| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | id 22 | . . . 4
⊢ (𝐴 ⊆ ℝ*
→ 𝐴 ⊆
ℝ*) | 
| 2 |  | pnfxr 11315 | . . . . . 6
⊢ +∞
∈ ℝ* | 
| 3 |  | snssi 4808 | . . . . . 6
⊢ (+∞
∈ ℝ* → {+∞} ⊆
ℝ*) | 
| 4 | 2, 3 | ax-mp 5 | . . . . 5
⊢
{+∞} ⊆ ℝ* | 
| 5 | 4 | a1i 11 | . . . 4
⊢ (𝐴 ⊆ ℝ*
→ {+∞} ⊆ ℝ*) | 
| 6 | 1, 5 | unssd 4192 | . . 3
⊢ (𝐴 ⊆ ℝ*
→ (𝐴 ∪ {+∞})
⊆ ℝ*) | 
| 7 | 6 | infxrcld 45400 | . 2
⊢ (𝐴 ⊆ ℝ*
→ inf((𝐴 ∪
{+∞}), ℝ*, < ) ∈
ℝ*) | 
| 8 |  | infxrcl 13375 | . 2
⊢ (𝐴 ⊆ ℝ*
→ inf(𝐴,
ℝ*, < ) ∈ ℝ*) | 
| 9 |  | ssun1 4178 | . . . 4
⊢ 𝐴 ⊆ (𝐴 ∪ {+∞}) | 
| 10 | 9 | a1i 11 | . . 3
⊢ (𝐴 ⊆ ℝ*
→ 𝐴 ⊆ (𝐴 ∪
{+∞})) | 
| 11 |  | infxrss 13381 | . . 3
⊢ ((𝐴 ⊆ (𝐴 ∪ {+∞}) ∧ (𝐴 ∪ {+∞}) ⊆
ℝ*) → inf((𝐴 ∪ {+∞}), ℝ*,
< ) ≤ inf(𝐴,
ℝ*, < )) | 
| 12 | 10, 6, 11 | syl2anc 584 | . 2
⊢ (𝐴 ⊆ ℝ*
→ inf((𝐴 ∪
{+∞}), ℝ*, < ) ≤ inf(𝐴, ℝ*, <
)) | 
| 13 |  | infeq1 9516 | . . . . . 6
⊢ (𝐴 = ∅ → inf(𝐴, ℝ*, < ) =
inf(∅, ℝ*, < )) | 
| 14 |  | xrinf0 13380 | . . . . . . . 8
⊢
inf(∅, ℝ*, < ) = +∞ | 
| 15 | 14, 2 | eqeltri 2837 | . . . . . . 7
⊢
inf(∅, ℝ*, < ) ∈
ℝ* | 
| 16 | 15 | a1i 11 | . . . . . 6
⊢ (𝐴 = ∅ → inf(∅,
ℝ*, < ) ∈ ℝ*) | 
| 17 | 13, 16 | eqeltrd 2841 | . . . . 5
⊢ (𝐴 = ∅ → inf(𝐴, ℝ*, < )
∈ ℝ*) | 
| 18 |  | xrltso 13183 | . . . . . . . . 9
⊢  < Or
ℝ* | 
| 19 |  | infsn 9545 | . . . . . . . . 9
⊢ (( <
Or ℝ* ∧ +∞ ∈ ℝ*) →
inf({+∞}, ℝ*, < ) = +∞) | 
| 20 | 18, 2, 19 | mp2an 692 | . . . . . . . 8
⊢
inf({+∞}, ℝ*, < ) = +∞ | 
| 21 | 20 | eqcomi 2746 | . . . . . . 7
⊢ +∞
= inf({+∞}, ℝ*, < ) | 
| 22 | 21 | a1i 11 | . . . . . 6
⊢ (𝐴 = ∅ → +∞ =
inf({+∞}, ℝ*, < )) | 
| 23 | 13, 14 | eqtrdi 2793 | . . . . . 6
⊢ (𝐴 = ∅ → inf(𝐴, ℝ*, < ) =
+∞) | 
| 24 |  | uneq1 4161 | . . . . . . . 8
⊢ (𝐴 = ∅ → (𝐴 ∪ {+∞}) = (∅
∪ {+∞})) | 
| 25 |  | 0un 4396 | . . . . . . . . 9
⊢ (∅
∪ {+∞}) = {+∞} | 
| 26 | 25 | a1i 11 | . . . . . . . 8
⊢ (𝐴 = ∅ → (∅ ∪
{+∞}) = {+∞}) | 
| 27 | 24, 26 | eqtrd 2777 | . . . . . . 7
⊢ (𝐴 = ∅ → (𝐴 ∪ {+∞}) =
{+∞}) | 
