MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprodsplitsn Structured version   Visualization version   GIF version

Theorem fprodsplitsn 15896
Description: Separate out a term in a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
fprodsplitsn.ph 𝑘𝜑
fprodsplitsn.kd 𝑘𝐷
fprodsplitsn.a (𝜑𝐴 ∈ Fin)
fprodsplitsn.b (𝜑𝐵𝑉)
fprodsplitsn.ba (𝜑 → ¬ 𝐵𝐴)
fprodsplitsn.c ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
fprodsplitsn.d (𝑘 = 𝐵𝐶 = 𝐷)
fprodsplitsn.dcn (𝜑𝐷 ∈ ℂ)
Assertion
Ref Expression
fprodsplitsn (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘𝐴 𝐶 · 𝐷))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑉
Allowed substitution hints:   𝜑(𝑘)   𝐶(𝑘)   𝐷(𝑘)

Proof of Theorem fprodsplitsn
StepHypRef Expression
1 fprodsplitsn.ph . . 3 𝑘𝜑
2 fprodsplitsn.ba . . . 4 (𝜑 → ¬ 𝐵𝐴)
3 disjsn 4664 . . . 4 ((𝐴 ∩ {𝐵}) = ∅ ↔ ¬ 𝐵𝐴)
42, 3sylibr 234 . . 3 (𝜑 → (𝐴 ∩ {𝐵}) = ∅)
5 eqidd 2732 . . 3 (𝜑 → (𝐴 ∪ {𝐵}) = (𝐴 ∪ {𝐵}))
6 fprodsplitsn.a . . . 4 (𝜑𝐴 ∈ Fin)
7 snfi 8965 . . . 4 {𝐵} ∈ Fin
8 unfi 9080 . . . 4 ((𝐴 ∈ Fin ∧ {𝐵} ∈ Fin) → (𝐴 ∪ {𝐵}) ∈ Fin)
96, 7, 8sylancl 586 . . 3 (𝜑 → (𝐴 ∪ {𝐵}) ∈ Fin)
10 fprodsplitsn.c . . . . 5 ((𝜑𝑘𝐴) → 𝐶 ∈ ℂ)
1110adantlr 715 . . . 4 (((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
12 elunnel1 4104 . . . . . . . 8 ((𝑘 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑘𝐴) → 𝑘 ∈ {𝐵})
13 elsni 4593 . . . . . . . 8 (𝑘 ∈ {𝐵} → 𝑘 = 𝐵)
1412, 13syl 17 . . . . . . 7 ((𝑘 ∈ (𝐴 ∪ {𝐵}) ∧ ¬ 𝑘𝐴) → 𝑘 = 𝐵)
1514adantll 714 . . . . . 6 (((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘𝐴) → 𝑘 = 𝐵)
16 fprodsplitsn.d . . . . . 6 (𝑘 = 𝐵𝐶 = 𝐷)
1715, 16syl 17 . . . . 5 (((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘𝐴) → 𝐶 = 𝐷)
18 fprodsplitsn.dcn . . . . . 6 (𝜑𝐷 ∈ ℂ)
1918ad2antrr 726 . . . . 5 (((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘𝐴) → 𝐷 ∈ ℂ)
2017, 19eqeltrd 2831 . . . 4 (((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) ∧ ¬ 𝑘𝐴) → 𝐶 ∈ ℂ)
2111, 20pm2.61dan 812 . . 3 ((𝜑𝑘 ∈ (𝐴 ∪ {𝐵})) → 𝐶 ∈ ℂ)
221, 4, 5, 9, 21fprodsplitf 15895 . 2 (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘𝐴 𝐶 · ∏𝑘 ∈ {𝐵}𝐶))
23 fprodsplitsn.b . . . 4 (𝜑𝐵𝑉)
24 fprodsplitsn.kd . . . . 5 𝑘𝐷
2524, 16prodsnf 15871 . . . 4 ((𝐵𝑉𝐷 ∈ ℂ) → ∏𝑘 ∈ {𝐵}𝐶 = 𝐷)
2623, 18, 25syl2anc 584 . . 3 (𝜑 → ∏𝑘 ∈ {𝐵}𝐶 = 𝐷)
2726oveq2d 7362 . 2 (𝜑 → (∏𝑘𝐴 𝐶 · ∏𝑘 ∈ {𝐵}𝐶) = (∏𝑘𝐴 𝐶 · 𝐷))
2822, 27eqtrd 2766 1 (𝜑 → ∏𝑘 ∈ (𝐴 ∪ {𝐵})𝐶 = (∏𝑘𝐴 𝐶 · 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2111  wnfc 2879  cun 3900  cin 3901  c0 4283  {csn 4576  (class class class)co 7346  Fincfn 8869  cc 11004   · cmul 11011  cprod 15810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-prod 15811
This theorem is referenced by:  fprodmodd  15904  coprmprod  16572  coprmproddvdslem  16573  breprexplema  34641  breprexplemc  34643  circlemethhgt  34654  fprodexp  45640  fprodabs2  45641  mccllem  45643  fprodcnlem  45645  fprodcncf  45944  dvmptfprodlem  45988  dvnprodlem2  45991  hspmbllem1  46670
  Copyright terms: Public domain W3C validator