| Step | Hyp | Ref
| Expression |
| 1 | | fourierdlem80.o |
. . . . . . . . 9
⊢ 𝑂 = (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) |
| 2 | | oveq2 7439 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑡 → (𝑋 + 𝑠) = (𝑋 + 𝑡)) |
| 3 | 2 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑡 → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑡))) |
| 4 | 3 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑡 → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) = ((𝐹‘(𝑋 + 𝑡)) − 𝐶)) |
| 5 | | oveq1 7438 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑡 → (𝑠 / 2) = (𝑡 / 2)) |
| 6 | 5 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑡 → (sin‘(𝑠 / 2)) = (sin‘(𝑡 / 2))) |
| 7 | 6 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑡 → (2 · (sin‘(𝑠 / 2))) = (2 ·
(sin‘(𝑡 /
2)))) |
| 8 | 4, 7 | oveq12d 7449 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑡 → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))) = (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2))))) |
| 9 | 8 | cbvmptv 5255 |
. . . . . . . . 9
⊢ (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2))))) |
| 10 | 1, 9 | eqtr2i 2766 |
. . . . . . . 8
⊢ (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2))))) = 𝑂 |
| 11 | 10 | oveq2i 7442 |
. . . . . . 7
⊢ (ℝ
D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))) = (ℝ D 𝑂) |
| 12 | 11 | dmeqi 5915 |
. . . . . 6
⊢ dom
(ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))) = dom (ℝ D
𝑂) |
| 13 | 12 | ineq2i 4217 |
. . . . 5
⊢ (ran
𝑆 ∩ dom (ℝ D
(𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2))))))) = (ran 𝑆 ∩ dom (ℝ D 𝑂)) |
| 14 | 13 | sneqi 4637 |
. . . 4
⊢ {(ran
𝑆 ∩ dom (ℝ D
(𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} = {(ran 𝑆 ∩ dom (ℝ D 𝑂))} |
| 15 | 14 | uneq1i 4164 |
. . 3
⊢ ({(ran
𝑆 ∩ dom (ℝ D
(𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) = ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
| 16 | | snfi 9083 |
. . . . 5
⊢ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∈
Fin |
| 17 | | fzofi 14015 |
. . . . . 6
⊢
(0..^𝑁) ∈
Fin |
| 18 | | eqid 2737 |
. . . . . . 7
⊢ (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 19 | 18 | rnmptfi 45176 |
. . . . . 6
⊢
((0..^𝑁) ∈ Fin
→ ran (𝑗 ∈
(0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ Fin) |
| 20 | 17, 19 | ax-mp 5 |
. . . . 5
⊢ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ Fin |
| 21 | | unfi 9211 |
. . . . 5
⊢ (({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∈ Fin ∧ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ Fin) → ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) ∈ Fin) |
| 22 | 16, 20, 21 | mp2an 692 |
. . . 4
⊢ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) ∈ Fin |
| 23 | 22 | a1i 11 |
. . 3
⊢ (𝜑 → ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) ∈ Fin) |
| 24 | 15, 23 | eqeltrid 2845 |
. 2
⊢ (𝜑 → ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) ∈ Fin) |
| 25 | | id 22 |
. . . 4
⊢ (𝑠 ∈ ∪ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑠 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
(𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 26 | 15 | unieqi 4919 |
. . . 4
⊢ ∪ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) = ∪
({(ran 𝑆 ∩ dom (ℝ
D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
| 27 | 25, 26 | eleqtrdi 2851 |
. . 3
⊢ (𝑠 ∈ ∪ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑠 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 28 | | simpl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) → 𝜑) |
| 29 | | uniun 4930 |
. . . . . . . . 9
⊢ ∪ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) = (∪
{(ran 𝑆 ∩ dom (ℝ
D 𝑂))} ∪ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
| 30 | 29 | eleq2i 2833 |
. . . . . . . 8
⊢ (𝑠 ∈ ∪ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ 𝑠 ∈ (∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 31 | | elun 4153 |
. . . . . . . 8
⊢ (𝑠 ∈ (∪ {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ (𝑠 ∈ ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∨ 𝑠 ∈ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 32 | 30, 31 | sylbb 219 |
. . . . . . 7
⊢ (𝑠 ∈ ∪ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → (𝑠 ∈ ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∨ 𝑠 ∈ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 33 | 32 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (𝑠 ∈ ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∨ 𝑠 ∈ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 34 | | fourierdlem80.sf |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆:(0...𝑁)⟶(𝐴[,]𝐵)) |
| 35 | | ovex 7464 |
. . . . . . . . . . . 12
⊢
(0...𝑁) ∈
V |
| 36 | 35 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → (0...𝑁) ∈ V) |
| 37 | 34, 36 | fexd 7247 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑆 ∈ V) |
| 38 | | rnexg 7924 |
. . . . . . . . . 10
⊢ (𝑆 ∈ V → ran 𝑆 ∈ V) |
| 39 | | inex1g 5319 |
. . . . . . . . . 10
⊢ (ran
𝑆 ∈ V → (ran
𝑆 ∩ dom (ℝ D
𝑂)) ∈
V) |
| 40 | | unisng 4925 |
. . . . . . . . . 10
⊢ ((ran
𝑆 ∩ dom (ℝ D
𝑂)) ∈ V → ∪ {(ran 𝑆 ∩ dom (ℝ D 𝑂))} = (ran 𝑆 ∩ dom (ℝ D 𝑂))) |
| 41 | 37, 38, 39, 40 | 4syl 19 |
. . . . . . . . 9
⊢ (𝜑 → ∪ {(ran 𝑆 ∩ dom (ℝ D 𝑂))} = (ran 𝑆 ∩ dom (ℝ D 𝑂))) |
| 42 | 41 | eleq2d 2827 |
. . . . . . . 8
⊢ (𝜑 → (𝑠 ∈ ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ↔ 𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)))) |
| 43 | 42 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (𝑠 ∈ ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ↔ 𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)))) |