| 28 | 27 | infeq1d 9517 | . . . . . 6
⊢ (𝐴 = ∅ → inf((𝐴 ∪ {+∞}),
ℝ*, < ) = inf({+∞}, ℝ*, <
)) | 
| 29 | 22, 23, 28 | 3eqtr4d 2787 | . . . . 5
⊢ (𝐴 = ∅ → inf(𝐴, ℝ*, < ) =
inf((𝐴 ∪ {+∞}),
ℝ*, < )) | 
| 30 | 17, 29 | xreqled 45341 | . . . 4
⊢ (𝐴 = ∅ → inf(𝐴, ℝ*, < )
≤ inf((𝐴 ∪
{+∞}), ℝ*, < )) | 
| 31 | 30 | adantl 481 | . . 3
⊢ ((𝐴 ⊆ ℝ*
∧ 𝐴 = ∅) →
inf(𝐴, ℝ*,
< ) ≤ inf((𝐴 ∪
{+∞}), ℝ*, < )) | 
| 32 |  | neqne 2948 | . . . 4
⊢ (¬
𝐴 = ∅ → 𝐴 ≠ ∅) | 
| 33 |  | nfv 1914 | . . . . 5
⊢
Ⅎ𝑥(𝐴 ⊆ ℝ*
∧ 𝐴 ≠
∅) | 
| 34 |  | nfv 1914 | . . . . 5
⊢
Ⅎ𝑦(𝐴 ⊆ ℝ*
∧ 𝐴 ≠
∅) | 
| 35 |  | simpl 482 | . . . . 5
⊢ ((𝐴 ⊆ ℝ*
∧ 𝐴 ≠ ∅)
→ 𝐴 ⊆
ℝ*) | 
| 36 | 35, 6 | syl 17 | . . . . 5
⊢ ((𝐴 ⊆ ℝ*
∧ 𝐴 ≠ ∅)
→ (𝐴 ∪ {+∞})
⊆ ℝ*) | 
| 37 |  | simpr 484 | . . . . . . . 8
⊢ ((𝐴 ⊆ ℝ*
∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | 
| 38 |  | ssel2 3978 | . . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ*
∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ*) | 
| 39 | 38 | xrleidd 13194 | . . . . . . . 8
⊢ ((𝐴 ⊆ ℝ*
∧ 𝑥 ∈ 𝐴) → 𝑥 ≤ 𝑥) | 
| 40 |  | breq1 5146 | . . . . . . . . 9
⊢ (𝑦 = 𝑥 → (𝑦 ≤ 𝑥 ↔ 𝑥 ≤ 𝑥)) | 
| 41 | 40 | rspcev 3622 | . . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑥) → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | 
| 42 | 37, 39, 41 | syl2anc 584 | . . . . . . 7
⊢ ((𝐴 ⊆ ℝ*
∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | 
| 43 | 42 | ad4ant14 752 | . . . . . 6
⊢ ((((𝐴 ⊆ ℝ*
∧ 𝐴 ≠ ∅) ∧
𝑥 ∈ (𝐴 ∪ {+∞})) ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | 
| 44 |  | simpll 767 | . . . . . . 7
⊢ ((((𝐴 ⊆ ℝ*
∧ 𝐴 ≠ ∅) ∧
𝑥 ∈ (𝐴 ∪ {+∞})) ∧ ¬ 𝑥 ∈ 𝐴) → (𝐴 ⊆ ℝ* ∧ 𝐴 ≠ ∅)) | 
| 45 |  | elunnel1 4154 | . . . . . . . . 9
⊢ ((𝑥 ∈ (𝐴 ∪ {+∞}) ∧ ¬ 𝑥 ∈ 𝐴) → 𝑥 ∈ {+∞}) | 
| 46 |  | elsni 4643 | . . . . . . . . 9
⊢ (𝑥 ∈ {+∞} → 𝑥 = +∞) | 
| 47 | 45, 46 | syl 17 | . . . . . . . 8
⊢ ((𝑥 ∈ (𝐴 ∪ {+∞}) ∧ ¬ 𝑥 ∈ 𝐴) → 𝑥 = +∞) | 
| 48 | 47 | adantll 714 | . . . . . . 7
⊢ ((((𝐴 ⊆ ℝ*
∧ 𝐴 ≠ ∅) ∧
