| Step | Hyp | Ref
| Expression |
| 1 | | id 22 |
. . . 4
⊢ (𝐴 ⊆ ℝ*
→ 𝐴 ⊆
ℝ*) |
| 2 | | pnfxr 11294 |
. . . . . 6
⊢ +∞
∈ ℝ* |
| 3 | | snssi 4789 |
. . . . . 6
⊢ (+∞
∈ ℝ* → {+∞} ⊆
ℝ*) |
| 4 | 2, 3 | ax-mp 5 |
. . . . 5
⊢
{+∞} ⊆ ℝ* |
| 5 | 4 | a1i 11 |
. . . 4
⊢ (𝐴 ⊆ ℝ*
→ {+∞} ⊆ ℝ*) |
| 6 | 1, 5 | unssd 4172 |
. . 3
⊢ (𝐴 ⊆ ℝ*
→ (𝐴 ∪ {+∞})
⊆ ℝ*) |
| 7 | 6 | infxrcld 45383 |
. 2
⊢ (𝐴 ⊆ ℝ*
→ inf((𝐴 ∪
{+∞}), ℝ*, < ) ∈
ℝ*) |
| 8 | | infxrcl 13355 |
. 2
⊢ (𝐴 ⊆ ℝ*
→ inf(𝐴,
ℝ*, < ) ∈ ℝ*) |
| 9 | | ssun1 4158 |
. . . 4
⊢ 𝐴 ⊆ (𝐴 ∪ {+∞}) |
| 10 | 9 | a1i 11 |
. . 3
⊢ (𝐴 ⊆ ℝ*
→ 𝐴 ⊆ (𝐴 ∪
{+∞})) |
| 11 | | infxrss 13361 |
. . 3
⊢ ((𝐴 ⊆ (𝐴 ∪ {+∞}) ∧ (𝐴 ∪ {+∞}) ⊆
ℝ*) → inf((𝐴 ∪ {+∞}), ℝ*,
< ) ≤ inf(𝐴,
ℝ*, < )) |
| 12 | 10, 6, 11 | syl2anc 584 |
. 2
⊢ (𝐴 ⊆ ℝ*
→ inf((𝐴 ∪
{+∞}), ℝ*, < ) ≤ inf(𝐴, ℝ*, <
)) |
| 13 | | infeq1 9494 |
. . . . . 6
⊢ (𝐴 = ∅ → inf(𝐴, ℝ*, < ) =
inf(∅, ℝ*, < )) |
| 14 | | xrinf0 13360 |
. . . . . . . 8
⊢
inf(∅, ℝ*, < ) = +∞ |
| 15 | 14, 2 | eqeltri 2831 |
. . . . . . 7
⊢
inf(∅, ℝ*, < ) ∈
ℝ* |
| 16 | 15 | a1i 11 |
. . . . . 6
⊢ (𝐴 = ∅ → inf(∅,
ℝ*, < ) ∈ ℝ*) |
| 17 | 13, 16 | eqeltrd 2835 |
. . . . 5
⊢ (𝐴 = ∅ → inf(𝐴, ℝ*, < )
∈ ℝ*) |
| 18 | | xrltso 13162 |
. . . . . . . . 9
⊢ < Or
ℝ* |
| 19 | | infsn 9524 |
. . . . . . . . 9
⊢ (( <
Or ℝ* ∧ +∞ ∈ ℝ*) →
inf({+∞}, ℝ*, < ) = +∞) |
| 20 | 18, 2, 19 | mp2an 692 |
. . . . . . . 8
⊢
inf({+∞}, ℝ*, < ) = +∞ |
| 21 | 20 | eqcomi 2745 |
. . . . . . 7
⊢ +∞
= inf({+∞}, ℝ*, < ) |
| 22 | 21 | a1i 11 |
. . . . . 6
⊢ (𝐴 = ∅ → +∞ =
inf({+∞}, ℝ*, < )) |
| 23 | 13, 14 | eqtrdi 2787 |
. . . . . 6
⊢ (𝐴 = ∅ → inf(𝐴, ℝ*, < ) =
+∞) |
| 24 | | uneq1 4141 |
. . . . . . . 8
⊢ (𝐴 = ∅ → (𝐴 ∪ {+∞}) = (∅
∪ {+∞})) |
| 25 | | 0un 4376 |
. . . . . . . . 9
⊢ (∅
∪ {+∞}) = {+∞} |
| 26 | 25 | a1i 11 |
. . . . . . . 8
⊢ (𝐴 = ∅ → (∅ ∪
{+∞}) = {+∞}) |
| 27 | 24, 26 | eqtrd 2771 |
. . . . . . 7
⊢ (𝐴 = ∅ → (𝐴 ∪ {+∞}) =
{+∞}) |
| 28 | 27 | infeq1d 9495 |
