Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem80 Structured version   Visualization version   GIF version

Theorem fourierdlem80 46141
Description: The derivative of 𝑂 is bounded on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem80.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem80.xre (𝜑𝑋 ∈ ℝ)
fourierdlem80.a (𝜑𝐴 ∈ ℝ)
fourierdlem80.b (𝜑𝐵 ∈ ℝ)
fourierdlem80.ab (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π))
fourierdlem80.n0 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
fourierdlem80.c (𝜑𝐶 ∈ ℝ)
fourierdlem80.o 𝑂 = (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
fourierdlem80.i 𝐼 = ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))
fourierdlem80.fbdioo ((𝜑𝑗 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤)
fourierdlem80.fdvbdioo ((𝜑𝑗 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)
fourierdlem80.sf (𝜑𝑆:(0...𝑁)⟶(𝐴[,]𝐵))
fourierdlem80.slt ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑆𝑗) < (𝑆‘(𝑗 + 1)))
fourierdlem80.sjss ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)[,](𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵))
fourierdlem80.relioo (((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑆𝑘)(,)(𝑆‘(𝑘 + 1))))
fdv ((𝜑𝑗 ∈ (0..^𝑁)) → (ℝ D (𝐹𝐼)):𝐼⟶ℝ)
fourierdlem80.y 𝑌 = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
fourierdlem80.ch (𝜒 ↔ (((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧))
Assertion
Ref Expression
fourierdlem80 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏)
Distinct variable groups:   𝐴,𝑏,𝑟,𝑠,𝑡   𝐵,𝑏,𝑟,𝑠,𝑡   𝐶,𝑏,𝑟,𝑠,𝑡   𝐹,𝑏,𝑟,𝑠,𝑡   𝑤,𝐹,𝑧,𝑠,𝑡   𝑤,𝐼,𝑧   𝑁,𝑏,𝑗,𝑟,𝑠   𝑘,𝑁,𝑗,𝑟   𝑤,𝑁,𝑧,𝑗   𝑂,𝑏,𝑗,𝑟   𝑤,𝑂,𝑧   𝑆,𝑏,𝑗,𝑟,𝑠,𝑡   𝑆,𝑘   𝑤,𝑆,𝑧   𝑋,𝑏,𝑟,𝑠,𝑡   𝑌,𝑠   𝜑,𝑏,𝑗,𝑟,𝑠   𝜒,𝑠,𝑡   𝜑,𝑤,𝑧
Allowed substitution hints:   𝜑(𝑡,𝑘)   𝜒(𝑧,𝑤,𝑗,𝑘,𝑟,𝑏)   𝐴(𝑧,𝑤,𝑗,𝑘)   𝐵(𝑧,𝑤,𝑗,𝑘)   𝐶(𝑧,𝑤,𝑗,𝑘)   𝐹(𝑗,𝑘)   𝐼(𝑡,𝑗,𝑘,𝑠,𝑟,𝑏)   𝑁(𝑡)   𝑂(𝑡,𝑘,𝑠)   𝑋(𝑧,𝑤,𝑗,𝑘)   𝑌(𝑧,𝑤,𝑡,𝑗,𝑘,𝑟,𝑏)

Proof of Theorem fourierdlem80
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem80.o . . . . . . . . 9 𝑂 = (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
2 oveq2 7438 . . . . . . . . . . . . 13 (𝑠 = 𝑡 → (𝑋 + 𝑠) = (𝑋 + 𝑡))
32fveq2d 6910 . . . . . . . . . . . 12 (𝑠 = 𝑡 → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑡)))
43oveq1d 7445 . . . . . . . . . . 11 (𝑠 = 𝑡 → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) = ((𝐹‘(𝑋 + 𝑡)) − 𝐶))
5 oveq1 7437 . . . . . . . . . . . . 13 (𝑠 = 𝑡 → (𝑠 / 2) = (𝑡 / 2))
65fveq2d 6910 . . . . . . . . . . . 12 (𝑠 = 𝑡 → (sin‘(𝑠 / 2)) = (sin‘(𝑡 / 2)))
76oveq2d 7446 . . . . . . . . . . 11 (𝑠 = 𝑡 → (2 · (sin‘(𝑠 / 2))) = (2 · (sin‘(𝑡 / 2))))
84, 7oveq12d 7448 . . . . . . . . . 10 (𝑠 = 𝑡 → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))) = (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))
98cbvmptv 5260 . . . . . . . . 9 (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))
101, 9eqtr2i 2763 . . . . . . . 8 (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2))))) = 𝑂
1110oveq2i 7441 . . . . . . 7 (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))) = (ℝ D 𝑂)
1211dmeqi 5917 . . . . . 6 dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))) = dom (ℝ D 𝑂)
1312ineq2i 4224 . . . . 5 (ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2))))))) = (ran 𝑆 ∩ dom (ℝ D 𝑂))
1413sneqi 4641 . . . 4 {(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} = {(ran 𝑆 ∩ dom (ℝ D 𝑂))}
1514uneq1i 4173 . . 3 ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
16 snfi 9081 . . . . 5 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∈ Fin
17 fzofi 14011 . . . . . 6 (0..^𝑁) ∈ Fin
18 eqid 2734 . . . . . . 7 (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
1918rnmptfi 45113 . . . . . 6 ((0..^𝑁) ∈ Fin → ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ Fin)
2017, 19ax-mp 5 . . . . 5 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ Fin
21 unfi 9209 . . . . 5 (({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∈ Fin ∧ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ Fin) → ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ∈ Fin)
2216, 20, 21mp2an 692 . . . 4 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ∈ Fin
2322a1i 11 . . 3 (𝜑 → ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ∈ Fin)
2415, 23eqeltrid 2842 . 2 (𝜑 → ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ∈ Fin)
25 id 22 . . . 4 (𝑠 ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑠 ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
2615unieqi 4923 . . . 4 ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
2725, 26eleqtrdi 2848 . . 3 (𝑠 ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
28 simpl 482 . . . . 5 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → 𝜑)
29 uniun 4934 . . . . . . . . 9 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ( {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
3029eleq2i 2830 . . . . . . . 8 (𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ 𝑠 ∈ ( {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
31 elun 4162 . . . . . . . 8 (𝑠 ∈ ( {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ (𝑠 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
3230, 31sylbb 219 . . . . . . 7 (𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → (𝑠 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
3332adantl 481 . . . . . 6 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (𝑠 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
