MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodsplitsn Structured version   Visualization version   GIF version

Theorem fprodsplitsn 15627
Description: Separate out a term in a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodsplitsn.ph 𝑘𝜑
fprodsplitsn.kd 𝑘𝐷
fprodsplitsn.a (𝜑𝐴 ∈ Fin)
fprodsplitsn.b (𝜑𝐵𝑉)
fprodsplitsn.ba (𝜑 → ¬ 𝐵𝐴)
fprodsplitsn.c ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
fprodsplitsn.d (𝑘 = 𝐵𝐶 = 𝐷)
fprodsplitsn.dcn (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
fprodsplitsn (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘𝐴 𝐶 · 𝐷))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑉
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑘)   𝐷(𝑘)

Proof of Theorem fprodsplitsn
StepHypRef Expression
1 fprodsplitsn.ph . . 3 𝑘𝜑
2 fprodsplitsn.ba . . . 4 (𝜑 → ¬ 𝐵𝐴)
3 disjsn 4644 . . . 4 ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵𝐴)
42, 3sylibr 233 . . 3 (𝜑 → (𝐴 ∩ {𝐵}) = ∅)
5 eqidd 2739 . . 3 (𝜑 → (𝐴 ∪ {𝐵}) = (𝐴 ∪ {𝐵}))
6 fprodsplitsn.a . . . 4 (𝜑𝐴 ∈ Fin)
7 snfi 8788 . . . 4 {𝐵} ∈ Fin
8 unfi 8917 . . . 4 ((𝐴 ∈ Fin ∧ {𝐵} ∈ Fin) → (𝐴 ∪ {𝐵}) ∈ Fin)
96, 7, 8sylancl 585 . . 3 (𝜑 → (𝐴 ∪ {𝐵}) ∈ Fin)
10 fprodsplitsn.c . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
1110adantlr 711 . . . 4 (((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
12 elunnel1 4080 . . . . . . . 8 ((𝑘 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑘𝐴) → 𝑘 ∈ {𝐵})
13 elsni 4575 . . . . . . . 8 (𝑘 ∈ {𝐵} → 𝑘 = 𝐵)
1412, 13syl 17 . . . . . . 7 ((𝑘 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑘𝐴) → 𝑘 = 𝐵)
1514adantll 710 . . . . . 6 (((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘𝐴) → 𝑘 = 𝐵)
16 fprodsplitsn.d . . . . . 6 (𝑘 = 𝐵𝐶 = 𝐷)
1715, 16syl 17 . . . . 5 (((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘𝐴) → 𝐶 = 𝐷)
18 fprodsplitsn.dcn . . . . . 6 (𝜑𝐷 ∈ ℂ)
1918ad2antrr 722 . . . . 5 (((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘𝐴) → 𝐷 ∈ ℂ)
2017, 19eqeltrd 2839 . . . 4 (((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘𝐴) → 𝐶 ∈ ℂ)
2111, 20pm2.61dan 809 . . 3 ((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) → 𝐶 ∈ ℂ)
221, 4, 5, 9, 21fprodsplitf 15626 . 2 (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘𝐴 𝐶 · ∏𝑘 ∈ {𝐵}𝐶))
23 fprodsplitsn.b . . . 4 (𝜑𝐵𝑉)
24 fprodsplitsn.kd . . . . 5 𝑘𝐷
2524, 16prodsnf 15602 . . . 4 ((𝐵𝑉𝐷 ∈ ℂ) → ∏𝑘 ∈ {𝐵}𝐶 = 𝐷)
2623, 18, 25syl2anc 583 . . 3 (𝜑 → ∏𝑘 ∈ {𝐵}𝐶 = 𝐷)
2726oveq2d 7271 . 2 (𝜑 → (∏𝑘𝐴 𝐶 · ∏𝑘 ∈ {𝐵}𝐶) = (∏𝑘𝐴 𝐶 · 𝐷))
2822, 27eqtrd 2778 1 (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘𝐴 𝐶 · 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wnf 1787  wcel 2108  wnfc 2886  cun 3881  cin 3882  c0 4253  {csn 4558  (class class class)co 7255  Fincfn 8691  cc 10800   · cmul 10807  cprod 15543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-prod 15544
This theorem is referenced by:  fprodmodd  15635  coprmprod  16294  coprmproddvdslem  16295  breprexplema  32510  breprexplemc  32512  circlemethhgt  32523  fprodexp  43025  fprodabs2  43026  mccllem  43028  fprodcnlem  43030  fprodcncf  43331  dvmptfprodlem  43375  dvnprodlem2  43378  hspmbllem1  44054
  Copyright terms: Public domain W3C validator