Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fprodsplitsn | Structured version Visualization version GIF version |
Description: Separate out a term in a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
fprodsplitsn.ph | ⊢ Ⅎ𝑘𝜑 |
fprodsplitsn.kd | ⊢ Ⅎ𝑘𝐷 |
fprodsplitsn.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fprodsplitsn.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
fprodsplitsn.ba | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) |
fprodsplitsn.c | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
fprodsplitsn.d | ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷) |
fprodsplitsn.dcn | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
Ref | Expression |
---|---|
fprodsplitsn | ⊢ (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodsplitsn.ph | . . 3 ⊢ Ⅎ𝑘𝜑 | |
2 | fprodsplitsn.ba | . . . 4 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) | |
3 | disjsn 4647 | . . . 4 ⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ 𝐴) | |
4 | 2, 3 | sylibr 233 | . . 3 ⊢ (𝜑 → (𝐴 ∩ {𝐵}) = ∅) |
5 | eqidd 2739 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝐵}) = (𝐴 ∪ {𝐵})) | |
6 | fprodsplitsn.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
7 | snfi 8834 | . . . 4 ⊢ {𝐵} ∈ Fin | |
8 | unfi 8955 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ {𝐵} ∈ Fin) → (𝐴 ∪ {𝐵}) ∈ Fin) | |
9 | 6, 7, 8 | sylancl 586 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝐵}) ∈ Fin) |
10 | fprodsplitsn.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) | |
11 | 10 | adantlr 712 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
12 | elunnel1 4084 | . . . . . . . 8 ⊢ ((𝑘 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑘 ∈ 𝐴) → 𝑘 ∈ {𝐵}) | |
13 | elsni 4578 | . . . . . . . 8 ⊢ (𝑘 ∈ {𝐵} → 𝑘 = 𝐵) | |
14 | 12, 13 | syl 17 | . . . . . . 7 ⊢ ((𝑘 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑘 ∈ 𝐴) → 𝑘 = 𝐵) |
15 | 14 | adantll 711 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘 ∈ 𝐴) → 𝑘 = 𝐵) |
16 | fprodsplitsn.d | . . . . . 6 ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷) | |
17 | 15, 16 | syl 17 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘 ∈ 𝐴) → 𝐶 = 𝐷) |
18 | fprodsplitsn.dcn | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
19 | 18 | ad2antrr 723 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘 ∈ 𝐴) → 𝐷 ∈ ℂ) |
20 | 17, 19 | eqeltrd 2839 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
21 | 11, 20 | pm2.61dan 810 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) → 𝐶 ∈ ℂ) |
22 | 1, 4, 5, 9, 21 | fprodsplitf 15698 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ {𝐵}𝐶)) |
23 | fprodsplitsn.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
24 | fprodsplitsn.kd | . . . . 5 ⊢ Ⅎ𝑘𝐷 | |
25 | 24, 16 | prodsnf 15674 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ ℂ) → ∏𝑘 ∈ {𝐵}𝐶 = 𝐷) |
26 | 23, 18, 25 | syl2anc 584 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ {𝐵}𝐶 = 𝐷) |
27 | 26 | oveq2d 7291 | . 2 ⊢ (𝜑 → (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ {𝐵}𝐶) = (∏𝑘 ∈ 𝐴 𝐶 · 𝐷)) |
28 | 22, 27 | eqtrd 2778 | 1 ⊢ (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 Ⅎwnfc 2887 ∪ cun 3885 ∩ cin 3886 ∅c0 4256 {csn 4561 (class class class)co 7275 Fincfn 8733 ℂcc 10869 · cmul 10876 ∏cprod 15615 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 df-fzo 13383 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-prod 15616 |
This theorem is referenced by: fprodmodd 15707 coprmprod 16366 coprmproddvdslem 16367 breprexplema 32610 breprexplemc 32612 circlemethhgt 32623 fprodexp 43135 fprodabs2 43136 mccllem 43138 fprodcnlem 43140 fprodcncf 43441 dvmptfprodlem 43485 dvnprodlem2 43488 hspmbllem1 44164 |
Copyright terms: Public domain | W3C validator |