34 fourierdlem80.sf . . . . . . . . . . 11 (𝜑𝑆:(0...𝑁)⟶(𝐴[,]𝐵))
35 ovex 7463 . . . . . . . . . . . 12 (0...𝑁) ∈ V
3635a1i 11 . . . . . . . . . . 11 (𝜑 → (0...𝑁) ∈ V)
3734, 36fexd 7246 . . . . . . . . . 10 (𝜑𝑆 ∈ V)
38 rnexg 7924 . . . . . . . . . 10 (𝑆 ∈ V → ran 𝑆 ∈ V)
39 inex1g 5324 . . . . . . . . . 10 (ran 𝑆 ∈ V → (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∈ V)
40 unisng 4929 . . . . . . . . . 10 ((ran 𝑆 ∩ dom (ℝ D 𝑂)) ∈ V → {(ran 𝑆 ∩ dom (ℝ D 𝑂))} = (ran 𝑆 ∩ dom (ℝ D 𝑂)))
4137, 38, 39, 404syl 19 . . . . . . . . 9 (𝜑 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} = (ran 𝑆 ∩ dom (ℝ D 𝑂)))
4241eleq2d 2824 . . . . . . . 8 (𝜑 → (𝑠 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ↔ 𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂))))
4342adantr 480 . . . . . . 7 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (𝑠 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ↔ 𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂))))
4443orbi1d 916 . . . . . 6 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ((𝑠 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∨ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))))
4533, 44mpbid 232 . . . . 5 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∨ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
46 dvf 25956 . . . . . . . . 9 (ℝ D 𝑂):dom (ℝ D 𝑂)⟶ℂ
4746a1i 11 . . . . . . . 8 (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) → (ℝ D 𝑂):dom (ℝ D 𝑂)⟶ℂ)
48 elinel2 4211 . . . . . . . 8 (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) → 𝑠 ∈ dom (ℝ D 𝑂))
4947, 48ffvelcdmd 7104 . . . . . . 7 (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)
5049adantl 481 . . . . . 6 ((𝜑𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)
51 ovex 7463 . . . . . . . . . . . 12 ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ∈ V
5251dfiun3 5982 . . . . . . . . . . 11 𝑗 ∈ (0..^𝑁)((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) = ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
5352eleq2i 2830 . . . . . . . . . 10 (𝑠 𝑗 ∈ (0..^𝑁)((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↔ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
5453biimpri 228 . . . . . . . . 9 (𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 𝑗 ∈ (0..^𝑁)((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
5554adantl 481 . . . . . . . 8 ((𝜑𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑠 𝑗 ∈ (0..^𝑁)((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
56 eliun 4999 . . . . . . . 8 (𝑠 𝑗 ∈ (0..^𝑁)((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↔ ∃𝑗 ∈ (0..^𝑁)𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
5755, 56sylib 218 . . . . . . 7 ((𝜑𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → ∃𝑗 ∈ (0..^𝑁)𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
58 nfv 1911 . . . . . . . . 9 𝑗𝜑
59 nfmpt1 5255 . . . . . . . . . . . 12 𝑗(𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
6059nfrn 5965 . . . . . . . . . . 11 𝑗ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
6160nfuni 4918 . . . . . . . . . 10 𝑗 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
6261nfcri 2894 . . . . . . . . 9 𝑗 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
6358, 62nfan 1896 . . . . . . . 8 𝑗(𝜑𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
64 nfv 1911 . . . . . . . 8 𝑗((ℝ D 𝑂)‘𝑠) ∈ ℂ
6546a1i 11 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → (ℝ D 𝑂):dom (ℝ D 𝑂)⟶ℂ)
66 fourierdlem80.y . . . . . . . . . . . . . . . . . . 19 𝑌 = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
671reseq1i 5995 . . . . . . . . . . . . . . . . . . . 20 (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = ((𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
68 ioossicc 13469 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑆𝑗)[,](𝑆‘(𝑗 + 1)))
69 fourierdlem80.sjss . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)[,](𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵))
7068, 69sstrid 4006 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵))
7170resmptd 6059 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))
7267, 71eqtrid 2786 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))
7366, 72eqtr4id 2793 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑌 = (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
7473oveq2d 7446 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0..^𝑁)) → (ℝ D 𝑌) = (ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
75 ax-resscn 11209 . . . . . . . . . . . . . . . . . . . . 21 ℝ ⊆ ℂ
7675a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ℝ ⊆ ℂ)
77 fourierdlem80.f . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐹:ℝ⟶ℝ)
7877adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝐹:ℝ⟶ℝ)
79 fourierdlem80.xre . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑋 ∈ ℝ)
8079adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑋 ∈ ℝ)
81 fourierdlem80.a . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐴 ∈ ℝ)
82 fourierdlem80.b . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐵 ∈ ℝ)
8381, 82iccssred 13470 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
8483sselda 3994 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℝ)
8580, 84readdcld 11287 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
8678, 85ffvelcdmd 7104 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
8786recnd 11286 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
