Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infxrpnf Structured version   Visualization version   GIF version

Theorem infxrpnf 42876
Description: Adding plus infinity to a set does not affect its infimum. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Assertion
Ref Expression
infxrpnf (𝐴 ⊆ ℝ* → inf((𝐴 ∪ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < ))

Proof of Theorem infxrpnf
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 id 22 . . . 4 (𝐴 ⊆ ℝ*𝐴 ⊆ ℝ*)
2 pnfxr 10960 . . . . . 6 +∞ ∈ ℝ*
3 snssi 4738 . . . . . 6 (+∞ ∈ ℝ* → {+∞} ⊆ ℝ*)
42, 3ax-mp 5 . . . . 5 {+∞} ⊆ ℝ*
54a1i 11 . . . 4 (𝐴 ⊆ ℝ* → {+∞} ⊆ ℝ*)
61, 5unssd 4116 . . 3 (𝐴 ⊆ ℝ* → (𝐴 ∪ {+∞}) ⊆ ℝ*)
76infxrcld 42819 . 2 (𝐴 ⊆ ℝ* → inf((𝐴 ∪ {+∞}), ℝ*, < ) ∈ ℝ*)
8 infxrcl 12996 . 2 (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*)
9 ssun1 4102 . . . 4 𝐴 ⊆ (𝐴 ∪ {+∞})
109a1i 11 . . 3 (𝐴 ⊆ ℝ*𝐴 ⊆ (𝐴 ∪ {+∞}))
11 infxrss 13002 . . 3 ((𝐴 ⊆ (𝐴 ∪ {+∞}) ∧ (𝐴 ∪ {+∞}) ⊆ ℝ*) → inf((𝐴 ∪ {+∞}), ℝ*, < ) ≤ inf(𝐴, ℝ*, < ))
1210, 6, 11syl2anc 583 . 2 (𝐴 ⊆ ℝ* → inf((𝐴 ∪ {+∞}), ℝ*, < ) ≤ inf(𝐴, ℝ*, < ))
13 infeq1 9165 . . . . . 6 (𝐴 = ∅ → inf(𝐴, ℝ*, < ) = inf(∅, ℝ*, < ))
14 xrinf0 13001 . . . . . . . 8 inf(∅, ℝ*, < ) = +∞
1514, 2eqeltri 2835 . . . . . . 7 inf(∅, ℝ*, < ) ∈ ℝ*
1615a1i 11 . . . . . 6 (𝐴 = ∅ → inf(∅, ℝ*, < ) ∈ ℝ*)
1713, 16eqeltrd 2839 . . . . 5 (𝐴 = ∅ → inf(𝐴, ℝ*, < ) ∈ ℝ*)
18 xrltso 12804 . . . . . . . . 9 < Or ℝ*
19 infsn 9194 . . . . . . . . 9 (( < Or ℝ* ∧ +∞ ∈ ℝ*) → inf({+∞}, ℝ*, < ) = +∞)
2018, 2, 19mp2an 688 . . . . . . . 8 inf({+∞}, ℝ*, < ) = +∞
2120eqcomi 2747 . . . . . . 7 +∞ = inf({+∞}, ℝ*, < )
2221a1i 11 . . . . . 6 (𝐴 = ∅ → +∞ = inf({+∞}, ℝ*, < ))
2313, 14eqtrdi 2795 . . . . . 6 (𝐴 = ∅ → inf(𝐴, ℝ*, < ) = +∞)
24 uneq1 4086 . . . . . . . 8 (𝐴 = ∅ → (𝐴 ∪ {+∞}) = (∅ ∪ {+∞}))
25 0un 4323 . . . . . . . . 9 (∅ ∪ {+∞}) = {+∞}
2625a1i 11 . . . . . . . 8 (𝐴 = ∅ → (∅ ∪ {+∞}) = {+∞})
2724, 26eqtrd 2778 . . . . . . 7 (𝐴 = ∅ → (𝐴 ∪ {+∞}) = {+∞})
2827infeq1d 9166 . . . . . 6 (𝐴 = ∅ → inf((𝐴 ∪ {+∞}), ℝ*, < ) = inf({+∞}, ℝ*, < ))
2922, 23, 283eqtr4d 2788 . . . . 5 (𝐴 = ∅ → inf(𝐴, ℝ*, < ) = inf((𝐴 ∪ {+∞}), ℝ*, < ))
3017, 29xreqled 42759 . . . 4 (𝐴 = ∅ → inf(𝐴, ℝ*, < ) ≤ inf((𝐴 ∪ {+∞}), ℝ*, < ))
3130adantl 481 . . 3 ((𝐴 ⊆ ℝ*𝐴 = ∅) → inf(𝐴, ℝ*, < ) ≤ inf((𝐴 ∪ {+∞}), ℝ*, < ))
32 neqne 2950 . . . 4 𝐴 = ∅ → 𝐴 ≠ ∅)
33 nfv 1918 . . . . 5 𝑥(𝐴 ⊆ ℝ*𝐴 ≠ ∅)
34 nfv 1918 . . . . 5 𝑦(𝐴 ⊆ ℝ*𝐴 ≠ ∅)
35 simpl 482 . . . . 5 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅) → 𝐴 ⊆ ℝ*)
