Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem80 Structured version   Visualization version   GIF version

Theorem fourierdlem80 46184
Description: The derivative of 𝑂 is bounded on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem80.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem80.xre (𝜑𝑋 ∈ ℝ)
fourierdlem80.a (𝜑𝐴 ∈ ℝ)
fourierdlem80.b (𝜑𝐵 ∈ ℝ)
fourierdlem80.ab (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π))
fourierdlem80.n0 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
fourierdlem80.c (𝜑𝐶 ∈ ℝ)
fourierdlem80.o 𝑂 = (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
fourierdlem80.i 𝐼 = ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))
fourierdlem80.fbdioo ((𝜑𝑗 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤)
fourierdlem80.fdvbdioo ((𝜑𝑗 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)
fourierdlem80.sf (𝜑𝑆:(0...𝑁)⟶(𝐴[,]𝐵))
fourierdlem80.slt ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑆𝑗) < (𝑆‘(𝑗 + 1)))
fourierdlem80.sjss ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)[,](𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵))
fourierdlem80.relioo (((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑆𝑘)(,)(𝑆‘(𝑘 + 1))))
fdv ((𝜑𝑗 ∈ (0..^𝑁)) → (ℝ D (𝐹𝐼)):𝐼⟶ℝ)
fourierdlem80.y 𝑌 = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
fourierdlem80.ch (𝜒 ↔ (((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧))
Assertion
Ref Expression
fourierdlem80 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏)
Distinct variable groups:   𝐴,𝑏,𝑟,𝑠,𝑡   𝐵,𝑏,𝑟,𝑠,𝑡   𝐶,𝑏,𝑟,𝑠,𝑡   𝐹,𝑏,𝑟,𝑠,𝑡   𝑤,𝐹,𝑧,𝑠,𝑡   𝑤,𝐼,𝑧   𝑁,𝑏,𝑗,𝑟,𝑠   𝑘,𝑁,𝑗,𝑟   𝑤,𝑁,𝑧,𝑗   𝑂,𝑏,𝑗,𝑟   𝑤,𝑂,𝑧   𝑆,𝑏,𝑗,𝑟,𝑠,𝑡   𝑆,𝑘   𝑤,𝑆,𝑧   𝑋,𝑏,𝑟,𝑠,𝑡   𝑌,𝑠   𝜑,𝑏,𝑗,𝑟,𝑠   𝜒,𝑠,𝑡   𝜑,𝑤,𝑧
Allowed substitution hints:   𝜑(𝑡,𝑘)   𝜒(𝑧,𝑤,𝑗,𝑘,𝑟,𝑏)   𝐴(𝑧,𝑤,𝑗,𝑘)   𝐵(𝑧,𝑤,𝑗,𝑘)   𝐶(𝑧,𝑤,𝑗,𝑘)   𝐹(𝑗,𝑘)   𝐼(𝑡,𝑗,𝑘,𝑠,𝑟,𝑏)   𝑁(𝑡)   𝑂(𝑡,𝑘,𝑠)   𝑋(𝑧,𝑤,𝑗,𝑘)   𝑌(𝑧,𝑤,𝑡,𝑗,𝑘,𝑟,𝑏)

Proof of Theorem fourierdlem80
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem80.o . . . . . . . . 9 𝑂 = (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
2 oveq2 7395 . . . . . . . . . . . . 13 (𝑠 = 𝑡 → (𝑋 + 𝑠) = (𝑋 + 𝑡))
32fveq2d 6862 . . . . . . . . . . . 12 (𝑠 = 𝑡 → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑡)))
43oveq1d 7402 . . . . . . . . . . 11 (𝑠 = 𝑡 → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) = ((𝐹‘(𝑋 + 𝑡)) − 𝐶))
5 oveq1 7394 . . . . . . . . . . . . 13 (𝑠 = 𝑡 → (𝑠 / 2) = (𝑡 / 2))
65fveq2d 6862 . . . . . . . . . . . 12 (𝑠 = 𝑡 → (sin‘(𝑠 / 2)) = (sin‘(𝑡 / 2)))
76oveq2d 7403 . . . . . . . . . . 11 (𝑠 = 𝑡 → (2 · (sin‘(𝑠 / 2))) = (2 · (sin‘(𝑡 / 2))))
84, 7oveq12d 7405 . . . . . . . . . 10 (𝑠 = 𝑡 → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))) = (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))
98cbvmptv 5211 . . . . . . . . 9 (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))
101, 9eqtr2i 2753 . . . . . . . 8 (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2))))) = 𝑂
1110oveq2i 7398 . . . . . . 7 (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))) = (ℝ D 𝑂)
1211dmeqi 5868 . . . . . 6 dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))) = dom (ℝ D 𝑂)
1312ineq2i 4180 . . . . 5 (ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2))))))) = (ran 𝑆 ∩ dom (ℝ D 𝑂))
1413sneqi 4600 . . . 4 {(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} = {(ran 𝑆 ∩ dom (ℝ D 𝑂))}
1514uneq1i 4127 . . 3 ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
16 snfi 9014 . . . . 5 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∈ Fin
17 fzofi 13939 . . . . . 6 (0..^𝑁) ∈ Fin
18 eqid 2729 . . . . . . 7 (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
1918rnmptfi 45165 . . . . . 6 ((0..^𝑁) ∈ Fin → ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ Fin)
2017, 19ax-mp 5 . . . . 5 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ Fin
21 unfi 9135 . . . . 5 (({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∈ Fin ∧ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ Fin) → ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ∈ Fin)
2216, 20, 21mp2an 692 . . . 4 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ∈ Fin
2322a1i 11 . . 3 (𝜑 → ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ∈ Fin)
2415, 23eqeltrid 2832 . 2 (𝜑 → ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ∈ Fin)
25 id 22 . . . 4 (𝑠 ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑠 ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
2615unieqi 4883 . . . 4 ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
2725, 26eleqtrdi 2838 . . 3 (𝑠 ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
28 simpl 482 . . . . 5 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → 𝜑)
29 uniun 4894 . . . . . . . . 9 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ( {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
3029eleq2i 2820 . . . . . . . 8 (𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ 𝑠 ∈ ( {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
31 elun 4116 . . . . . . . 8 (𝑠 ∈ ( {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ (𝑠 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
3230, 31sylbb 219 . . . . . . 7 (𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → (𝑠 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