88 fourierdlem80.c . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐶 ∈ ℝ)
8988recnd 11286 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐶 ∈ ℂ)
9089adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ)
9187, 90subcld 11617 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ)
92 2cnd 12341 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 2 ∈ ℂ)
9383, 76sstrd 4005 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
9493sselda 3994 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℂ)
9594halfcld 12508 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (𝑠 / 2) ∈ ℂ)
9695sincld 16162 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (sin‘(𝑠 / 2)) ∈ ℂ)
9792, 96mulcld 11278 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
98 2ne0 12367 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ≠ 0
9998a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 2 ≠ 0)
100 fourierdlem80.ab . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π))
101100sselda 3994 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ (-π[,]π))
102 eqcom 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑠 = 0 ↔ 0 = 𝑠)
103102biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑠 = 0 → 0 = 𝑠)
104103adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑠 ∈ (𝐴[,]𝐵) ∧ 𝑠 = 0) → 0 = 𝑠)
105 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑠 ∈ (𝐴[,]𝐵) ∧ 𝑠 = 0) → 𝑠 ∈ (𝐴[,]𝐵))
106104, 105eqeltrd 2838 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑠 ∈ (𝐴[,]𝐵) ∧ 𝑠 = 0) → 0 ∈ (𝐴[,]𝐵))
107106adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑠 = 0) → 0 ∈ (𝐴[,]𝐵))
108 fourierdlem80.n0 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
109108ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑠 = 0) → ¬ 0 ∈ (𝐴[,]𝐵))
110107, 109pm2.65da 817 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → ¬ 𝑠 = 0)
111110neqned 2944 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ≠ 0)
112 fourierdlem44 46106 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
113101, 111, 112syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (sin‘(𝑠 / 2)) ≠ 0)
11492, 96, 99, 113mulne0d 11912 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
11591, 97, 114divcld 12040 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))) ∈ ℂ)
116115, 1fmptd 7133 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑂:(𝐴[,]𝐵)⟶ℂ)
117 ioossre 13444 . . . . . . . . . . . . . . . . . . . . 21 ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ℝ
118117a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ℝ)
119 eqid 2734 . . . . . . . . . . . . . . . . . . . . 21 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
120119tgioo2 24838 . . . . . . . . . . . . . . . . . . . . 21 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
121119, 120dvres 25960 . . . . . . . . . . . . . . . . . . . 20 (((ℝ ⊆ ℂ ∧ 𝑂:(𝐴[,]𝐵)⟶ℂ) ∧ ((𝐴[,]𝐵) ⊆ ℝ ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ℝ)) → (ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
12276, 116, 83, 118, 121syl22anc 839 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
123 ioontr 45463 . . . . . . . . . . . . . . . . . . . 20 ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))
124123reseq2i 5996 . . . . . . . . . . . . . . . . . . 19 ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
125122, 124eqtrdi 2790 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
126125adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0..^𝑁)) → (ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
12774, 126eqtr2d 2775 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (0..^𝑁)) → ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (ℝ D 𝑌))
128127dmeqd 5918 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0..^𝑁)) → dom ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = dom (ℝ D 𝑌))
12977adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℝ)
13079adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑋 ∈ ℝ)
13183adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐴[,]𝐵) ⊆ ℝ)
13234adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑆:(0...𝑁)⟶(𝐴[,]𝐵))
133 elfzofz 13711 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ (0..^𝑁) → 𝑗 ∈ (0...𝑁))
134133adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0...𝑁))
135132, 134ffvelcdmd 7104 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑆𝑗) ∈ (𝐴[,]𝐵))
136131, 135sseldd 3995 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑆𝑗) ∈ ℝ)
137 fzofzp1 13799 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ (0..^𝑁) → (𝑗 + 1) ∈ (0...𝑁))
138137adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑗 + 1) ∈ (0...𝑁))
139132, 138ffvelcdmd 7104 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑆‘(𝑗 + 1)) ∈ (𝐴[,]𝐵))
140131, 139sseldd 3995 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑆‘(𝑗 + 1)) ∈ ℝ)
141 fdv . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0..^𝑁)) → (ℝ D (𝐹𝐼)):𝐼⟶ℝ)
142 fourierdlem80.i . . . . . . . . . . . . . . . . . . . . . 22 𝐼 = ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))
143142feq2i 6728 . . . . . . . . . . . . . . . . . . . . 21 ((ℝ D (𝐹𝐼)):𝐼⟶ℝ ↔ (ℝ D (𝐹𝐼)):((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ)
144141, 143sylib 218 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → (ℝ D (𝐹𝐼)):((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ)
145142reseq2i 5996 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹𝐼) = (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))
