| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fprodsplitsn | Structured version Visualization version GIF version | ||
| Description: Separate out a term in a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| fprodsplitsn.ph | ⊢ Ⅎ𝑘𝜑 |
| fprodsplitsn.kd | ⊢ Ⅎ𝑘𝐷 |
| fprodsplitsn.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| fprodsplitsn.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| fprodsplitsn.ba | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) |
| fprodsplitsn.c | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| fprodsplitsn.d | ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷) |
| fprodsplitsn.dcn | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| Ref | Expression |
|---|---|
| fprodsplitsn | ⊢ (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fprodsplitsn.ph | . . 3 ⊢ Ⅎ𝑘𝜑 | |
| 2 | fprodsplitsn.ba | . . . 4 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) | |
| 3 | disjsn 4663 | . . . 4 ⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ 𝐴) | |
| 4 | 2, 3 | sylibr 234 | . . 3 ⊢ (𝜑 → (𝐴 ∩ {𝐵}) = ∅) |
| 5 | eqidd 2734 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝐵}) = (𝐴 ∪ {𝐵})) | |
| 6 | fprodsplitsn.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 7 | snfi 8972 | . . . 4 ⊢ {𝐵} ∈ Fin | |
| 8 | unfi 9087 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ {𝐵} ∈ Fin) → (𝐴 ∪ {𝐵}) ∈ Fin) | |
| 9 | 6, 7, 8 | sylancl 586 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝐵}) ∈ Fin) |
| 10 | fprodsplitsn.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) | |
| 11 | 10 | adantlr 715 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 12 | elunnel1 4103 | . . . . . . . 8 ⊢ ((𝑘 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑘 ∈ 𝐴) → 𝑘 ∈ {𝐵}) | |
| 13 | elsni 4592 | . . . . . . . 8 ⊢ (𝑘 ∈ {𝐵} → 𝑘 = 𝐵) | |
| 14 | 12, 13 | syl 17 | . . . . . . 7 ⊢ ((𝑘 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑘 ∈ 𝐴) → 𝑘 = 𝐵) |
| 15 | 14 | adantll 714 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘 ∈ 𝐴) → 𝑘 = 𝐵) |
| 16 | fprodsplitsn.d | . . . . . 6 ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷) | |
| 17 | 15, 16 | syl 17 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘 ∈ 𝐴) → 𝐶 = 𝐷) |
| 18 | fprodsplitsn.dcn | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
| 19 | 18 | ad2antrr 726 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘 ∈ 𝐴) → 𝐷 ∈ ℂ) |
| 20 | 17, 19 | eqeltrd 2833 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
| 21 | 11, 20 | pm2.61dan 812 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) → 𝐶 ∈ ℂ) |
| 22 | 1, 4, 5, 9, 21 | fprodsplitf 15897 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ {𝐵}𝐶)) |
| 23 | fprodsplitsn.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 24 | fprodsplitsn.kd | . . . . 5 ⊢ Ⅎ𝑘𝐷 | |
| 25 | 24, 16 | prodsnf 15873 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ ℂ) → ∏𝑘 ∈ {𝐵}𝐶 = 𝐷) |
| 26 | 23, 18, 25 | syl2anc 584 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ {𝐵}𝐶 = 𝐷) |
| 27 | 26 | oveq2d 7368 | . 2 ⊢ (𝜑 → (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ {𝐵}𝐶) = (∏𝑘 ∈ 𝐴 𝐶 · 𝐷)) |
| 28 | 22, 27 | eqtrd 2768 | 1 ⊢ (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2113 Ⅎwnfc 2880 ∪ cun 3896 ∩ cin 3897 ∅c0 4282 {csn 4575 (class class class)co 7352 Fincfn 8875 ℂcc 11011 · cmul 11018 ∏cprod 15812 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-fz 13410 df-fzo 13557 df-seq 13911 df-exp 13971 df-hash 14240 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-clim 15397 df-prod 15813 |
| This theorem is referenced by: fprodmodd 15906 coprmprod 16574 coprmproddvdslem 16575 breprexplema 34664 breprexplemc 34666 circlemethhgt 34677 fprodexp 45719 fprodabs2 45720 mccllem 45722 fprodcnlem 45724 fprodcncf 46023 dvmptfprodlem 46067 dvnprodlem2 46070 hspmbllem1 46749 |
| Copyright terms: Public domain | W3C validator |