3332adantl 481 . . . . . 6 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (𝑠 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
34 fourierdlem80.sf . . . . . . . . . . 11 (𝜑𝑆:(0...𝑁)⟶(𝐴[,]𝐵))
35 ovex 7420 . . . . . . . . . . . 12 (0...𝑁) ∈ V
3635a1i 11 . . . . . . . . . . 11 (𝜑 → (0...𝑁) ∈ V)
3734, 36fexd 7201 . . . . . . . . . 10 (𝜑𝑆 ∈ V)
38 rnexg 7878 . . . . . . . . . 10 (𝑆 ∈ V → ran 𝑆 ∈ V)
39 inex1g 5274 . . . . . . . . . 10 (ran 𝑆 ∈ V → (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∈ V)
40 unisng 4889 . . . . . . . . . 10 ((ran 𝑆 ∩ dom (ℝ D 𝑂)) ∈ V → {(ran 𝑆 ∩ dom (ℝ D 𝑂))} = (ran 𝑆 ∩ dom (ℝ D 𝑂)))
4137, 38, 39, 404syl 19 . . . . . . . . 9 (𝜑 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} = (ran 𝑆 ∩ dom (ℝ D 𝑂)))
4241eleq2d 2814 . . . . . . . 8 (𝜑 → (𝑠 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ↔ 𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂))))
4342adantr 480 . . . . . . 7 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (𝑠 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ↔ 𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂))))
4443orbi1d 916 . . . . . 6 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ((𝑠 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∨ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))))
4533, 44mpbid 232 . . . . 5 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∨ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
46 dvf 25808 . . . . . . . . 9 (ℝ D 𝑂):dom (ℝ D 𝑂)⟶ℂ
4746a1i 11 . . . . . . . 8 (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) → (ℝ D 𝑂):dom (ℝ D 𝑂)⟶ℂ)
48 elinel2 4165 . . . . . . . 8 (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) → 𝑠 ∈ dom (ℝ D 𝑂))
4947, 48ffvelcdmd 7057 . . . . . . 7 (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)
5049adantl 481 . . . . . 6 ((𝜑𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)
51 ovex 7420 . . . . . . . . . . . 12 ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ∈ V
5251dfiun3 5933 . . . . . . . . . . 11 𝑗 ∈ (0..^𝑁)((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) = ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
5352eleq2i 2820 . . . . . . . . . 10 (𝑠 𝑗 ∈ (0..^𝑁)((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↔ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
5453biimpri 228 . . . . . . . . 9 (𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 𝑗 ∈ (0..^𝑁)((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
5554adantl 481 . . . . . . . 8 ((𝜑𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑠 𝑗 ∈ (0..^𝑁)((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
56 eliun 4959 . . . . . . . 8 (𝑠 𝑗 ∈ (0..^𝑁)((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↔ ∃𝑗 ∈ (0..^𝑁)𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
5755, 56sylib 218 . . . . . . 7 ((𝜑𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → ∃𝑗 ∈ (0..^𝑁)𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
58 nfv 1914 . . . . . . . . 9 𝑗𝜑
59 nfmpt1 5206 . . . . . . . . . . . 12 𝑗(𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
6059nfrn 5916 . . . . . . . . . . 11 𝑗ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
6160nfuni 4878 . . . . . . . . . 10 𝑗 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
6261nfcri 2883 . . . . . . . . 9 𝑗 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
6358, 62nfan 1899 . . . . . . . 8 𝑗(𝜑𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
64 nfv 1914 . . . . . . . 8 𝑗((ℝ D 𝑂)‘𝑠) ∈ ℂ
6546a1i 11 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → (ℝ D 𝑂):dom (ℝ D 𝑂)⟶ℂ)
66 fourierdlem80.y . . . . . . . . . . . . . . . . . . 19 𝑌 = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
671reseq1i 5946 . . . . . . . . . . . . . . . . . . . 20 (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = ((𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
68 ioossicc 13394 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑆𝑗)[,](𝑆‘(𝑗 + 1)))
69 fourierdlem80.sjss . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)[,](𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵))
7068, 69sstrid 3958 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵))
7170resmptd 6011 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))
7267, 71eqtrid 2776 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))
7366, 72eqtr4id 2783 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑌 = (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
7473oveq2d 7403 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0..^𝑁)) → (ℝ D 𝑌) = (ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
75 ax-resscn 11125 . . . . . . . . . . . . . . . . . . . . 21 ℝ ⊆ ℂ
7675a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ℝ ⊆ ℂ)
77 fourierdlem80.f . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐹:ℝ⟶ℝ)
7877adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝐹:ℝ⟶ℝ)
79 fourierdlem80.xre . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑋 ∈ ℝ)
8079adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑋 ∈ ℝ)
81 fourierdlem80.a . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐴 ∈ ℝ)
82 fourierdlem80.b . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐵 ∈ ℝ)
8381, 82iccssred 13395 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