. . . . . 6
⊢ (𝐴 = ∅ → inf((𝐴 ∪ {+∞}),
ℝ*, < ) = inf({+∞}, ℝ*, <
)) |
| 29 | 22, 23, 28 | 3eqtr4d 2781 |
. . . . 5
⊢ (𝐴 = ∅ → inf(𝐴, ℝ*, < ) =
inf((𝐴 ∪ {+∞}),
ℝ*, < )) |
| 30 | 17, 29 | xreqled 45324 |
. . . 4
⊢ (𝐴 = ∅ → inf(𝐴, ℝ*, < )
≤ inf((𝐴 ∪
{+∞}), ℝ*, < )) |
| 31 | 30 | adantl 481 |
. . 3
⊢ ((𝐴 ⊆ ℝ*
∧ 𝐴 = ∅) →
inf(𝐴, ℝ*,
< ) ≤ inf((𝐴 ∪
{+∞}), ℝ*, < )) |
| 32 | | neqne 2941 |
. . . 4
⊢ (¬
𝐴 = ∅ → 𝐴 ≠ ∅) |
| 33 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑥(𝐴 ⊆ ℝ*
∧ 𝐴 ≠
∅) |
| 34 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑦(𝐴 ⊆ ℝ*
∧ 𝐴 ≠
∅) |
| 35 | | simpl 482 |
. . . . 5
⊢ ((𝐴 ⊆ ℝ*
∧ 𝐴 ≠ ∅)
→ 𝐴 ⊆
ℝ*) |
| 36 | 35, 6 | syl 17 |
. . . . 5
⊢ ((𝐴 ⊆ ℝ*
∧ 𝐴 ≠ ∅)
→ (𝐴 ∪ {+∞})
⊆ ℝ*) |
| 37 | | simpr 484 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℝ*
∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
| 38 | | ssel2 3958 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ*
∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ*) |
| 39 | 38 | xrleidd 13173 |
. . . . . . . 8
⊢ ((𝐴 ⊆ ℝ*
∧ 𝑥 ∈ 𝐴) → 𝑥 ≤ 𝑥) |
| 40 | | breq1 5127 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → (𝑦 ≤ 𝑥 ↔ 𝑥 ≤ 𝑥)) |
| 41 | 40 | rspcev 3606 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ≤ 𝑥) → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| 42 | 37, 39, 41 | syl2anc 584 |
. . . . . . 7
⊢ ((𝐴 ⊆ ℝ*
∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| 43 | 42 | ad4ant14 752 |
. . . . . 6
⊢ ((((𝐴 ⊆ ℝ*
∧ 𝐴 ≠ ∅) ∧
𝑥 ∈ (𝐴 ∪ {+∞})) ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| 44 | | simpll 766 |
. . . . . . 7
⊢ ((((𝐴 ⊆ ℝ*
∧ 𝐴 ≠ ∅) ∧
𝑥 ∈ (𝐴 ∪ {+∞})) ∧ ¬ 𝑥 ∈ 𝐴) → (𝐴 ⊆ ℝ* ∧ 𝐴 ≠ ∅)) |
| 45 | | elunnel1 4134 |
. . . . . . . . 9
⊢ ((𝑥 ∈ (𝐴 ∪ {+∞}) ∧ ¬ 𝑥 ∈ 𝐴) → 𝑥 ∈ {+∞}) |
| 46 | | elsni 4623 |
. . . . . . . . 9
⊢ (𝑥 ∈ {+∞} → 𝑥 = +∞) |
| 47 | 45, 46 | syl 17 |
. . . . . . . 8
⊢ ((𝑥 ∈ (𝐴 ∪ {+∞}) ∧ ¬ 𝑥 ∈ 𝐴) → 𝑥 = +∞) |
| 48 | 47 | adantll 714 |