| 44 | 43 | orbi1d 917 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ((𝑠 ∈ ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∨ 𝑠 ∈ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∨ 𝑠 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))))) |
| 45 | 33, 44 | mpbid 232 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∨ 𝑠 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 46 | | dvf 25942 |
. . . . . . . . 9
⊢ (ℝ
D 𝑂):dom (ℝ D 𝑂)⟶ℂ |
| 47 | 46 | a1i 11 |
. . . . . . . 8
⊢ (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) → (ℝ D 𝑂):dom (ℝ D 𝑂)⟶ℂ) |
| 48 | | elinel2 4202 |
. . . . . . . 8
⊢ (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) → 𝑠 ∈ dom (ℝ D 𝑂)) |
| 49 | 47, 48 | ffvelcdmd 7105 |
. . . . . . 7
⊢ (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ) |
| 50 | 49 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ) |
| 51 | | ovex 7464 |
. . . . . . . . . . . 12
⊢ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ∈ V |
| 52 | 51 | dfiun3 5980 |
. . . . . . . . . . 11
⊢ ∪ 𝑗 ∈ (0..^𝑁)((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) = ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 53 | 52 | eleq2i 2833 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ∪ 𝑗 ∈ (0..^𝑁)((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↔ 𝑠 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
| 54 | 53 | biimpri 228 |
. . . . . . . . 9
⊢ (𝑠 ∈ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ ∪
𝑗 ∈ (0..^𝑁)((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 55 | 54 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑠 ∈ ∪
𝑗 ∈ (0..^𝑁)((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 56 | | eliun 4995 |
. . . . . . . 8
⊢ (𝑠 ∈ ∪ 𝑗 ∈ (0..^𝑁)((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↔ ∃𝑗 ∈ (0..^𝑁)𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 57 | 55, 56 | sylib 218 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → ∃𝑗 ∈ (0..^𝑁)𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 58 | | nfv 1914 |
. . . . . . . . 9
⊢
Ⅎ𝑗𝜑 |
| 59 | | nfmpt1 5250 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 60 | 59 | nfrn 5963 |
. . . . . . . . . . 11
⊢
Ⅎ𝑗ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 61 | 60 | nfuni 4914 |
. . . . . . . . . 10
⊢
Ⅎ𝑗∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 62 | 61 | nfcri 2897 |
. . . . . . . . 9
⊢
Ⅎ𝑗 𝑠 ∈ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 63 | 58, 62 | nfan 1899 |
. . . . . . . 8
⊢
Ⅎ𝑗(𝜑 ∧ 𝑠 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
| 64 | | nfv 1914 |
. . . . . . . 8
⊢
Ⅎ𝑗((ℝ D
𝑂)‘𝑠) ∈ ℂ |
| 65 | 46 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (ℝ D 𝑂):dom (ℝ D 𝑂)⟶ℂ) |
| 66 | | fourierdlem80.y |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑌 = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) |
| 67 | 1 | reseq1i 5993 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = ((𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 68 | | ioossicc 13473 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑆‘𝑗)[,](𝑆‘(𝑗 + 1))) |
| 69 | | fourierdlem80.sjss |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗)[,](𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵)) |
| 70 | 68, 69 | sstrid 3995 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵)) |
| 71 | 70 | resmptd 6058 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))) |
| 72 | 67, 71 | eqtrid 2789 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))) |
| 73 | 66, 72 | eqtr4id 2796 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑌 = (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
| 74 | 73 | oveq2d 7447 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D 𝑌) = (ℝ D (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 75 | | ax-resscn 11212 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ℝ
⊆ ℂ |
| 76 | 75 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ℝ ⊆
ℂ) |
| 77 | | fourierdlem80.f |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
| 78 | 77 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝐹:ℝ⟶ℝ) |
| 79 | | fourierdlem80.xre |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝑋 ∈ ℝ) |
| 80 | 79 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑋 ∈ ℝ) |
| 81 | | fourierdlem80.a |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 82 | | fourierdlem80.b |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 83 | 81, 82 | iccssred 13474 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
| 84 | 83 | sselda 3983 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℝ) |
| 85 | 80, 84 | readdcld 11290 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (𝑋 + 𝑠) ∈ ℝ) |
| 86 | 78, 85 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ) |
| 87 | 86 | recnd 11289 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ) |
| 88 | | fourierdlem80.c |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 89 | 88 | recnd 11289 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐶 ∈ ℂ) |
| 90 | 89 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ) |
| 91 | 87, 90 | subcld 11620 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ) |
| 92 | | 2cnd 12344 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 2 ∈ ℂ) |
| 93 | 83, 76 | sstrd 3994 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℂ) |
| 94 | 93 | sselda 3983 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℂ) |
| 95 | 94 | halfcld 12511 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (𝑠 / 2) ∈ ℂ) |
| 96 | 95 | sincld 16166 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (sin‘(𝑠 / 2)) ∈ ℂ) |
| 97 | 92, 96 | mulcld 11281 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈
ℂ) |
| 98 | | 2ne0 12370 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 2 ≠
0 |
| 99 | 98 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 2 ≠ 0) |
| 100 | | fourierdlem80.ab |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π)) |
| 101 | 100 | sselda 3983 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ (-π[,]π)) |
| 102 | | eqcom 2744 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑠 = 0 ↔ 0 = 𝑠) |
| 103 | 102 | biimpi 216 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑠 = 0 → 0 = 𝑠) |
| 104 | 103 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑠 ∈ (𝐴[,]𝐵) ∧ 𝑠 = 0) → 0 = 𝑠) |
| 105 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑠 ∈ (𝐴[,]𝐵) ∧ 𝑠 = 0) → 𝑠 ∈ (𝐴[,]𝐵)) |
| 106 | 104, 105 | eqeltrd 2841 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑠 ∈ (𝐴[,]𝐵) ∧ 𝑠 = 0) → 0 ∈ (𝐴[,]𝐵)) |
| 107 | 106 | adantll 714 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑠 = 0) → 0 ∈ (𝐴[,]𝐵)) |
| 108 | | fourierdlem80.n0 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵)) |
| 109 | 108 | ad2antrr 726 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑠 = 0) → ¬ 0 ∈ (𝐴[,]𝐵)) |
| 110 | 107, 109 | pm2.65da 817 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → ¬ 𝑠 = 0) |
| 111 | 110 | neqned 2947 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ≠ 0) |
| 112 | | fourierdlem44 46166 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑠 ∈ (-π[,]π) ∧
𝑠 ≠ 0) →
(sin‘(𝑠 / 2)) ≠
0) |
| 113 | 101, 111,
112 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (sin‘(𝑠 / 2)) ≠ 0) |
| 114 | 92, 96, 99, 113 | mulne0d 11915 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (2 · (sin‘(𝑠 / 2))) ≠ 0) |
| 115 | 91, 97, 114 | divcld 12043 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))) ∈
ℂ) |
| 116 | 115, 1 | fmptd 7134 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑂:(𝐴[,]𝐵)⟶ℂ) |
| 117 | | ioossre 13448 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ℝ |
| 118 | 117 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ℝ) |
| 119 | | eqid 2737 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 120 | | tgioo4 24826 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
| 121 | 119, 120 | dvres 25946 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((ℝ ⊆ ℂ ∧ 𝑂:(𝐴[,]𝐵)⟶ℂ) ∧ ((𝐴[,]𝐵) ⊆ ℝ ∧ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ℝ)) → (ℝ D
(𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran
(,)))‘((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 122 | 76, 116, 83, 118, 121 | syl22anc 839 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (ℝ D (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran
(,)))‘((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 123 | | ioontr 45524 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((int‘(topGen‘ran (,)))‘((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) |
| 124 | 123 | reseq2i 5994 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((ℝ
D 𝑂) ↾
((int‘(topGen‘ran (,)))‘((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 125 | 122, 124 | eqtrdi 2793 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (ℝ D (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
| 126 | 125 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
| 127 | 74, 126 | eqtr2d 2778 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((ℝ D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = (ℝ D 𝑌)) |
| 128 | 127 | dmeqd 5916 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → dom ((ℝ D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = dom (ℝ D 𝑌)) |
| 129 | 77 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℝ) |
| 130 | 79 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑋 ∈ ℝ) |
| 131 | 83 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐴[,]𝐵) ⊆ ℝ) |
| 132 | 34 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑆:(0...𝑁)⟶(𝐴[,]𝐵)) |
| 133 | | elfzofz 13715 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ∈ (0..^𝑁) → 𝑗 ∈ (0...𝑁)) |
| 134 | 133 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0...𝑁)) |
| 135 | 132, 134 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘𝑗) ∈ (𝐴[,]𝐵)) |
| 136 | 131, 135 | sseldd 3984 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘𝑗) ∈ ℝ) |
| 137 | | fzofzp1 13803 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ∈ (0..^𝑁) → (𝑗 + 1) ∈ (0...𝑁)) |
| 138 | 137 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗 + 1) ∈ (0...𝑁)) |
| 139 | 132, 138 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘(𝑗 + 1)) ∈ (𝐴[,]𝐵)) |
| 140 | 131, 139 | sseldd 3984 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘(𝑗 + 1)) ∈ ℝ) |
| 141 | | fdv |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ 𝐼)):𝐼⟶ℝ) |
| 142 | | fourierdlem80.i |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝐼 = ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))) |
| 143 | 142 | feq2i 6728 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((ℝ
D (𝐹 ↾ 𝐼)):𝐼⟶ℝ ↔ (ℝ D (𝐹 ↾ 𝐼)):((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ) |
| 144 | 141, 143 | sylib 218 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ 𝐼)):((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ) |
| 145 | 142 | reseq2i 5994 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐹 ↾ 𝐼) = (𝐹 ↾ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))) |
| 146 | 145 | oveq2i 7442 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ℝ
D (𝐹 ↾ 𝐼)) = (ℝ D (𝐹 ↾ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))) |
| 147 | 146 | feq1i 6727 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((ℝ