8483sselda 3946 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℝ)
8580, 84readdcld 11203 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
8678, 85ffvelcdmd 7057 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
8786recnd 11202 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
88 fourierdlem80.c . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐶 ∈ ℝ)
8988recnd 11202 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐶 ∈ ℂ)
9089adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ)
9187, 90subcld 11533 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ)
92 2cnd 12264 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 2 ∈ ℂ)
9383, 76sstrd 3957 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
9493sselda 3946 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℂ)
9594halfcld 12427 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (𝑠 / 2) ∈ ℂ)
9695sincld 16098 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (sin‘(𝑠 / 2)) ∈ ℂ)
9792, 96mulcld 11194 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
98 2ne0 12290 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ≠ 0
9998a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 2 ≠ 0)
100 fourierdlem80.ab . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π))
101100sselda 3946 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ (-π[,]π))
102 eqcom 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑠 = 0 ↔ 0 = 𝑠)
103102biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑠 = 0 → 0 = 𝑠)
104103adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑠 ∈ (𝐴[,]𝐵) ∧ 𝑠 = 0) → 0 = 𝑠)
105 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑠 ∈ (𝐴[,]𝐵) ∧ 𝑠 = 0) → 𝑠 ∈ (𝐴[,]𝐵))
106104, 105eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑠 ∈ (𝐴[,]𝐵) ∧ 𝑠 = 0) → 0 ∈ (𝐴[,]𝐵))
107106adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑠 = 0) → 0 ∈ (𝐴[,]𝐵))
108 fourierdlem80.n0 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
109108ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑠 = 0) → ¬ 0 ∈ (𝐴[,]𝐵))
110107, 109pm2.65da 816 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → ¬ 𝑠 = 0)
111110neqned 2932 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ≠ 0)
112 fourierdlem44 46149 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
113101, 111, 112syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (sin‘(𝑠 / 2)) ≠ 0)
11492, 96, 99, 113mulne0d 11830 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
11591, 97, 114divcld 11958 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))) ∈ ℂ)
116115, 1fmptd 7086 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑂:(𝐴[,]𝐵)⟶ℂ)
117 ioossre 13368 . . . . . . . . . . . . . . . . . . . . 21 ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ℝ
118117a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ℝ)
119 eqid 2729 . . . . . . . . . . . . . . . . . . . . 21 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
120 tgioo4 24693 . . . . . . . . . . . . . . . . . . . . 21 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
121119, 120dvres 25812 . . . . . . . . . . . . . . . . . . . 20 (((ℝ ⊆ ℂ ∧ 𝑂:(𝐴[,]𝐵)⟶ℂ) ∧ ((𝐴[,]𝐵) ⊆ ℝ ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ℝ)) → (ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
12276, 116, 83, 118, 121syl22anc 838 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
123 ioontr 45509 . . . . . . . . . . . . . . . . . . . 20 ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))
124123reseq2i 5947 . . . . . . . . . . . . . . . . . . 19 ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
125122, 124eqtrdi 2780 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
126125adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0..^𝑁)) → (ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
12774, 126eqtr2d 2765 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (0..^𝑁)) → ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (ℝ D 𝑌))
128127dmeqd 5869 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0..^𝑁)) → dom ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = dom (ℝ D 𝑌))
12977adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℝ)
13079adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑋 ∈ ℝ)
13183adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐴[,]𝐵) ⊆ ℝ)
13234adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑆:(0...𝑁)⟶(𝐴[,]𝐵))
133 elfzofz 13636 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ (0..^𝑁) → 𝑗 ∈ (0...𝑁))
134133adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0...𝑁))
135132, 134ffvelcdmd 7057 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑆𝑗) ∈ (𝐴[,]𝐵))
136131, 135sseldd 3947 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑆𝑗) ∈ ℝ)
137 fzofzp1 13725 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ (0..^𝑁) → (𝑗 + 1) ∈ (0...𝑁))
138137adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑗 + 1) ∈ (0...𝑁))
139132, 138ffvelcdmd 7057 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑆‘(𝑗 + 1)) ∈ (𝐴[,]𝐵))
140131, 139sseldd 3947 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑆‘(𝑗 + 1)) ∈ ℝ)
141 fdv . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0..^𝑁)) → (ℝ D (𝐹𝐼)):𝐼⟶ℝ)
142 fourierdlem80.i . . . . . . . . . . . . . . . . . . . . . 22 𝐼 = ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))