𝑥 ∈ (𝐴 ∪ {+∞})) ∧ ¬ 𝑥 ∈ 𝐴) → 𝑥 = +∞) | 
| 49 |  | simplr 769 | . . . . . . . 8
⊢ (((𝐴 ⊆ ℝ*
∧ 𝐴 ≠ ∅) ∧
𝑥 = +∞) → 𝐴 ≠ ∅) | 
| 50 |  | ssel2 3978 | . . . . . . . . . . . . 13
⊢ ((𝐴 ⊆ ℝ*
∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ*) | 
| 51 |  | pnfge 13172 | . . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℝ*
→ 𝑦 ≤
+∞) | 
| 52 | 50, 51 | syl 17 | . . . . . . . . . . . 12
⊢ ((𝐴 ⊆ ℝ*
∧ 𝑦 ∈ 𝐴) → 𝑦 ≤ +∞) | 
| 53 | 52 | adantlr 715 | . . . . . . . . . . 11
⊢ (((𝐴 ⊆ ℝ*
∧ 𝑥 = +∞) ∧
𝑦 ∈ 𝐴) → 𝑦 ≤ +∞) | 
| 54 |  | simplr 769 | . . . . . . . . . . 11
⊢ (((𝐴 ⊆ ℝ*
∧ 𝑥 = +∞) ∧
𝑦 ∈ 𝐴) → 𝑥 = +∞) | 
| 55 | 53, 54 | breqtrrd 5171 | . . . . . . . . . 10
⊢ (((𝐴 ⊆ ℝ*
∧ 𝑥 = +∞) ∧
𝑦 ∈ 𝐴) → 𝑦 ≤ 𝑥) | 
| 56 | 55 | ralrimiva 3146 | . . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ*
∧ 𝑥 = +∞) →
∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | 
| 57 | 56 | adantlr 715 | . . . . . . . 8
⊢ (((𝐴 ⊆ ℝ*
∧ 𝐴 ≠ ∅) ∧
𝑥 = +∞) →
∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | 
| 58 |  | r19.2z 4495 | . . . . . . . 8
⊢ ((𝐴 ≠ ∅ ∧
∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | 
| 59 | 49, 57, 58 | syl2anc 584 | . . . . . . 7
⊢ (((𝐴 ⊆ ℝ*
∧ 𝐴 ≠ ∅) ∧
𝑥 = +∞) →
∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | 
| 60 | 44, 48, 59 | syl2anc 584 | . . . . . 6
⊢ ((((𝐴 ⊆ ℝ*
∧ 𝐴 ≠ ∅) ∧
𝑥 ∈ (𝐴 ∪ {+∞})) ∧ ¬ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | 
| 61 | 43, 60 | pm2.61dan 813 | . . . . 5
⊢ (((𝐴 ⊆ ℝ*
∧ 𝐴 ≠ ∅) ∧
𝑥 ∈ (𝐴 ∪ {+∞})) → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) | 
| 62 | 33, 34, 35, 36, 61 | infleinf2 45425 | . . . 4
⊢ ((𝐴 ⊆ ℝ*
∧ 𝐴 ≠ ∅)
→ inf(𝐴,
ℝ*, < ) ≤ inf((𝐴 ∪ {+∞}), ℝ*,
< )) | 
| 63 | 32, 62 | sylan2 593 | . . 3
⊢ ((𝐴 ⊆ ℝ*
∧ ¬ 𝐴 = ∅)
→ inf(𝐴,
ℝ*, < ) ≤ inf((𝐴 ∪ {+∞}), ℝ*,
< )) | 
| 64 | 31, 63 | pm2.61dan 813 | . 2
⊢ (𝐴 ⊆ ℝ*
→ inf(𝐴,
ℝ*, < ) ≤ inf((𝐴 ∪ {+∞}), ℝ*,
< )) | 
| 65 | 7, 8, 12, 64 | xrletrid 13197 | 1
⊢ (𝐴 ⊆ ℝ*
→ inf((𝐴 ∪
{+∞}), ℝ*, < ) = inf(𝐴, ℝ*, <
)) |