𝐴 𝑦𝑥)
6044, 48, 59syl2anc 584 . . . . . 6 ((((𝐴 ⊆ ℝ*𝐴 ≠ ∅) ∧ 𝑥 ∈ (𝐴 ∪ {+∞})) ∧ ¬ 𝑥𝐴) → ∃𝑦𝐴 𝑦𝑥)
6143, 60pm2.61dan 812 . . . . 5 (((𝐴 ⊆ ℝ*𝐴 ≠ ∅) ∧ 𝑥 ∈ (𝐴 ∪ {+∞})) → ∃𝑦𝐴 𝑦𝑥)
6233, 34, 35, 36, 61infleinf2 45410 . . . 4 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅) → inf(𝐴, ℝ*, < ) ≤ inf((𝐴 ∪ {+∞}), ℝ*, < ))
6332, 62sylan2 593 . . 3 ((𝐴 ⊆ ℝ* ∧ ¬ 𝐴 = ∅) → inf(𝐴, ℝ*, < ) ≤ inf((𝐴 ∪ {+∞}), ℝ*, < ))
6431, 63pm2.61dan 812 . 2 (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ≤ inf((𝐴 ∪ {+∞}), ℝ*, < ))
657, 8, 12, 64xrletrid 13115 1 (𝐴 ⊆ ℝ* → inf((𝐴 ∪ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  cun 3912  wss 3914  c0 4296  {csn 4589   class class class wbr 5107   Or wor 5545  infcinf 9392  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408
This theorem is referenced by:  infxrpnf2  45459
  Copyright terms: Public domain W3C validator