146145oveq2i 7441 . . . . . . . . . . . . . . . . . . . . 21 (ℝ D (𝐹𝐼)) = (ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))
147146feq1i 6727 . . . . . . . . . . . . . . . . . . . 20 ((ℝ D (𝐹𝐼)):((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ ↔ (ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))):((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ)
148144, 147sylib 218 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))):((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ)
149100adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐴[,]𝐵) ⊆ (-π[,]π))
15070, 149sstrd 4005 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ (-π[,]π))
151108adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → ¬ 0 ∈ (𝐴[,]𝐵))
15270, 151ssneldd 3997 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → ¬ 0 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
15388adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐶 ∈ ℝ)
154129, 130, 136, 140, 148, 150, 152, 153, 66fourierdlem57 46118 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (0..^𝑁)) → ((ℝ D 𝑌):((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))⟶ℝ ∧ (ℝ D 𝑌) = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))))) ∧ (ℝ D (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (cos‘(𝑠 / 2))))
155154simpli 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0..^𝑁)) → ((ℝ D 𝑌):((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))⟶ℝ ∧ (ℝ D 𝑌) = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2)))))
156155simpld 494 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (0..^𝑁)) → (ℝ D 𝑌):((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))⟶ℝ)
157 fdm 6745 . . . . . . . . . . . . . . . 16 ((ℝ D 𝑌):((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))⟶ℝ → dom (ℝ D 𝑌) = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
158156, 157syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0..^𝑁)) → dom (ℝ D 𝑌) = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
159128, 158eqtr2d 2775 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) = dom ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
160 resss 6021 . . . . . . . . . . . . . . 15 ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ⊆ (ℝ D 𝑂)
161 dmss 5915 . . . . . . . . . . . . . . 15 (((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ⊆ (ℝ D 𝑂) → dom ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ⊆ dom (ℝ D 𝑂))
162160, 161mp1i 13 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑁)) → dom ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ⊆ dom (ℝ D 𝑂))
163159, 162eqsstrd 4033 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ dom (ℝ D 𝑂))
1641633adant3 1131 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ dom (ℝ D 𝑂))
165 simp3 1137 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
166164, 165sseldd 3995 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ dom (ℝ D 𝑂))
16765, 166ffvelcdmd 7104 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)
1681673exp 1118 . . . . . . . . 9 (𝜑 → (𝑗 ∈ (0..^𝑁) → (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)))
169168adantr 480 . . . . . . . 8 ((𝜑𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → (𝑗 ∈ (0..^𝑁) → (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)))
17063, 64, 169rexlimd 3263 . . . . . . 7 ((𝜑𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → (∃𝑗 ∈ (0..^𝑁)𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ))
17157, 170mpd 15 . . . . . 6 ((𝜑𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)
17250, 171jaodan 959 . . . . 5 ((𝜑 ∧ (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∨ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)
17328, 45, 172syl2anc 584 . . . 4 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)
174173abscld 15471 . . 3 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ)
17527, 174sylan2 593 . 2 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ)
176 id 22 . . . 4 (𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
177176, 15eleqtrdi 2848 . . 3 (𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
178 elsni 4647 . . . . . 6 (𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))} → 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)))
179 simpr 484 . . . . . . . 8 ((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)))
180 fzfid 14010 . . . . . . . . . . 11 (𝜑 → (0...𝑁) ∈ Fin)
181 rnffi 45117 . . . . . . . . . . 11 ((𝑆:(0...𝑁)⟶(𝐴[,]𝐵) ∧ (0...𝑁) ∈ Fin) → ran 𝑆 ∈ Fin)
18234, 180, 181syl2anc 584 . . . . . . . . . 10 (𝜑 → ran 𝑆 ∈ Fin)
183 infi 9299 . . . . . . . . . 10 (ran 𝑆 ∈ Fin → (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∈ Fin)
184182, 183syl 17 . . . . . . . . 9 (𝜑 → (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∈ Fin)
185184adantr 480 . . . . . . . 8 ((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∈ Fin)
186179, 185eqeltrd 2838 . . . . . . 7 ((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → 𝑟 ∈ Fin)
187 nfv 1911 . . . . . . . . 9 𝑠𝜑
188 nfcv 2902 . . . . . . . . . . 11 𝑠ran 𝑆
189 nfcv 2902 . . . . . . . . . . . . 13 𝑠
190 nfcv 2902 . . . . . . . . . . . . 13 𝑠 D
191 nfmpt1 5255 . . . . . . . . . . . . . 14 𝑠(𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
1921, 191nfcxfr 2900 . . . . . . . . . . . . 13 𝑠𝑂
193189, 190, 192nfov 7460 . . . . . . . . . . . 12 𝑠(ℝ D 𝑂)