3635, 6syl 17 . . . . 5 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅) → (𝐴 ∪ {+∞}) ⊆ ℝ*)
37 simpr 484 . . . . . . . 8 ((𝐴 ⊆ ℝ*𝑥𝐴) → 𝑥𝐴)
38 ssel2 3912 . . . . . . . . 9 ((𝐴 ⊆ ℝ*𝑥𝐴) → 𝑥 ∈ ℝ*)
3938xrleidd 12815 . . . . . . . 8 ((𝐴 ⊆ ℝ*𝑥𝐴) → 𝑥𝑥)
40 breq1 5073 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦𝑥𝑥𝑥))
4140rspcev 3552 . . . . . . . 8 ((𝑥𝐴𝑥𝑥) → ∃𝑦𝐴 𝑦𝑥)
4237, 39, 41syl2anc 583 . . . . . . 7 ((𝐴 ⊆ ℝ*𝑥𝐴) → ∃𝑦𝐴 𝑦𝑥)
4342ad4ant14 748 . . . . . 6 ((((𝐴 ⊆ ℝ*𝐴 ≠ ∅) ∧ 𝑥 ∈ (𝐴 ∪ {+∞})) ∧ 𝑥𝐴) → ∃𝑦𝐴 𝑦𝑥)
44 simpll 763 . . . . . . 7 ((((𝐴 ⊆ ℝ*𝐴 ≠ ∅) ∧ 𝑥 ∈ (𝐴 ∪ {+∞})) ∧ ¬ 𝑥𝐴) → (𝐴 ⊆ ℝ*𝐴 ≠ ∅))
45 elunnel1 4080 . . . . . . . . 9 ((𝑥 ∈ (𝐴 ∪ {+∞}) ∧ ¬ 𝑥𝐴) → 𝑥 ∈ {+∞})
46 elsni 4575 . . . . . . . . 9 (𝑥 ∈ {+∞} → 𝑥 = +∞)
4745, 46syl 17 . . . . . . . 8 ((𝑥 ∈ (𝐴 ∪ {+∞}) ∧ ¬ 𝑥𝐴) → 𝑥 = +∞)
4847adantll 710 . . . . . . 7 ((((𝐴 ⊆ ℝ*𝐴 ≠ ∅) ∧ 𝑥 ∈ (𝐴 ∪ {+∞})) ∧ ¬ 𝑥𝐴) → 𝑥 = +∞)
49 simplr 765 . . . . . . . 8 (((𝐴 ⊆ ℝ*𝐴 ≠ ∅) ∧ 𝑥 = +∞) → 𝐴 ≠ ∅)
50 ssel2 3912 . . . . . . . . . . . . 13 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ∈ ℝ*)
51 pnfge 12795 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ*𝑦 ≤ +∞)
5250, 51syl 17 . . . . . . . . . . . 12 ((𝐴 ⊆ ℝ*𝑦𝐴) → 𝑦 ≤ +∞)
5352adantlr 711 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ*𝑥 = +∞) ∧ 𝑦𝐴) → 𝑦 ≤ +∞)
54 simplr 765 . . . . . . . . . . 11 (((𝐴 ⊆ ℝ*𝑥 = +∞) ∧ 𝑦𝐴) → 𝑥 = +∞)
5553, 54breqtrrd 5098 . . . . . . . . . 10 (((𝐴 ⊆ ℝ*𝑥 = +∞) ∧ 𝑦𝐴) → 𝑦𝑥)
5655ralrimiva 3107 . . . . . . . . 9 ((𝐴 ⊆ ℝ*𝑥 = +∞) → ∀𝑦𝐴 𝑦𝑥)
5756adantlr 711 . . . . . . . 8 (((𝐴 ⊆ ℝ*𝐴 ≠ ∅) ∧ 𝑥 = +∞) → ∀𝑦𝐴 𝑦𝑥)
58 r19.2z 4422 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ ∀𝑦𝐴 𝑦𝑥) → ∃𝑦𝐴 𝑦𝑥)
5949, 57, 58syl2anc 583 . . . . . . 7 (((𝐴 ⊆ ℝ*𝐴 ≠ ∅) ∧ 𝑥 = +∞) → ∃𝑦𝐴 𝑦𝑥)
6044, 48, 59syl2anc 583 . . . . . 6 ((((𝐴 ⊆ ℝ*𝐴 ≠ ∅) ∧ 𝑥 ∈ (𝐴 ∪ {+∞})) ∧ ¬ 𝑥𝐴) → ∃𝑦𝐴 𝑦𝑥)
6143, 60pm2.61dan 809 . . . . 5 (((𝐴 ⊆ ℝ*𝐴 ≠ ∅) ∧ 𝑥 ∈ (𝐴 ∪ {+∞})) → ∃𝑦𝐴 𝑦𝑥)
6233, 34, 35, 36, 61infleinf2 42844 . . . 4 ((𝐴 ⊆ ℝ*𝐴 ≠ ∅) → inf(𝐴, ℝ*, < ) ≤ inf((𝐴 ∪ {+∞}), ℝ*, < ))
6332, 62sylan2 592 . . 3 ((𝐴 ⊆ ℝ* ∧ ¬ 𝐴 = ∅) → inf(𝐴, ℝ*, < ) ≤ inf((𝐴 ∪ {+∞}), ℝ*, < ))
6431, 63pm2.61dan 809 . 2 (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ≤ inf((𝐴 ∪ {+∞}), ℝ*, < ))
657, 8, 12, 64xrletrid 12818 1 (𝐴 ⊆ ℝ* → inf((𝐴 ∪ {+∞}), ℝ*, < ) = inf(𝐴, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  cun 3881  wss 3883  c0 4253  {csn 4558   class class class wbr 5070   Or wor 5493  infcinf 9130  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138
This theorem is referenced by:  infxrpnf2  42893
  Copyright terms: Public domain W3C validator