143142feq2i 6680 . . . . . . . . . . . . . . . . . . . . 21 ((ℝ D (𝐹𝐼)):𝐼⟶ℝ ↔ (ℝ D (𝐹𝐼)):((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ)
144141, 143sylib 218 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → (ℝ D (𝐹𝐼)):((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ)
145142reseq2i 5947 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹𝐼) = (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))
146145oveq2i 7398 . . . . . . . . . . . . . . . . . . . . 21 (ℝ D (𝐹𝐼)) = (ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))
147146feq1i 6679 . . . . . . . . . . . . . . . . . . . 20 ((ℝ D (𝐹𝐼)):((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ ↔ (ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))):((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ)
148144, 147sylib 218 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))):((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ)
149100adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐴[,]𝐵) ⊆ (-π[,]π))
15070, 149sstrd 3957 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ (-π[,]π))
151108adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → ¬ 0 ∈ (𝐴[,]𝐵))
15270, 151ssneldd 3949 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → ¬ 0 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
15388adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐶 ∈ ℝ)
154129, 130, 136, 140, 148, 150, 152, 153, 66fourierdlem57 46161 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (0..^𝑁)) → ((ℝ D 𝑌):((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))⟶ℝ ∧ (ℝ D 𝑌) = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))))) ∧ (ℝ D (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (cos‘(𝑠 / 2))))
155154simpli 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0..^𝑁)) → ((ℝ D 𝑌):((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))⟶ℝ ∧ (ℝ D 𝑌) = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2)))))
156155simpld 494 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (0..^𝑁)) → (ℝ D 𝑌):((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))⟶ℝ)
157 fdm 6697 . . . . . . . . . . . . . . . 16 ((ℝ D 𝑌):((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))⟶ℝ → dom (ℝ D 𝑌) = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
158156, 157syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0..^𝑁)) → dom (ℝ D 𝑌) = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
159128, 158eqtr2d 2765 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) = dom ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
160 resss 5972 . . . . . . . . . . . . . . 15 ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ⊆ (ℝ D 𝑂)
161 dmss 5866 . . . . . . . . . . . . . . 15 (((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ⊆ (ℝ D 𝑂) → dom ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ⊆ dom (ℝ D 𝑂))
162160, 161mp1i 13 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑁)) → dom ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ⊆ dom (ℝ D 𝑂))
163159, 162eqsstrd 3981 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ dom (ℝ D 𝑂))
1641633adant3 1132 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ dom (ℝ D 𝑂))
165 simp3 1138 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
166164, 165sseldd 3947 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ dom (ℝ D 𝑂))
16765, 166ffvelcdmd 7057 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)
1681673exp 1119 . . . . . . . . 9 (𝜑 → (𝑗 ∈ (0..^𝑁) → (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)))
169168adantr 480 . . . . . . . 8 ((𝜑𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → (𝑗 ∈ (0..^𝑁) → (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)))
17063, 64, 169rexlimd 3244 . . . . . . 7 ((𝜑𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → (∃𝑗 ∈ (0..^𝑁)𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ))
17157, 170mpd 15 . . . . . 6 ((𝜑𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)
17250, 171jaodan 959 . . . . 5 ((𝜑 ∧ (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∨ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)
17328, 45, 172syl2anc 584 . . . 4 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)
174173abscld 15405 . . 3 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ)
17527, 174sylan2 593 . 2 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ)
176 id 22 . . . 4 (𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
177176, 15eleqtrdi 2838 . . 3 (𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
178 elsni 4606 . . . . . 6 (𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))} → 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)))
179 simpr 484 . . . . . . . 8 ((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)))
180 fzfid 13938 . . . . . . . . . . 11 (𝜑 → (0...𝑁) ∈ Fin)
181 rnffi 45169 . . . . . . . . . . 11 ((𝑆:(0...𝑁)⟶(𝐴[,]𝐵) ∧ (0...𝑁) ∈ Fin) → ran 𝑆 ∈ Fin)
18234, 180, 181syl2anc 584 . . . . . . . . . 10 (𝜑 → ran 𝑆 ∈ Fin)
183 infi 9213 . . . . . . . . . 10 (ran 𝑆 ∈ Fin → (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∈ Fin)
184182, 183syl 17 . . . . . . . . 9 (𝜑 → (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∈ Fin)
185184adantr 480 . . . . . . . 8 ((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∈ Fin)