194193nfdm 5964 . . . . . . . . . . 11 𝑠dom (ℝ D 𝑂)
195188, 194nfin 4231 . . . . . . . . . 10 𝑠(ran 𝑆 ∩ dom (ℝ D 𝑂))
196195nfeq2 2920 . . . . . . . . 9 𝑠 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))
197187, 196nfan 1896 . . . . . . . 8 𝑠(𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)))
198 simpr 484 . . . . . . . . . . . . 13 ((𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∧ 𝑠𝑟) → 𝑠𝑟)
199 simpl 482 . . . . . . . . . . . . 13 ((𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∧ 𝑠𝑟) → 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)))
200198, 199eleqtrd 2840 . . . . . . . . . . . 12 ((𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∧ 𝑠𝑟) → 𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)))
201200, 48syl 17 . . . . . . . . . . 11 ((𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∧ 𝑠𝑟) → 𝑠 ∈ dom (ℝ D 𝑂))
202201adantll 714 . . . . . . . . . 10 (((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) ∧ 𝑠𝑟) → 𝑠 ∈ dom (ℝ D 𝑂))
20346ffvelcdmi 7102 . . . . . . . . . . 11 (𝑠 ∈ dom (ℝ D 𝑂) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)
204203abscld 15471 . . . . . . . . . 10 (𝑠 ∈ dom (ℝ D 𝑂) → (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ)
205202, 204syl 17 . . . . . . . . 9 (((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) ∧ 𝑠𝑟) → (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ)
206205ex 412 . . . . . . . 8 ((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → (𝑠𝑟 → (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ))
207197, 206ralrimi 3254 . . . . . . 7 ((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ)
208 fimaxre3 12211 . . . . . . 7 ((𝑟 ∈ Fin ∧ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
209186, 207, 208syl2anc 584 . . . . . 6 ((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
210178, 209sylan2 593 . . . . 5 ((𝜑𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
211210adantlr 715 . . . 4 (((𝜑𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) ∧ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
212 simpll 767 . . . . 5 (((𝜑𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) ∧ ¬ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → 𝜑)
213 elunnel1 4163 . . . . . 6 ((𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ∧ ¬ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
214213adantll 714 . . . . 5 (((𝜑𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) ∧ ¬ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
215 vex 3481 . . . . . . . . 9 𝑟 ∈ V
21618elrnmpt 5971 . . . . . . . . 9 (𝑟 ∈ V → (𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ↔ ∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
217215, 216ax-mp 5 . . . . . . . 8 (𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ↔ ∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
218217biimpi 216 . . . . . . 7 (𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → ∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
219218adantl 481 . . . . . 6 ((𝜑𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → ∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
22060nfcri 2894 . . . . . . . 8 𝑗 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
22158, 220nfan 1896 . . . . . . 7 𝑗(𝜑𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
222 nfv 1911 . . . . . . 7 𝑗𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦
223 fourierdlem80.fbdioo . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤)
224 fourierdlem80.fdvbdioo . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)
225 reeanv 3226 . . . . . . . . . . . . 13 (∃𝑤 ∈ ℝ ∃𝑧 ∈ ℝ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧) ↔ (∃𝑤 ∈ ℝ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧))
226223, 224, 225sylanbrc 583 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∃𝑧 ∈ ℝ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧))
227 simp1 1135 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → (𝜑𝑗 ∈ (0..^𝑁)))
228 simp2l 1198 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → 𝑤 ∈ ℝ)
229 simp2r 1199 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → 𝑧 ∈ ℝ)
230227, 228, 229jca31 514 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ))
231 simp3l 1200 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤)
232 simp3r 1201 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)
233230, 231, 232jca31 514 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → (((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧))
234 fourierdlem80.ch . . . . . . . . . . . . . . . 16 (𝜒 ↔ (((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧))
235233, 234sylibr 234 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → 𝜒)
236234biimpi 216 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧))
237 simp-5l 785 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧) → 𝜑)
238236, 237syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝜑)
239238, 77syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝐹:ℝ⟶ℝ)
240238, 79syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑋 ∈ ℝ)
241 simp-4l 783 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧) → (𝜑𝑗 ∈ (0..^𝑁)))
242236, 241syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝜑𝑗 ∈ (0..^𝑁)))
243242, 136syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑆𝑗) ∈ ℝ)
244242, 140syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑆‘(𝑗 + 1)) ∈ ℝ)
245 fourierdlem80.slt . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑆𝑗) < (𝑆‘(𝑗 + 1)))