D (𝐹 ↾ 𝐼)):((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ ↔ (ℝ D
(𝐹 ↾ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))):((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ) |
| 148 | 144, 147 | sylib 218 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))):((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ) |
| 149 | 100 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐴[,]𝐵) ⊆ (-π[,]π)) |
| 150 | 70, 149 | sstrd 3994 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆
(-π[,]π)) |
| 151 | 108 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ¬ 0 ∈ (𝐴[,]𝐵)) |
| 152 | 70, 151 | ssneldd 3986 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ¬ 0 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 153 | 88 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐶 ∈ ℝ) |
| 154 | 129, 130,
136, 140, 148, 150, 152, 153, 66 | fourierdlem57 46178 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((ℝ D 𝑌):((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))⟶ℝ ∧ (ℝ D 𝑌) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) −
((cos‘(𝑠 / 2))
· ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))))) ∧
(ℝ D (𝑠 ∈
((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (cos‘(𝑠 / 2)))) |
| 155 | 154 | simpli 483 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((ℝ D 𝑌):((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))⟶ℝ ∧ (ℝ D 𝑌) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) −
((cos‘(𝑠 / 2))
· ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 /
2)))↑2))))) |
| 156 | 155 | simpld 494 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D 𝑌):((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))⟶ℝ) |
| 157 | | fdm 6745 |
. . . . . . . . . . . . . . . 16
⊢ ((ℝ
D 𝑌):((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))⟶ℝ → dom (ℝ D
𝑌) = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 158 | 156, 157 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → dom (ℝ D 𝑌) = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 159 | 128, 158 | eqtr2d 2778 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) = dom ((ℝ D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
| 160 | | resss 6019 |
. . . . . . . . . . . . . . 15
⊢ ((ℝ
D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ⊆ (ℝ D 𝑂) |
| 161 | | dmss 5913 |
. . . . . . . . . . . . . . 15
⊢
(((ℝ D 𝑂)
↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ⊆ (ℝ D 𝑂) → dom ((ℝ D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ⊆ dom (ℝ D 𝑂)) |
| 162 | 160, 161 | mp1i 13 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → dom ((ℝ D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ⊆ dom (ℝ D 𝑂)) |
| 163 | 159, 162 | eqsstrd 4018 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ dom (ℝ D 𝑂)) |
| 164 | 163 | 3adant3 1133 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ dom (ℝ D 𝑂)) |
| 165 | | simp3 1139 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 166 | 164, 165 | sseldd 3984 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ dom (ℝ D 𝑂)) |
| 167 | 65, 166 | ffvelcdmd 7105 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ) |
| 168 | 167 | 3exp 1120 |
. . . . . . . . 9
⊢ (𝜑 → (𝑗 ∈ (0..^𝑁) → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ))) |
| 169 | 168 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → (𝑗 ∈ (0..^𝑁) → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ))) |
| 170 | 63, 64, 169 | rexlimd 3266 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → (∃𝑗 ∈ (0..^𝑁)𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)) |
| 171 | 57, 170 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ) |
| 172 | 50, 171 | jaodan 960 |
. . . . 5
⊢ ((𝜑 ∧ (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∨ 𝑠 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ) |
| 173 | 28, 45, 172 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ) |
| 174 | 173 | abscld 15475 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (abs‘((ℝ D
𝑂)‘𝑠)) ∈ ℝ) |
| 175 | 27, 174 | sylan2 593 |
. 2
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
(𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (abs‘((ℝ D
𝑂)‘𝑠)) ∈ ℝ) |
| 176 | | id 22 |
. . . 4
⊢ (𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 177 | 176, 15 | eleqtrdi 2851 |
. . 3
⊢ (𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 178 | | elsni 4643 |
. . . . . 6
⊢ (𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))} → 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) |
| 179 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) |
| 180 | | fzfid 14014 |
. . . . . . . . . . 11
⊢ (𝜑 → (0...𝑁) ∈ Fin) |
| 181 | | rnffi 45180 |
. . . . . . . . . . 11
⊢ ((𝑆:(0...𝑁)⟶(𝐴[,]𝐵) ∧ (0...𝑁) ∈ Fin) → ran 𝑆 ∈ Fin) |
| 182 | 34, 180, 181 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → ran 𝑆 ∈ Fin) |
| 183 | | infi 9302 |
. . . . . . . . . 10
⊢ (ran
𝑆 ∈ Fin → (ran
𝑆 ∩ dom (ℝ D
𝑂)) ∈
Fin) |
| 184 | 182, 183 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∈ Fin) |
| 185 | 184 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∈ Fin) |
| 186 | 179, 185 | eqeltrd 2841 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → 𝑟 ∈ Fin) |
| 187 | | nfv 1914 |
. . . . . . . . 9
⊢
Ⅎ𝑠𝜑 |
| 188 | | nfcv 2905 |
. . . . . . . . . . 11
⊢
Ⅎ𝑠ran
𝑆 |
| 189 | | nfcv 2905 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑠ℝ |
| 190 | | nfcv 2905 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑠
D |
| 191 | | nfmpt1 5250 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑠(𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) |
| 192 | 1, 191 | nfcxfr 2903 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑠𝑂 |