186179, 185eqeltrd 2828 . . . . . . 7 ((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → 𝑟 ∈ Fin)
187 nfv 1914 . . . . . . . . 9 𝑠𝜑
188 nfcv 2891 . . . . . . . . . . 11 𝑠ran 𝑆
189 nfcv 2891 . . . . . . . . . . . . 13 𝑠
190 nfcv 2891 . . . . . . . . . . . . 13 𝑠 D
191 nfmpt1 5206 . . . . . . . . . . . . . 14 𝑠(𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
1921, 191nfcxfr 2889 . . . . . . . . . . . . 13 𝑠𝑂
193189, 190, 192nfov 7417 . . . . . . . . . . . 12 𝑠(ℝ D 𝑂)
194193nfdm 5915 . . . . . . . . . . 11 𝑠dom (ℝ D 𝑂)
195188, 194nfin 4187 . . . . . . . . . 10 𝑠(ran 𝑆 ∩ dom (ℝ D 𝑂))
196195nfeq2 2909 . . . . . . . . 9 𝑠 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))
197187, 196nfan 1899 . . . . . . . 8 𝑠(𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)))
198 simpr 484 . . . . . . . . . . . . 13 ((𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∧ 𝑠𝑟) → 𝑠𝑟)
199 simpl 482 . . . . . . . . . . . . 13 ((𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∧ 𝑠𝑟) → 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)))
200198, 199eleqtrd 2830 . . . . . . . . . . . 12 ((𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∧ 𝑠𝑟) → 𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)))
201200, 48syl 17 . . . . . . . . . . 11 ((𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∧ 𝑠𝑟) → 𝑠 ∈ dom (ℝ D 𝑂))
202201adantll 714 . . . . . . . . . 10 (((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) ∧ 𝑠𝑟) → 𝑠 ∈ dom (ℝ D 𝑂))
20346ffvelcdmi 7055 . . . . . . . . . . 11 (𝑠 ∈ dom (ℝ D 𝑂) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)
204203abscld 15405 . . . . . . . . . 10 (𝑠 ∈ dom (ℝ D 𝑂) → (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ)
205202, 204syl 17 . . . . . . . . 9 (((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) ∧ 𝑠𝑟) → (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ)
206205ex 412 . . . . . . . 8 ((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → (𝑠𝑟 → (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ))
207197, 206ralrimi 3235 . . . . . . 7 ((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ)
208 fimaxre3 12129 . . . . . . 7 ((𝑟 ∈ Fin ∧ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
209186, 207, 208syl2anc 584 . . . . . 6 ((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
210178, 209sylan2 593 . . . . 5 ((𝜑𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
211210adantlr 715 . . . 4 (((𝜑𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) ∧ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
212 simpll 766 . . . . 5 (((𝜑𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) ∧ ¬ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → 𝜑)
213 elunnel1 4117 . . . . . 6 ((𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ∧ ¬ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
214213adantll 714 . . . . 5 (((𝜑𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) ∧ ¬ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
215 vex 3451 . . . . . . . . 9 𝑟 ∈ V
21618elrnmpt 5922 . . . . . . . . 9 (𝑟 ∈ V → (𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ↔ ∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
217215, 216ax-mp 5 . . . . . . . 8 (𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ↔ ∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
218217biimpi 216 . . . . . . 7 (𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → ∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
219218adantl 481 . . . . . 6 ((𝜑𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → ∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
22060nfcri 2883 . . . . . . . 8 𝑗 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
22158, 220nfan 1899 . . . . . . 7 𝑗(𝜑𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
222 nfv 1914 . . . . . . 7 𝑗𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦
223 fourierdlem80.fbdioo . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤)
224 fourierdlem80.fdvbdioo . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)
225 reeanv 3209 . . . . . . . . . . . . 13 (∃𝑤 ∈ ℝ ∃𝑧 ∈ ℝ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧) ↔ (∃𝑤 ∈ ℝ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧))
226223, 224, 225sylanbrc 583 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∃𝑧 ∈ ℝ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧))
227 simp1 1136 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → (𝜑𝑗 ∈ (0..^𝑁)))
228 simp2l 1200 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → 𝑤 ∈ ℝ)
229 simp2r 1201 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → 𝑧 ∈ ℝ)
230227, 228, 229jca31 514 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ))
231 simp3l 1202 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤)
232 simp3r 1203 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)
233230, 231, 232jca31 514 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → (((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧))
234 fourierdlem80.ch . . . . . . . . . . . . . . . 16 (𝜒 ↔ (((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧))
235233, 234sylibr 234 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → 𝜒)
236234biimpi 216 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧))
237 simp-5l 784 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧) → 𝜑)
238236, 237syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝜑)
239238, 77syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝐹:ℝ⟶ℝ)
240238, 79syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑋 ∈ ℝ)
241 simp-4l 782 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧) → (𝜑𝑗 ∈ (0..^𝑁)))
242236, 241syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝜑𝑗 ∈ (0..^𝑁)))
243242, 136syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑆𝑗) ∈ ℝ)
244242, 140syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑆‘(𝑗 + 1)) ∈ ℝ)
245 fourierdlem80.slt . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑆𝑗) < (𝑆‘(𝑗 + 1)))
246242, 245syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑆𝑗) < (𝑆‘(𝑗 + 1)))
24769, 149sstrd 3957 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)[,](𝑆‘(𝑗 + 1))) ⊆ (-π[,]π))
248242, 247syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒 → ((𝑆𝑗)[,](𝑆‘(𝑗 + 1))) ⊆ (-π[,]π))
24969, 151ssneldd 3949 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → ¬ 0 ∈ ((𝑆𝑗)[,](𝑆‘(𝑗 + 1))))
250242, 249syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒 → ¬ 0 ∈ ((𝑆𝑗)[,](𝑆‘(𝑗 + 1))))
251242, 148syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))):((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ)
252 simp-4r 783 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧) → 𝑤 ∈ ℝ)
253236, 252syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑤 ∈ ℝ)
254236simplrd 769 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤)
255 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 ∈ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))) → 𝑡 ∈ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))
256255, 142eleqtrrdi 2839 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ∈ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))) → 𝑡𝐼)
257 rspa 3226 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤𝑡𝐼) → (abs‘(𝐹𝑡)) ≤ 𝑤)
258254, 256, 257syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑡 ∈ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))) → (abs‘(𝐹𝑡)) ≤ 𝑤)
259 simpllr 775 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧) → 𝑧 ∈ ℝ)
260236, 259syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑧 ∈ ℝ)
261146fveq1i 6859 . . . . . . . . . . . . . . . . . . . . . 22 ((ℝ D (𝐹𝐼))‘𝑡) = ((ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘𝑡)
262261fveq2i 6861 . . . . . . . . . . . . . . . . . . . . 21 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) = (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘𝑡))
263236simprd 495 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)
264263r19.21bi 3229 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑡𝐼) → (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)
265262, 264eqbrtrrid 5143 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑡𝐼) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘𝑡)) ≤ 𝑧)
266256, 265sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑡 ∈ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘𝑡)) ≤ 𝑧)
267238, 88syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝐶 ∈ ℝ)
268239, 240, 243, 244, 246, 248, 250, 251, 253, 258, 260, 266, 267, 66fourierdlem68 46172 . . . . . . . . . . . . . . . . . 18 (𝜒 → (dom (ℝ D 𝑌) = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ∧ ∃𝑦 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑌)(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦))
269268simprd 495 . . . . . . . . . . . . . . . . 17 (𝜒 → ∃𝑦 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑌)(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦)
270268simpld 494 . . . . . . . . . . . . . . . . . . 19 (𝜒 → dom (ℝ D 𝑌) = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
271270raleqdv 3299 . . . . . . . . . . . . . . . . . 18 (𝜒 → (∀𝑠 ∈ dom (ℝ D 𝑌)(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦 ↔ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦))
272271rexbidv 3157 . . . . . . . . . . . . . . . . 17 (𝜒 → (∃𝑦 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑌)(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦))
273269, 272mpbid 232 . . . . . . . . . . . . . . . 16 (𝜒 → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦)
274123eqcomi 2738 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) = ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
275274reseq2i 5947 . . . . . . . . . . . . . . . . . . . . . 22 ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
276275fveq1i 6859 . . . . . . . . . . . . . . . . . . . . 21 (((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑠) = (((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠)
277 fvres 6877 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → (((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑠) = ((ℝ D 𝑂)‘𝑠))
278277adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → (((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑠) = ((ℝ D 𝑂)‘𝑠))
279242, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜒 → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵))
280279resmptd 6011 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜒 → ((𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))
28167, 280eqtrid 2776 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒 → (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))