246242, 245syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑆𝑗) < (𝑆‘(𝑗 + 1)))
24769, 149sstrd 4005 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)[,](𝑆‘(𝑗 + 1))) ⊆ (-π[,]π))
248242, 247syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒 → ((𝑆𝑗)[,](𝑆‘(𝑗 + 1))) ⊆ (-π[,]π))
24969, 151ssneldd 3997 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → ¬ 0 ∈ ((𝑆𝑗)[,](𝑆‘(𝑗 + 1))))
250242, 249syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒 → ¬ 0 ∈ ((𝑆𝑗)[,](𝑆‘(𝑗 + 1))))
251242, 148syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))):((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ)
252 simp-4r 784 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧) → 𝑤 ∈ ℝ)
253236, 252syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑤 ∈ ℝ)
254236simplrd 770 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤)
255 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 ∈ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))) → 𝑡 ∈ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))
256255, 142eleqtrrdi 2849 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ∈ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))) → 𝑡𝐼)
257 rspa 3245 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤𝑡𝐼) → (abs‘(𝐹𝑡)) ≤ 𝑤)
258254, 256, 257syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑡 ∈ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))) → (abs‘(𝐹𝑡)) ≤ 𝑤)
259 simpllr 776 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧) → 𝑧 ∈ ℝ)
260236, 259syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑧 ∈ ℝ)
261146fveq1i 6907 . . . . . . . . . . . . . . . . . . . . . 22 ((ℝ D (𝐹𝐼))‘𝑡) = ((ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘𝑡)
262261fveq2i 6909 . . . . . . . . . . . . . . . . . . . . 21 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) = (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘𝑡))
263236simprd 495 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)
264263r19.21bi 3248 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑡𝐼) → (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)
265262, 264eqbrtrrid 5183 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑡𝐼) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘𝑡)) ≤ 𝑧)
266256, 265sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑡 ∈ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘𝑡)) ≤ 𝑧)
267238, 88syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝐶 ∈ ℝ)
268239, 240, 243, 244, 246, 248, 250, 251, 253, 258, 260, 266, 267, 66fourierdlem68 46129 . . . . . . . . . . . . . . . . . 18 (𝜒 → (dom (ℝ D 𝑌) = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ∧ ∃𝑦 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑌)(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦))
269268simprd 495 . . . . . . . . . . . . . . . . 17 (𝜒 → ∃𝑦 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑌)(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦)
270268simpld 494 . . . . . . . . . . . . . . . . . . 19 (𝜒 → dom (ℝ D 𝑌) = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
271270raleqdv 3323 . . . . . . . . . . . . . . . . . 18 (𝜒 → (∀𝑠 ∈ dom (ℝ D 𝑌)(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦 ↔ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦))
272271rexbidv 3176 . . . . . . . . . . . . . . . . 17 (𝜒 → (∃𝑦 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑌)(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦))
273269, 272mpbid 232 . . . . . . . . . . . . . . . 16 (𝜒 → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦)
274123eqcomi 2743 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) = ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
275274reseq2i 5996 . . . . . . . . . . . . . . . . . . . . . 22 ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
276275fveq1i 6907 . . . . . . . . . . . . . . . . . . . . 21 (((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑠) = (((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠)
277 fvres 6925 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → (((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑠) = ((ℝ D 𝑂)‘𝑠))
278277adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → (((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑠) = ((ℝ D 𝑂)‘𝑠))
279242, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜒 → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵))
280279resmptd 6059 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜒 → ((𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))
28167, 280eqtrid 2786 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒 → (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))
28266, 281eqtr4id 2793 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒𝑌 = (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
283282oveq2d 7446 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → (ℝ D 𝑌) = (ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
284283fveq1d 6908 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → ((ℝ D 𝑌)‘𝑠) = ((ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠))
285122fveq1d 6908 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠) = (((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠))
286238, 285syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → ((ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠) = (((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠))