| 193 | 189, 190,
192 | nfov 7461 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑠(ℝ D 𝑂) |
| 194 | 193 | nfdm 5962 |
. . . . . . . . . . 11
⊢
Ⅎ𝑠dom
(ℝ D 𝑂) |
| 195 | 188, 194 | nfin 4224 |
. . . . . . . . . 10
⊢
Ⅎ𝑠(ran
𝑆 ∩ dom (ℝ D
𝑂)) |
| 196 | 195 | nfeq2 2923 |
. . . . . . . . 9
⊢
Ⅎ𝑠 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)) |
| 197 | 187, 196 | nfan 1899 |
. . . . . . . 8
⊢
Ⅎ𝑠(𝜑 ∧ 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) |
| 198 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∧ 𝑠 ∈ 𝑟) → 𝑠 ∈ 𝑟) |
| 199 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∧ 𝑠 ∈ 𝑟) → 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) |
| 200 | 198, 199 | eleqtrd 2843 |
. . . . . . . . . . . 12
⊢ ((𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∧ 𝑠 ∈ 𝑟) → 𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂))) |
| 201 | 200, 48 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∧ 𝑠 ∈ 𝑟) → 𝑠 ∈ dom (ℝ D 𝑂)) |
| 202 | 201 | adantll 714 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) ∧ 𝑠 ∈ 𝑟) → 𝑠 ∈ dom (ℝ D 𝑂)) |
| 203 | 46 | ffvelcdmi 7103 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ dom (ℝ D 𝑂) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ) |
| 204 | 203 | abscld 15475 |
. . . . . . . . . 10
⊢ (𝑠 ∈ dom (ℝ D 𝑂) → (abs‘((ℝ D
𝑂)‘𝑠)) ∈ ℝ) |
| 205 | 202, 204 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) ∧ 𝑠 ∈ 𝑟) → (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ) |
| 206 | 205 | ex 412 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → (𝑠 ∈ 𝑟 → (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ)) |
| 207 | 197, 206 | ralrimi 3257 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ) |
| 208 | | fimaxre3 12214 |
. . . . . . 7
⊢ ((𝑟 ∈ Fin ∧ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
| 209 | 186, 207,
208 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
| 210 | 178, 209 | sylan2 593 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
| 211 | 210 | adantlr 715 |
. . . 4
⊢ (((𝜑 ∧ 𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) ∧ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
| 212 | | simpll 767 |
. . . . 5
⊢ (((𝜑 ∧ 𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) ∧ ¬ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → 𝜑) |
| 213 | | elunnel1 4154 |
. . . . . 6
⊢ ((𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) ∧ ¬ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
| 214 | 213 | adantll 714 |
. . . . 5
⊢ (((𝜑 ∧ 𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) ∧ ¬ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
| 215 | | vex 3484 |
. . . . . . . . 9
⊢ 𝑟 ∈ V |
| 216 | 18 | elrnmpt 5969 |
. . . . . . . . 9
⊢ (𝑟 ∈ V → (𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ↔ ∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
| 217 | 215, 216 | ax-mp 5 |
. . . . . . . 8
⊢ (𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ↔ ∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 218 | 217 | biimpi 216 |
. . . . . . 7
⊢ (𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → ∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 219 | 218 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → ∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 220 | 60 | nfcri 2897 |
. . . . . . . 8
⊢
Ⅎ𝑗 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 221 | 58, 220 | nfan 1899 |
. . . . . . 7
⊢
Ⅎ𝑗(𝜑 ∧ 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
| 222 | | nfv 1914 |
. . . . . . 7
⊢
Ⅎ𝑗∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 |
| 223 | | fourierdlem80.fbdioo |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤) |
| 224 | | fourierdlem80.fdvbdioo |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧) |
| 225 | | reeanv 3229 |
. . . . . . . . . . . . 13
⊢
(∃𝑤 ∈
ℝ ∃𝑧 ∈
ℝ (∀𝑡 ∈
𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧) ↔ (∃𝑤 ∈ ℝ ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) |
| 226 | 223, 224,
225 | sylanbrc 583 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∃𝑧 ∈ ℝ (∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) |
| 227 | | simp1 1137 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) → (𝜑 ∧ 𝑗 ∈ (0..^𝑁))) |
| 228 | | simp2l 1200 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) → 𝑤 ∈ ℝ) |
| 229 | | simp2r 1201 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) → 𝑧 ∈ ℝ) |
| 230 | 227, 228,
229 | jca31 514 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) → (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ)) |
| 231 | | simp3l 1202 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) → ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤) |
| 232 | | simp3r 1203 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) → ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧) |
| 233 | 230, 231,
232 | jca31 514 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) → (((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤) ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) |
| 234 | | fourierdlem80.ch |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 ↔ (((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤) ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) |
| 235 | 233, 234 | sylibr 234 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) → 𝜒) |
| 236 | 234 | biimpi 216 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜒 → (((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤) ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) |
| 237 | | simp-5l 785 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤) ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧) → 𝜑) |
| 238 | 236, 237 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜒 → 𝜑) |
| 239 | 238, 77 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → 𝐹:ℝ⟶ℝ) |
| 240 | 238, 79 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → 𝑋 ∈ ℝ) |
| 241 | | simp-4l 783 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤) ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧) → (𝜑 ∧ 𝑗 ∈ (0..^𝑁))) |
| 242 | 236, 241 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜒 → (𝜑 ∧ 𝑗 ∈ (0..^𝑁))) |
| 243 | 242, 136 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → (𝑆‘𝑗) ∈ ℝ) |
| 244 | 242, 140 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → (𝑆‘(𝑗 + 1)) ∈ ℝ) |
| 245 | | fourierdlem80.slt |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘𝑗) < (𝑆‘(𝑗 + 1))) |
| 246 | 242, 245 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → (𝑆‘𝑗) < (𝑆‘(𝑗 + 1))) |
| 247 | 69, 149 | sstrd 3994 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗)[,](𝑆‘(𝑗 + 1))) ⊆
(-π[,]π)) |
| 248 | 242, 247 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → ((𝑆‘𝑗)[,](𝑆‘(𝑗 + 1))) ⊆
(-π[,]π)) |
| 249 | 69, 151 | ssneldd 3986 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ¬ 0 ∈ ((𝑆‘𝑗)[,](𝑆‘(𝑗 + 1)))) |
| 250 | 242, 249 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → ¬ 0 ∈ ((𝑆‘𝑗)[,](𝑆‘(𝑗 + 1)))) |
| 251 | 242, 148 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → (ℝ D (𝐹 ↾ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))):((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ) |
| 252 | | simp-4r 784 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤) ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧) → 𝑤 ∈ ℝ) |
| 253 | 236, 252 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → 𝑤 ∈ ℝ) |
| 254 | 236 | simplrd 770 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜒 → ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤) |
| 255 | | id 22 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 ∈ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))) → 𝑡 ∈ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))) |
| 256 | 255, 142 | eleqtrrdi 2852 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 ∈ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))) → 𝑡 ∈ 𝐼) |
| 257 | | rspa 3248 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((∀𝑡 ∈
𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ 𝑡 ∈ 𝐼) → (abs‘(𝐹‘𝑡)) ≤ 𝑤) |
| 258 | 254, 256,
257 | syl2an 596 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜒 ∧ 𝑡 ∈ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))) → (abs‘(𝐹‘𝑡)) ≤ 𝑤) |
| 259 | | simpllr 776 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤) ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧) → 𝑧 ∈ ℝ) |
| 260 | 236, 259 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → 𝑧 ∈ ℝ) |
| 261 | 146 | fveq1i 6907 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((ℝ
D (𝐹 ↾ 𝐼))‘𝑡) = ((ℝ D (𝐹 ↾ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘𝑡) |
| 262 | 261 | fveq2i 6909 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) = (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘𝑡)) |
| 263 | 236 | simprd 495 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜒 → ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧) |
| 264 | 263 | r19.21bi 3251 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜒 ∧ 𝑡 ∈ 𝐼) → (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧) |
| 265 | 262, 264 | eqbrtrrid 5179 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜒 ∧ 𝑡 ∈ 𝐼) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘𝑡)) ≤ 𝑧) |
| 266 | 256, 265 | sylan2 593 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜒 ∧ 𝑡 ∈ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))) → (abs‘((ℝ D
(𝐹 ↾ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘𝑡)) ≤ 𝑧) |
| 267 | 238, 88 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → 𝐶 ∈ ℝ) |
| 268 | 239, 240,
243, 244, 246, 248, 250, 251, 253, 258, 260, 266, 267, 66 | fourierdlem68 46189 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (dom (ℝ D 𝑌) = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ∧ ∃𝑦 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑌)(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦)) |
| 269 | 268 | simprd 495 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → ∃𝑦 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑌)(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦) |
| 270 | 268 | simpld 494 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → dom (ℝ D 𝑌) = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 271 | 270 | raleqdv 3326 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (∀𝑠 ∈ dom (ℝ D 𝑌)(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦 ↔ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦)) |
| 272 | 271 | rexbidv 3179 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → (∃𝑦 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑌)(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦)) |
| 273 | 269, 272 | mpbid 232 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦) |
| 274 | 123 | eqcomi 2746 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) = ((int‘(topGen‘ran
(,)))‘((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 275 | 274 | reseq2i 5994 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((ℝ
D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran
(,)))‘((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
| 276 | 275 | fveq1i 6907 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((ℝ D 𝑂)
↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑠) = (((ℝ D 𝑂) ↾ ((int‘(topGen‘ran
(,)))‘((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠) |
| 277 | | fvres 6925 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) → (((ℝ D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑠) = ((ℝ D 𝑂)‘𝑠)) |
| 278 | 277 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (((ℝ D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑠) = ((ℝ D 𝑂)‘𝑠)) |
| 279 | 242, 70 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜒 → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵)) |
| 280 | 279 | resmptd 6058 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜒 → ((𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))) |
| 281 | 67, 280 | eqtrid 2789 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜒 → (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))) |
| 282 | 66, 281 | eqtr4id 2796 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜒 → 𝑌 = (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
| 283 | 282 | oveq2d 7447 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜒 → (ℝ D 𝑌) = (ℝ D (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 284 | 283 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜒 → ((ℝ D 𝑌)‘𝑠) = ((ℝ D (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠)) |
| 285 | 122 | fveq1d 6908 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ((ℝ D (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠) = (((ℝ D 𝑂) ↾ ((int‘(topGen‘ran
(,)))‘((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠)) |
| 286 | 238, 285 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜒 → ((ℝ D (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠) = (((ℝ D 𝑂) ↾ ((int‘(topGen‘ran
(,)))‘((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠)) |
| 287 | 284, 286 | eqtr2d 2778 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜒 → (((ℝ D 𝑂) ↾
((int‘(topGen‘ran (,)))‘((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠) = ((ℝ D 𝑌)‘𝑠)) |
| 288 | 287 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (((ℝ D 𝑂) ↾
((int‘(topGen‘ran (,)))‘((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠) = ((ℝ D 𝑌)‘𝑠)) |
| 289 | 276, 278,
288 | 3eqtr3a 2801 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((ℝ D 𝑂)‘𝑠) = ((ℝ D 𝑌)‘𝑠)) |
| 290 | 289 | fveq2d 6910 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (abs‘((ℝ D 𝑂)‘𝑠)) = (abs‘((ℝ D 𝑌)‘𝑠))) |
| 291 | 290 | breq1d 5153 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ (abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦)) |
| 292 | 291 | ralbidva 3176 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → (∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦)) |
| 293 | 292 | rexbidv 3179 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → (∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦)) |
| 294 | 273, 293 | mpbird 257 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
| 295 | 235, 294 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
| 296 | 295 | 3exp 1120 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦))) |
| 297 | 296 | rexlimdvv 3212 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (∃𝑤 ∈ ℝ ∃𝑧 ∈ ℝ (∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)) |
| 298 | 226, 297 | mpd 15 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
| 299 | 298 | 3adant3 1133 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ 𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
| 300 | | raleq 3323 |
. . . . . . . . . . . 12
⊢ (𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) → (∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)) |
| 301 | 300 | 3ad2ant3 1136 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ 𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)) |
| 302 | 301 | rexbidv 3179 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ 𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)) |
| 303 | 299, 302 | mpbird 257 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ 𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
| 304 | 303 | 3exp 1120 |
. . . . . . . 8
⊢ (𝜑 → (𝑗 ∈ (0..^𝑁) → (𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦))) |
| 305 | 304 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → (𝑗 ∈ (0..^𝑁) → (𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦))) |
| 306 | 221, 222,
305 | rexlimd 3266 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → (∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)) |
| 307 | 219, 306 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
| 308 | 212, 214,
307 | syl2anc 584 |
. . . 4
⊢ (((𝜑 ∧ 𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) ∧ ¬ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
| 309 | 211, 308 | pm2.61dan 813 |
. . 3
⊢ ((𝜑 ∧ 𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
| 310 | 177, 309 | sylan2 593 |
. 2
⊢ ((𝜑 ∧ 𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
| 311 | | pm3.22 459 |
. . . . . . . . . . . 12
⊢ ((𝑟 ∈ dom (ℝ D 𝑂) ∧ 𝑟 ∈ ran 𝑆) → (𝑟 ∈ ran 𝑆 ∧ 𝑟 ∈ dom (ℝ D 𝑂))) |
| 312 | | elin 3967 |
. . . . . . . . . . . 12
⊢ (𝑟 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) ↔ (𝑟 ∈ ran 𝑆 ∧ 𝑟 ∈ dom (ℝ D 𝑂))) |
| 313 | 311, 312 | sylibr 234 |
. . . . . . . . . . 11
⊢ ((𝑟 ∈ dom (ℝ D 𝑂) ∧ 𝑟 ∈ ran 𝑆) → 𝑟 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂))) |
| 314 | 313 | adantll 714 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) ∧ 𝑟 ∈ ran 𝑆) → 𝑟 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂))) |
| 315 | 41 | eqcomd 2743 |
. . . . . . . . . . 11
⊢ (𝜑 → (ran 𝑆 ∩ dom (ℝ D 𝑂)) = ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))}) |