28266, 281eqtr4id 2783 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒𝑌 = (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
283282oveq2d 7403 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → (ℝ D 𝑌) = (ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
284283fveq1d 6860 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → ((ℝ D 𝑌)‘𝑠) = ((ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠))
285122fveq1d 6860 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠) = (((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠))
286238, 285syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → ((ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠) = (((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠))
287284, 286eqtr2d 2765 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠) = ((ℝ D 𝑌)‘𝑠))
288287adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → (((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠) = ((ℝ D 𝑌)‘𝑠))
289276, 278, 2883eqtr3a 2788 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((ℝ D 𝑂)‘𝑠) = ((ℝ D 𝑌)‘𝑠))
290289fveq2d 6862 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → (abs‘((ℝ D 𝑂)‘𝑠)) = (abs‘((ℝ D 𝑌)‘𝑠)))
291290breq1d 5117 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ (abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦))
292291ralbidva 3154 . . . . . . . . . . . . . . . . 17 (𝜒 → (∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦))
293292rexbidv 3157 . . . . . . . . . . . . . . . 16 (𝜒 → (∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦))
294273, 293mpbird 257 . . . . . . . . . . . . . . 15 (𝜒 → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
295235, 294syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
2962953exp 1119 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)))
297296rexlimdvv 3193 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑁)) → (∃𝑤 ∈ ℝ ∃𝑧 ∈ ℝ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦))
298226, 297mpd 15 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑁)) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
2992983adant3 1132 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
300 raleq 3296 . . . . . . . . . . . 12 (𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → (∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦))
3013003ad2ant3 1135 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → (∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦))
302301rexbidv 3157 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → (∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦))
303299, 302mpbird 257 . . . . . . . . 9 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
3043033exp 1119 . . . . . . . 8 (𝜑 → (𝑗 ∈ (0..^𝑁) → (𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)))
305304adantr 480 . . . . . . 7 ((𝜑𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → (𝑗 ∈ (0..^𝑁) → (𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)))
306221, 222, 305rexlimd 3244 . . . . . 6 ((𝜑𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → (∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦))
307219, 306mpd 15 . . . . 5 ((𝜑𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
308212, 214, 307syl2anc 584 . . . 4 (((𝜑𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) ∧ ¬ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
309211, 308pm2.61dan 812 . . 3 ((𝜑𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
310177, 309sylan2 593 . 2 ((𝜑𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
311 pm3.22 459 . . . . . . . . . . . 12 ((𝑟 ∈ dom (ℝ D 𝑂) ∧ 𝑟 ∈ ran 𝑆) → (𝑟 ∈ ran 𝑆𝑟 ∈ dom (ℝ D 𝑂)))
312 elin 3930 . . . . . . . . . . . 12 (𝑟 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) ↔ (𝑟 ∈ ran 𝑆𝑟 ∈ dom (ℝ D 𝑂)))
313311, 312sylibr 234 . . . . . . . . . . 11 ((𝑟 ∈ dom (ℝ D 𝑂) ∧ 𝑟 ∈ ran 𝑆) → 𝑟 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)))
314313adantll 714 . . . . . . . . . 10 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ 𝑟 ∈ ran 𝑆) → 𝑟 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)))
31541eqcomd 2735 . . . . . . . . . . 11 (𝜑 → (ran 𝑆 ∩ dom (ℝ D 𝑂)) = {(ran 𝑆 ∩ dom (ℝ D 𝑂))})
316315ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ 𝑟 ∈ ran 𝑆) → (ran 𝑆 ∩ dom (ℝ D 𝑂)) = {(ran 𝑆 ∩ dom (ℝ D 𝑂))})
317314, 316eleqtrd 2830 . . . . . . . . 9 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ 𝑟 ∈ ran 𝑆) → 𝑟 {(ran 𝑆 ∩ dom (ℝ D 𝑂))})
318317orcd 873 . . . . . . . 8 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ 𝑟 ∈ ran 𝑆) → (𝑟 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑟 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
319 simpll 766 . . . . . . . . . . 11 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → 𝜑)
32075a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → ℝ ⊆ ℂ)
321116adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → 𝑂:(𝐴[,]𝐵)⟶ℂ)
32281adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → 𝐴 ∈ ℝ)
32382adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → 𝐵 ∈ ℝ)
324322, 323iccssred 13395 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → (𝐴[,]𝐵) ⊆ ℝ)
325320, 321, 324dvbss 25802 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → dom (ℝ D 𝑂) ⊆ (𝐴[,]𝐵))
326 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → 𝑟 ∈ dom (ℝ D 𝑂))
327325, 326sseldd 3947 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → 𝑟 ∈ (𝐴[,]𝐵))
328327adantr 480 . . . . . . . . . . 11 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → 𝑟 ∈ (𝐴[,]𝐵))
329 simpr 484 . . . . . . . . . . 11 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ¬ 𝑟 ∈ ran 𝑆)
330 fourierdlem80.relioo . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑆𝑘)(,)(𝑆‘(𝑘 + 1))))
331 fveq2 6858 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑘 → (𝑆𝑗) = (𝑆𝑘))
332 oveq1 7394 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑘 → (𝑗 + 1) = (𝑘 + 1))
333332fveq2d 6862 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑘 → (𝑆‘(𝑗 + 1)) = (𝑆‘(𝑘 + 1)))
334331, 333oveq12d 7405 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑘 → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) = ((𝑆𝑘)(,)(𝑆‘(𝑘 + 1))))
335 ovex 7420 . . . . . . . . . . . . . . . 16 ((𝑆𝑘)(,)(𝑆‘(𝑘 + 1))) ∈ V
336334, 18, 335fvmpt 6968 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0..^𝑁) → ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘) = ((𝑆𝑘)(,)(𝑆‘(𝑘 + 1))))
337336eleq2d 2814 . . . . . . . . . . . . . 14 (𝑘 ∈ (0..^𝑁) → (𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘) ↔ 𝑟 ∈ ((𝑆𝑘)(,)(𝑆‘(𝑘 + 1)))))
338337rexbiia 3074 . . . . . . . . . . . . 13 (∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘) ↔ ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑆𝑘)(,)(𝑆‘(𝑘 + 1))))
339330, 338sylibr 234 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘))
34051, 18dmmpti 6662 . . . . . . . . . . . . 13 dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (0..^𝑁)
341340rexeqi 3298 . . . . . . . . . . . 12 (∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘) ↔ ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘))
342339, 341sylibr 234 . . . . . . . . . . 11 (((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘))
343319, 328, 329, 342syl21anc 837 . . . . . . . . . 10 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘))
344 funmpt 6554 . . . . . . . . . . 11 Fun (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
345 elunirn 7225 . . . . . . . . . . 11 (Fun (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑟 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ↔ ∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘)))
346344, 345mp1i 13 . . . . . . . . . 10 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → (𝑟 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ↔ ∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘)))
347343, 346mpbird 257 . . . . . . . . 9 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → 𝑟 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
348347olcd 874 . . . . . . . 8 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → (𝑟 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑟 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
349318, 348pm2.61dan 812 . . . . . . 7 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → (𝑟 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑟 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
350 elun 4116 . . . . . . 7 (𝑟 ∈ ( {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ (𝑟 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑟 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
351349, 350sylibr 234 . . . . . 6 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → 𝑟 ∈ ( {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
352351, 29eleqtrrdi 2839 . . . . 5 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → 𝑟 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
353352ralrimiva 3125 . . . 4 (𝜑 → ∀𝑟 ∈ dom (ℝ D 𝑂)𝑟 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
354 dfss3 3935 . . . 4 (dom (ℝ D 𝑂) ⊆ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ ∀𝑟 ∈ dom (ℝ D 𝑂)𝑟 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
355353, 354sylibr 234 . . 3 (𝜑 → dom (ℝ D 𝑂) ⊆ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
356355, 26sseqtrrdi 3988 . 2 (𝜑 → dom (ℝ D 𝑂) ⊆ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
35724, 175, 310, 356ssfiunibd 45307 1 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3447  cun 3912  cin 3913  wss 3914  {csn 4589   cuni 4871   ciun 4955   class class class wbr 5107  cmpt 5188  dom cdm 5638  ran crn 5639  cres 5640  Fun wfun 6505  wf 6507  cfv 6511  (class class class)co 7387  Fincfn 8918  cc 11066  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405  -cneg 11406   / cdiv 11835  2c2 12241  (,)cioo 13306  [,]cicc 13309  ...cfz 13468  ..^cfzo 13615  cexp 14026  abscabs 15200  sincsin 16029  cosccos 16030  πcpi 16032  TopOpenctopn 17384  topGenctg 17400  fldccnfld 21264  intcnt 22904   D cdv 25764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-fac 14239  df-bc 14268  df-hash 14296  df-shft 15033  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-limsup 15437  df-clim 15454  df-rlim 15455  df-sum 15653  df-ef 16033  df-sin 16035  df-cos 16036  df-pi 16038  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-lp 23023  df-perf 23024  df-cn 23114  df-cnp 23115  df-t1 23201  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-limc 25767  df-dv 25768
This theorem is referenced by:  fourierdlem103  46207  fourierdlem104  46208
  Copyright terms: Public domain W3C validator