. . . . . . 7
⊢ ((((𝐴 ⊆ ℝ*
∧ 𝐴 ≠ ∅) ∧
𝑥 ∈ (𝐴 ∪ {+∞})) ∧ ¬ 𝑥 ∈ 𝐴) → 𝑥 = +∞) |
| 49 | | simplr 768 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℝ*
∧ 𝐴 ≠ ∅) ∧
𝑥 = +∞) → 𝐴 ≠ ∅) |
| 50 | | ssel2 3958 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ⊆ ℝ*
∧ 𝑦 ∈ 𝐴) → 𝑦 ∈ ℝ*) |
| 51 | | pnfge 13151 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℝ*
→ 𝑦 ≤
+∞) |
| 52 | 50, 51 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝐴 ⊆ ℝ*
∧ 𝑦 ∈ 𝐴) → 𝑦 ≤ +∞) |
| 53 | 52 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝐴 ⊆ ℝ*
∧ 𝑥 = +∞) ∧
𝑦 ∈ 𝐴) → 𝑦 ≤ +∞) |
| 54 | | simplr 768 |
. . . . . . . . . . 11
⊢ (((𝐴 ⊆ ℝ*
∧ 𝑥 = +∞) ∧
𝑦 ∈ 𝐴) → 𝑥 = +∞) |
| 55 | 53, 54 | breqtrrd 5152 |
. . . . . . . . . 10
⊢ (((𝐴 ⊆ ℝ*
∧ 𝑥 = +∞) ∧
𝑦 ∈ 𝐴) → 𝑦 ≤ 𝑥) |
| 56 | 55 | ralrimiva 3133 |
. . . . . . . . 9
⊢ ((𝐴 ⊆ ℝ*
∧ 𝑥 = +∞) →
∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| 57 | 56 | adantlr 715 |
. . . . . . . 8
⊢ (((𝐴 ⊆ ℝ*
∧ 𝐴 ≠ ∅) ∧
𝑥 = +∞) →
∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| 58 | | r19.2z 4475 |
. . . . . . . 8
⊢ ((𝐴 ≠ ∅ ∧
∀𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| 59 | 49, 57, 58 | syl2anc 584 |
. . . . . . 7
⊢ (((𝐴 ⊆ ℝ*
∧ 𝐴 ≠ ∅) ∧
𝑥 = +∞) →
∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| 60 | 44, 48, 59 | syl2anc 584 |
. . . . . 6
⊢ ((((𝐴 ⊆ ℝ*
∧ 𝐴 ≠ ∅) ∧
𝑥 ∈ (𝐴 ∪ {+∞})) ∧ ¬ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| 61 | 43, 60 | pm2.61dan 812 |
. . . . 5
⊢ (((𝐴 ⊆ ℝ*
∧ 𝐴 ≠ ∅) ∧
𝑥 ∈ (𝐴 ∪ {+∞})) → ∃𝑦 ∈ 𝐴 𝑦 ≤ 𝑥) |
| 62 | 33, 34, 35, 36, 61 | infleinf2 45408 |
. . . 4
⊢ ((𝐴 ⊆ ℝ*
∧ 𝐴 ≠ ∅)
→ inf(𝐴,
ℝ*, < ) ≤ inf((𝐴 ∪ {+∞}), ℝ*,
< )) |
| 63 | 32, 62 | sylan2 593 |
. . 3
⊢ ((𝐴 ⊆ ℝ*
∧ ¬ 𝐴 = ∅)
→ inf(𝐴,
ℝ*, < ) ≤ inf((𝐴 ∪ {+∞}), ℝ*,
< )) |
| 64 | 31, 63 | pm2.61dan 812 |
. 2
⊢ (𝐴 ⊆ ℝ*
→ inf(𝐴,
ℝ*, < ) ≤ inf((𝐴 ∪ {+∞}), ℝ*,
< )) |
| 65 | 7, 8, 12, 64 | xrletrid 13176 |
1
⊢ (𝐴 ⊆ ℝ*
→ inf((𝐴 ∪
{+∞}), ℝ*, < ) = inf(𝐴, ℝ*, <
)) |