| 316 | 315 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) ∧ 𝑟 ∈ ran 𝑆) → (ran 𝑆 ∩ dom (ℝ D 𝑂)) = ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))}) |
| 317 | 314, 316 | eleqtrd 2843 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) ∧ 𝑟 ∈ ran 𝑆) → 𝑟 ∈ ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))}) |
| 318 | 317 | orcd 874 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) ∧ 𝑟 ∈ ran 𝑆) → (𝑟 ∈ ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∨ 𝑟 ∈ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 319 | | simpll 767 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → 𝜑) |
| 320 | 75 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) → ℝ ⊆
ℂ) |
| 321 | 116 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) → 𝑂:(𝐴[,]𝐵)⟶ℂ) |
| 322 | 81 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) → 𝐴 ∈ ℝ) |
| 323 | 82 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) → 𝐵 ∈ ℝ) |
| 324 | 322, 323 | iccssred 13474 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) → (𝐴[,]𝐵) ⊆ ℝ) |
| 325 | 320, 321,
324 | dvbss 25936 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) → dom (ℝ D 𝑂) ⊆ (𝐴[,]𝐵)) |
| 326 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) → 𝑟 ∈ dom (ℝ D 𝑂)) |
| 327 | 325, 326 | sseldd 3984 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) → 𝑟 ∈ (𝐴[,]𝐵)) |
| 328 | 327 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → 𝑟 ∈ (𝐴[,]𝐵)) |
| 329 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ¬ 𝑟 ∈ ran 𝑆) |
| 330 | | fourierdlem80.relioo |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑆‘𝑘)(,)(𝑆‘(𝑘 + 1)))) |
| 331 | | fveq2 6906 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑘 → (𝑆‘𝑗) = (𝑆‘𝑘)) |
| 332 | | oveq1 7438 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝑘 → (𝑗 + 1) = (𝑘 + 1)) |
| 333 | 332 | fveq2d 6910 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑘 → (𝑆‘(𝑗 + 1)) = (𝑆‘(𝑘 + 1))) |
| 334 | 331, 333 | oveq12d 7449 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑘 → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) = ((𝑆‘𝑘)(,)(𝑆‘(𝑘 + 1)))) |
| 335 | | ovex 7464 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆‘𝑘)(,)(𝑆‘(𝑘 + 1))) ∈ V |
| 336 | 334, 18, 335 | fvmpt 7016 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0..^𝑁) → ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘) = ((𝑆‘𝑘)(,)(𝑆‘(𝑘 + 1)))) |
| 337 | 336 | eleq2d 2827 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0..^𝑁) → (𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘) ↔ 𝑟 ∈ ((𝑆‘𝑘)(,)(𝑆‘(𝑘 + 1))))) |
| 338 | 337 | rexbiia 3092 |
. . . . . . . . . . . . 13
⊢
(∃𝑘 ∈
(0..^𝑁)𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘) ↔ ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑆‘𝑘)(,)(𝑆‘(𝑘 + 1)))) |
| 339 | 330, 338 | sylibr 234 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘)) |
| 340 | 51, 18 | dmmpti 6712 |
. . . . . . . . . . . . 13
⊢ dom
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = (0..^𝑁) |
| 341 | 340 | rexeqi 3325 |
. . . . . . . . . . . 12
⊢
(∃𝑘 ∈ dom
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘) ↔ ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘)) |
| 342 | 339, 341 | sylibr 234 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘)) |
| 343 | 319, 328,
329, 342 | syl21anc 838 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘)) |
| 344 | | funmpt 6604 |
. . . . . . . . . . 11
⊢ Fun
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
| 345 | | elunirn 7271 |
. . . . . . . . . . 11
⊢ (Fun
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑟 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ↔ ∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘))) |
| 346 | 344, 345 | mp1i 13 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → (𝑟 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ↔ ∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘))) |
| 347 | 343, 346 | mpbird 257 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → 𝑟 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
| 348 | 347 | olcd 875 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → (𝑟 ∈ ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∨ 𝑟 ∈ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 349 | 318, 348 | pm2.61dan 813 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) → (𝑟 ∈ ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∨ 𝑟 ∈ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 350 | | elun 4153 |
. . . . . . 7
⊢ (𝑟 ∈ (∪ {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ (𝑟 ∈ ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∨ 𝑟 ∈ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 351 | 349, 350 | sylibr 234 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) → 𝑟 ∈ (∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 352 | 351, 29 | eleqtrrdi 2852 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) → 𝑟 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 353 | 352 | ralrimiva 3146 |
. . . 4
⊢ (𝜑 → ∀𝑟 ∈ dom (ℝ D 𝑂)𝑟 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 354 | | dfss3 3972 |
. . . 4
⊢ (dom
(ℝ D 𝑂) ⊆ ∪ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ ∀𝑟 ∈ dom (ℝ D 𝑂)𝑟 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 355 | 353, 354 | sylibr 234 |
. . 3
⊢ (𝜑 → dom (ℝ D 𝑂) ⊆ ∪ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 356 | 355, 26 | sseqtrrdi 4025 |
. 2
⊢ (𝜑 → dom (ℝ D 𝑂) ⊆ ∪ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
| 357 | 24, 175, 310, 356 | ssfiunibd 45321 |
1
⊢ (𝜑 → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏) |