MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodsplitsn Structured version   Visualization version   GIF version

Theorem fprodsplitsn 16037
Description: Separate out a term in a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodsplitsn.ph 𝑘𝜑
fprodsplitsn.kd 𝑘𝐷
fprodsplitsn.a (𝜑𝐴 ∈ Fin)
fprodsplitsn.b (𝜑𝐵𝑉)
fprodsplitsn.ba (𝜑 → ¬ 𝐵𝐴)
fprodsplitsn.c ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
fprodsplitsn.d (𝑘 = 𝐵𝐶 = 𝐷)
fprodsplitsn.dcn (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
fprodsplitsn (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘𝐴 𝐶 · 𝐷))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑉
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑘)   𝐷(𝑘)

Proof of Theorem fprodsplitsn
StepHypRef Expression
1 fprodsplitsn.ph . . 3 𝑘𝜑
2 fprodsplitsn.ba . . . 4 (𝜑 → ¬ 𝐵𝐴)
3 disjsn 4736 . . . 4 ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵𝐴)
42, 3sylibr 234 . . 3 (𝜑 → (𝐴 ∩ {𝐵}) = ∅)
5 eqidd 2741 . . 3 (𝜑 → (𝐴 ∪ {𝐵}) = (𝐴 ∪ {𝐵}))
6 fprodsplitsn.a . . . 4 (𝜑𝐴 ∈ Fin)
7 snfi 9109 . . . 4 {𝐵} ∈ Fin
8 unfi 9238 . . . 4 ((𝐴 ∈ Fin ∧ {𝐵} ∈ Fin) → (𝐴 ∪ {𝐵}) ∈ Fin)
96, 7, 8sylancl 585 . . 3 (𝜑 → (𝐴 ∪ {𝐵}) ∈ Fin)
10 fprodsplitsn.c . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
1110adantlr 714 . . . 4 (((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
12 elunnel1 4177 . . . . . . . 8 ((𝑘 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑘𝐴) → 𝑘 ∈ {𝐵})
13 elsni 4665 . . . . . . . 8 (𝑘 ∈ {𝐵} → 𝑘 = 𝐵)
1412, 13syl 17 . . . . . . 7 ((𝑘 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑘𝐴) → 𝑘 = 𝐵)
1514adantll 713 . . . . . 6 (((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘𝐴) → 𝑘 = 𝐵)
16 fprodsplitsn.d . . . . . 6 (𝑘 = 𝐵𝐶 = 𝐷)
1715, 16syl 17 . . . . 5 (((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘𝐴) → 𝐶 = 𝐷)
18 fprodsplitsn.dcn . . . . . 6 (𝜑𝐷 ∈ ℂ)
1918ad2antrr 725 . . . . 5 (((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘𝐴) → 𝐷 ∈ ℂ)
2017, 19eqeltrd 2844 . . . 4 (((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘𝐴) → 𝐶 ∈ ℂ)
2111, 20pm2.61dan 812 . . 3 ((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) → 𝐶 ∈ ℂ)
221, 4, 5, 9, 21fprodsplitf 16036 . 2 (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘𝐴 𝐶 · ∏𝑘 ∈ {𝐵}𝐶))
23 fprodsplitsn.b . . . 4 (𝜑𝐵𝑉)
24 fprodsplitsn.kd . . . . 5 𝑘𝐷
2524, 16prodsnf 16012 . . . 4 ((𝐵𝑉𝐷 ∈ ℂ) → ∏𝑘 ∈ {𝐵}𝐶 = 𝐷)
2623, 18, 25syl2anc 583 . . 3 (𝜑 → ∏𝑘 ∈ {𝐵}𝐶 = 𝐷)
2726oveq2d 7464 . 2 (𝜑 → (∏𝑘𝐴 𝐶 · ∏𝑘 ∈ {𝐵}𝐶) = (∏𝑘𝐴 𝐶 · 𝐷))
2822, 27eqtrd 2780 1 (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘𝐴 𝐶 · 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wnf 1781  wcel 2108  wnfc 2893  cun 3974  cin 3975  c0 4352  {csn 4648  (class class class)co 7448  Fincfn 9003  cc 11182   · cmul 11189  cprod 15951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-prod 15952
This theorem is referenced by:  fprodmodd  16045  coprmprod  16708  coprmproddvdslem  16709  breprexplema  34607  breprexplemc  34609  circlemethhgt  34620  fprodexp  45515  fprodabs2  45516  mccllem  45518  fprodcnlem  45520  fprodcncf  45821  dvmptfprodlem  45865  dvnprodlem2  45868  hspmbllem1  46547
  Copyright terms: Public domain W3C validator