287284, 286eqtr2d 2775 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠) = ((ℝ D 𝑌)‘𝑠))
288287adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → (((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠) = ((ℝ D 𝑌)‘𝑠))
289276, 278, 2883eqtr3a 2798 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((ℝ D 𝑂)‘𝑠) = ((ℝ D 𝑌)‘𝑠))
290289fveq2d 6910 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → (abs‘((ℝ D 𝑂)‘𝑠)) = (abs‘((ℝ D 𝑌)‘𝑠)))
291290breq1d 5157 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ (abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦))
292291ralbidva 3173 . . . . . . . . . . . . . . . . 17 (𝜒 → (∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦))
293292rexbidv 3176 . . . . . . . . . . . . . . . 16 (𝜒 → (∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦))
294273, 293mpbird 257 . . . . . . . . . . . . . . 15 (𝜒 → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
295235, 294syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
2962953exp 1118 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)))
297296rexlimdvv 3209 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑁)) → (∃𝑤 ∈ ℝ ∃𝑧 ∈ ℝ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦))
298226, 297mpd 15 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑁)) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
2992983adant3 1131 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
300 raleq 3320 . . . . . . . . . . . 12 (𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → (∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦))
3013003ad2ant3 1134 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → (∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦))
302301rexbidv 3176 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → (∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦))
303299, 302mpbird 257 . . . . . . . . 9 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
3043033exp 1118 . . . . . . . 8 (𝜑 → (𝑗 ∈ (0..^𝑁) → (𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)))
305304adantr 480 . . . . . . 7 ((𝜑𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → (𝑗 ∈ (0..^𝑁) → (𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)))
306221, 222, 305rexlimd 3263 . . . . . 6 ((𝜑𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → (∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦))
307219, 306mpd 15 . . . . 5 ((𝜑𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
308212, 214, 307syl2anc 584 . . . 4 (((𝜑𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) ∧ ¬ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
309211, 308pm2.61dan 813 . . 3 ((𝜑𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
310177, 309sylan2 593 . 2 ((𝜑𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
311 pm3.22 459 . . . . . . . . . . . 12 ((𝑟 ∈ dom (ℝ D 𝑂) ∧ 𝑟 ∈ ran 𝑆) → (𝑟 ∈ ran 𝑆𝑟 ∈ dom (ℝ D 𝑂)))
312 elin 3978 . . . . . . . . . . . 12 (𝑟 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) ↔ (𝑟 ∈ ran 𝑆𝑟 ∈ dom (ℝ D 𝑂)))
313311, 312sylibr 234 . . . . . . . . . . 11 ((𝑟 ∈ dom (ℝ D 𝑂) ∧ 𝑟 ∈ ran 𝑆) → 𝑟 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)))
314313adantll 714 . . . . . . . . . 10 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ 𝑟 ∈ ran 𝑆) → 𝑟 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)))
31541eqcomd 2740 . . . . . . . . . . 11 (𝜑 → (ran 𝑆 ∩ dom (ℝ D 𝑂)) = {(ran 𝑆 ∩ dom (ℝ D 𝑂))})
316315ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ 𝑟 ∈ ran 𝑆) → (ran 𝑆 ∩ dom (ℝ D 𝑂)) = {(ran 𝑆 ∩ dom (ℝ D 𝑂))})
317314, 316eleqtrd 2840 . . . . . . . . 9 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ 𝑟 ∈ ran 𝑆) → 𝑟 {(ran 𝑆 ∩ dom (ℝ D 𝑂))})
318317orcd 873 . . . . . . . 8 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ 𝑟 ∈ ran 𝑆) → (𝑟 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑟 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
319 simpll 767 . . . . . . . . . . 11 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → 𝜑)
32075a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → ℝ ⊆ ℂ)
321116adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → 𝑂:(𝐴[,]𝐵)⟶ℂ)
32281adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → 𝐴 ∈ ℝ)
32382adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → 𝐵 ∈ ℝ)
324322, 323iccssred 13470 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → (𝐴[,]𝐵) ⊆ ℝ)
325320, 321, 324dvbss 25950 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → dom (ℝ D 𝑂) ⊆ (𝐴[,]𝐵))
326 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → 𝑟 ∈ dom (ℝ D 𝑂))
327325, 326sseldd 3995 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → 𝑟 ∈ (𝐴[,]𝐵))
328327adantr 480 . . . . . . . . . . 11 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → 𝑟 ∈ (𝐴[,]𝐵))
329 simpr 484 . . . . . . . . . . 11 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ¬ 𝑟 ∈ ran 𝑆)
330 fourierdlem80.relioo . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑆𝑘)(,)(𝑆‘(𝑘 + 1))))
331 fveq2 6906 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑘 → (𝑆𝑗) = (𝑆𝑘))
332 oveq1 7437 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑘 → (𝑗 + 1) = (𝑘 + 1))
333332fveq2d 6910 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑘 → (𝑆‘(𝑗 + 1)) = (𝑆‘(𝑘 + 1)))
334331, 333oveq12d 7448 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑘 → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) = ((𝑆𝑘)(,)(𝑆‘(𝑘 + 1))))
335 ovex 7463 . . . . . . . . . . . . . . . 16 ((𝑆𝑘)(,)(𝑆‘(𝑘 + 1))) ∈ V
336334, 18, 335fvmpt 7015 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0..^𝑁) → ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘) = ((𝑆𝑘)(,)(𝑆‘(𝑘 + 1))))
337336eleq2d 2824 . . . . . . . . . . . . . 14 (𝑘 ∈ (0..^𝑁) → (𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘) ↔ 𝑟 ∈ ((𝑆𝑘)(,)(𝑆‘(𝑘 + 1)))))
338337rexbiia 3089 . . . . . . . . . . . . 13 (∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘) ↔ ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑆𝑘)(,)(𝑆‘(𝑘 + 1))))
339330, 338sylibr 234 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘))
34051, 18dmmpti 6712 . . . . . . . . . . . . 13 dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (0..^𝑁)
341340rexeqi 3322 . . . . . . . . . . . 12 (∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘) ↔ ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘))
342339, 341sylibr 234 . . . . . . . . . . 11 (((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘))
343319, 328, 329, 342syl21anc 838 . . . . . . . . . 10 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘))
344 funmpt 6605 . . . . . . . . . . 11 Fun (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
345 elunirn 7270 . . . . . . . . . . 11 (Fun (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑟 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ↔ ∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘)))
346344, 345mp1i 13 . . . . . . . . . 10 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → (𝑟 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ↔ ∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘)))
347343, 346mpbird 257 . . . . . . . . 9 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → 𝑟 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
348347olcd 874 . . . . . . . 8 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → (𝑟 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑟 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
349318, 348pm2.61dan 813 . . . . . . 7 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → (𝑟 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑟 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
350 elun 4162 . . . . . . 7 (𝑟 ∈ ( {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ (𝑟 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑟 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
351349, 350sylibr 234 . . . . . 6 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → 𝑟 ∈ ( {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
352351, 29eleqtrrdi 2849 . . . . 5 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → 𝑟 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
353352ralrimiva 3143 . . . 4 (𝜑 → ∀𝑟 ∈ dom (ℝ D 𝑂)𝑟 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
354 dfss3 3983 . . . 4 (dom (ℝ D 𝑂) ⊆ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ ∀𝑟 ∈ dom (ℝ D 𝑂)𝑟 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
355353, 354sylibr 234 . . 3 (𝜑 → dom (ℝ D 𝑂) ⊆ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
356355, 26sseqtrrdi 4046 . 2 (𝜑 → dom (ℝ D 𝑂) ⊆ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
35724, 175, 310, 356ssfiunibd 45259 1 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1536  wcel 2105  wne 2937  wral 3058  wrex 3067  Vcvv 3477  cun 3960  cin 3961  wss 3962  {csn 4630   cuni 4911   ciun 4995   class class class wbr 5147  cmpt 5230  dom cdm 5688  ran crn 5689  cres 5690  Fun wfun 6556  wf 6558  cfv 6562  (class class class)co 7430  Fincfn 8983  cc 11150  cr 11151  0cc0 11152  1c1 11153   + caddc 11155   · cmul 11157   < clt 11292  cle 11293  cmin 11489  -cneg 11490   / cdiv 11917  2c2 12318  (,)cioo 13383  [,]cicc 13386  ...cfz 13543  ..^cfzo 13690  cexp 14098  abscabs 15269  sincsin 16095  cosccos 16096  πcpi 16098  TopOpenctopn 17467  topGenctg 17483  fldccnfld 21381  intcnt 23040   D cdv 25912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-fi 9448  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-q 12988  df-rp 13032  df-xneg 13151  df-xadd 13152  df-xmul 13153  df-ioo 13387  df-ioc 13388  df-ico 13389  df-icc 13390  df-fz 13544  df-fzo 13691  df-fl 13828  df-mod 13906  df-seq 14039  df-exp 14099  df-fac 14309  df-bc 14338  df-hash 14366  df-shft 15102  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-limsup 15503  df-clim 15520  df-rlim 15521  df-sum 15719  df-ef 16099  df-sin 16101  df-cos 16102  df-pi 16104  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17468  df-topn 17469  df-0g 17487  df-gsum 17488  df-topgen 17489  df-pt 17490  df-prds 17493  df-xrs 17548  df-qtop 17553  df-imas 17554  df-xps 17556  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-submnd 18809  df-mulg 19098  df-cntz 19347  df-cmn 19814  df-psmet 21373  df-xmet 21374  df-met 21375  df-bl 21376  df-mopn 21377  df-fbas 21378  df-fg 21379  df-cnfld 21382  df-top 22915  df-topon 22932  df-topsp 22954  df-bases 22968  df-cld 23042  df-ntr 23043  df-cls 23044  df-nei 23121  df-lp 23159  df-perf 23160  df-cn 23250  df-cnp 23251  df-t1 23337  df-haus 23338  df-cmp 23410  df-tx 23585  df-hmeo 23778  df-fil 23869  df-fm 23961  df-flim 23962  df-flf 23963  df-xms 24345  df-ms 24346  df-tms 24347  df-cncf 24917  df-limc 25915  df-dv 25916
This theorem is referenced by:  fourierdlem103  46164  fourierdlem104  46165
  Copyright terms: Public domain W3C validator