![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fprodsplitsn | Structured version Visualization version GIF version |
Description: Separate out a term in a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
fprodsplitsn.ph | ⊢ Ⅎ𝑘𝜑 |
fprodsplitsn.kd | ⊢ Ⅎ𝑘𝐷 |
fprodsplitsn.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fprodsplitsn.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
fprodsplitsn.ba | ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) |
fprodsplitsn.c | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
fprodsplitsn.d | ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷) |
fprodsplitsn.dcn | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
Ref | Expression |
---|---|
fprodsplitsn | ⊢ (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fprodsplitsn.ph | . . 3 ⊢ Ⅎ𝑘𝜑 | |
2 | fprodsplitsn.ba | . . . 4 ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) | |
3 | disjsn 4711 | . . . 4 ⊢ ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵 ∈ 𝐴) | |
4 | 2, 3 | sylibr 233 | . . 3 ⊢ (𝜑 → (𝐴 ∩ {𝐵}) = ∅) |
5 | eqidd 2734 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝐵}) = (𝐴 ∪ {𝐵})) | |
6 | fprodsplitsn.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
7 | snfi 9032 | . . . 4 ⊢ {𝐵} ∈ Fin | |
8 | unfi 9160 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ {𝐵} ∈ Fin) → (𝐴 ∪ {𝐵}) ∈ Fin) | |
9 | 6, 7, 8 | sylancl 587 | . . 3 ⊢ (𝜑 → (𝐴 ∪ {𝐵}) ∈ Fin) |
10 | fprodsplitsn.c | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) | |
11 | 10 | adantlr 714 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
12 | elunnel1 4147 | . . . . . . . 8 ⊢ ((𝑘 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑘 ∈ 𝐴) → 𝑘 ∈ {𝐵}) | |
13 | elsni 4641 | . . . . . . . 8 ⊢ (𝑘 ∈ {𝐵} → 𝑘 = 𝐵) | |
14 | 12, 13 | syl 17 | . . . . . . 7 ⊢ ((𝑘 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑘 ∈ 𝐴) → 𝑘 = 𝐵) |
15 | 14 | adantll 713 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘 ∈ 𝐴) → 𝑘 = 𝐵) |
16 | fprodsplitsn.d | . . . . . 6 ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷) | |
17 | 15, 16 | syl 17 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘 ∈ 𝐴) → 𝐶 = 𝐷) |
18 | fprodsplitsn.dcn | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
19 | 18 | ad2antrr 725 | . . . . 5 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘 ∈ 𝐴) → 𝐷 ∈ ℂ) |
20 | 17, 19 | eqeltrd 2834 | . . . 4 ⊢ (((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘 ∈ 𝐴) → 𝐶 ∈ ℂ) |
21 | 11, 20 | pm2.61dan 812 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝐴 ∪ {𝐵})) → 𝐶 ∈ ℂ) |
22 | 1, 4, 5, 9, 21 | fprodsplitf 15919 | . 2 ⊢ (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ {𝐵}𝐶)) |
23 | fprodsplitsn.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
24 | fprodsplitsn.kd | . . . . 5 ⊢ Ⅎ𝑘𝐷 | |
25 | 24, 16 | prodsnf 15895 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐷 ∈ ℂ) → ∏𝑘 ∈ {𝐵}𝐶 = 𝐷) |
26 | 23, 18, 25 | syl2anc 585 | . . 3 ⊢ (𝜑 → ∏𝑘 ∈ {𝐵}𝐶 = 𝐷) |
27 | 26 | oveq2d 7412 | . 2 ⊢ (𝜑 → (∏𝑘 ∈ 𝐴 𝐶 · ∏𝑘 ∈ {𝐵}𝐶) = (∏𝑘 ∈ 𝐴 𝐶 · 𝐷)) |
28 | 22, 27 | eqtrd 2773 | 1 ⊢ (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘 ∈ 𝐴 𝐶 · 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 = wceq 1542 Ⅎwnf 1786 ∈ wcel 2107 Ⅎwnfc 2884 ∪ cun 3944 ∩ cin 3945 ∅c0 4320 {csn 4624 (class class class)co 7396 Fincfn 8927 ℂcc 11095 · cmul 11102 ∏cprod 15836 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5359 ax-pr 5423 ax-un 7712 ax-inf2 9623 ax-cnex 11153 ax-resscn 11154 ax-1cn 11155 ax-icn 11156 ax-addcl 11157 ax-addrcl 11158 ax-mulcl 11159 ax-mulrcl 11160 ax-mulcom 11161 ax-addass 11162 ax-mulass 11163 ax-distr 11164 ax-i2m1 11165 ax-1ne0 11166 ax-1rid 11167 ax-rnegex 11168 ax-rrecex 11169 ax-cnre 11170 ax-pre-lttri 11171 ax-pre-lttrn 11172 ax-pre-ltadd 11173 ax-pre-mulgt0 11174 ax-pre-sup 11175 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4905 df-int 4947 df-iun 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6292 df-ord 6359 df-on 6360 df-lim 6361 df-suc 6362 df-iota 6487 df-fun 6537 df-fn 6538 df-f 6539 df-f1 6540 df-fo 6541 df-f1o 6542 df-fv 6543 df-isom 6544 df-riota 7352 df-ov 7399 df-oprab 7400 df-mpo 7401 df-om 7843 df-1st 7962 df-2nd 7963 df-frecs 8253 df-wrecs 8284 df-recs 8358 df-rdg 8397 df-1o 8453 df-er 8691 df-en 8928 df-dom 8929 df-sdom 8930 df-fin 8931 df-sup 9424 df-oi 9492 df-card 9921 df-pnf 11237 df-mnf 11238 df-xr 11239 df-ltxr 11240 df-le 11241 df-sub 11433 df-neg 11434 df-div 11859 df-nn 12200 df-2 12262 df-3 12263 df-n0 12460 df-z 12546 df-uz 12810 df-rp 12962 df-fz 13472 df-fzo 13615 df-seq 13954 df-exp 14015 df-hash 14278 df-cj 15033 df-re 15034 df-im 15035 df-sqrt 15169 df-abs 15170 df-clim 15419 df-prod 15837 |
This theorem is referenced by: fprodmodd 15928 coprmprod 16585 coprmproddvdslem 16586 breprexplema 33573 breprexplemc 33575 circlemethhgt 33586 fprodexp 44183 fprodabs2 44184 mccllem 44186 fprodcnlem 44188 fprodcncf 44489 dvmptfprodlem 44533 dvnprodlem2 44536 hspmbllem1 45215 |
Copyright terms: Public domain | W3C validator |