Step | Hyp | Ref
| Expression |
1 | | fourierdlem80.o |
. . . . . . . . 9
⊢ 𝑂 = (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) |
2 | | oveq2 7263 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑡 → (𝑋 + 𝑠) = (𝑋 + 𝑡)) |
3 | 2 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑡 → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑡))) |
4 | 3 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑡 → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) = ((𝐹‘(𝑋 + 𝑡)) − 𝐶)) |
5 | | oveq1 7262 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑡 → (𝑠 / 2) = (𝑡 / 2)) |
6 | 5 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑡 → (sin‘(𝑠 / 2)) = (sin‘(𝑡 / 2))) |
7 | 6 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑡 → (2 · (sin‘(𝑠 / 2))) = (2 ·
(sin‘(𝑡 /
2)))) |
8 | 4, 7 | oveq12d 7273 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑡 → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))) = (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2))))) |
9 | 8 | cbvmptv 5183 |
. . . . . . . . 9
⊢ (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2))))) |
10 | 1, 9 | eqtr2i 2767 |
. . . . . . . 8
⊢ (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2))))) = 𝑂 |
11 | 10 | oveq2i 7266 |
. . . . . . 7
⊢ (ℝ
D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))) = (ℝ D 𝑂) |
12 | 11 | dmeqi 5802 |
. . . . . 6
⊢ dom
(ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))) = dom (ℝ D
𝑂) |
13 | 12 | ineq2i 4140 |
. . . . 5
⊢ (ran
𝑆 ∩ dom (ℝ D
(𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2))))))) = (ran 𝑆 ∩ dom (ℝ D 𝑂)) |
14 | 13 | sneqi 4569 |
. . . 4
⊢ {(ran
𝑆 ∩ dom (ℝ D
(𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} = {(ran 𝑆 ∩ dom (ℝ D 𝑂))} |
15 | 14 | uneq1i 4089 |
. . 3
⊢ ({(ran
𝑆 ∩ dom (ℝ D
(𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) = ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
16 | | snfi 8788 |
. . . . 5
⊢ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∈
Fin |
17 | | fzofi 13622 |
. . . . . 6
⊢
(0..^𝑁) ∈
Fin |
18 | | eqid 2738 |
. . . . . . 7
⊢ (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
19 | 18 | rnmptfi 42596 |
. . . . . 6
⊢
((0..^𝑁) ∈ Fin
→ ran (𝑗 ∈
(0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ Fin) |
20 | 17, 19 | ax-mp 5 |
. . . . 5
⊢ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ Fin |
21 | | unfi 8917 |
. . . . 5
⊢ (({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∈ Fin ∧ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ Fin) → ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) ∈ Fin) |
22 | 16, 20, 21 | mp2an 688 |
. . . 4
⊢ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) ∈ Fin |
23 | 22 | a1i 11 |
. . 3
⊢ (𝜑 → ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) ∈ Fin) |
24 | 15, 23 | eqeltrid 2843 |
. 2
⊢ (𝜑 → ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) ∈ Fin) |
25 | | id 22 |
. . . 4
⊢ (𝑠 ∈ ∪ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑠 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
(𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
26 | 15 | unieqi 4849 |
. . . 4
⊢ ∪ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) = ∪
({(ran 𝑆 ∩ dom (ℝ
D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
27 | 25, 26 | eleqtrdi 2849 |
. . 3
⊢ (𝑠 ∈ ∪ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑠 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
28 | | simpl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) → 𝜑) |
29 | | uniun 4861 |
. . . . . . . . 9
⊢ ∪ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) = (∪
{(ran 𝑆 ∩ dom (ℝ
D 𝑂))} ∪ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
30 | 29 | eleq2i 2830 |
. . . . . . . 8
⊢ (𝑠 ∈ ∪ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ 𝑠 ∈ (∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
31 | | elun 4079 |
. . . . . . . 8
⊢ (𝑠 ∈ (∪ {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ (𝑠 ∈ ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∨ 𝑠 ∈ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
32 | 30, 31 | sylbb 218 |
. . . . . . 7
⊢ (𝑠 ∈ ∪ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → (𝑠 ∈ ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∨ 𝑠 ∈ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
33 | 32 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (𝑠 ∈ ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∨ 𝑠 ∈ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
34 | | fourierdlem80.sf |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑆:(0...𝑁)⟶(𝐴[,]𝐵)) |
35 | | ovex 7288 |
. . . . . . . . . . . . . 14
⊢
(0...𝑁) ∈
V |
36 | 35 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (0...𝑁) ∈ V) |
37 | 34, 36 | fexd 7085 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑆 ∈ V) |
38 | | rnexg 7725 |
. . . . . . . . . . . 12
⊢ (𝑆 ∈ V → ran 𝑆 ∈ V) |
39 | 37, 38 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ran 𝑆 ∈ V) |
40 | | inex1g 5238 |
. . . . . . . . . . 11
⊢ (ran
𝑆 ∈ V → (ran
𝑆 ∩ dom (ℝ D
𝑂)) ∈
V) |
41 | 39, 40 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∈ V) |
42 | | unisng 4857 |
. . . . . . . . . 10
⊢ ((ran
𝑆 ∩ dom (ℝ D
𝑂)) ∈ V → ∪ {(ran 𝑆 ∩ dom (ℝ D 𝑂))} = (ran 𝑆 ∩ dom (ℝ D 𝑂))) |
43 | 41, 42 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ∪ {(ran 𝑆 ∩ dom (ℝ D 𝑂))} = (ran 𝑆 ∩ dom (ℝ D 𝑂))) |
44 | 43 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝜑 → (𝑠 ∈ ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ↔ 𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)))) |
45 | 44 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (𝑠 ∈ ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ↔ 𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)))) |
46 | 45 | orbi1d 913 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ((𝑠 ∈ ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∨ 𝑠 ∈ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∨ 𝑠 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))))) |
47 | 33, 46 | mpbid 231 |
. . . . 5
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∨ 𝑠 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
48 | | dvf 24976 |
. . . . . . . . 9
⊢ (ℝ
D 𝑂):dom (ℝ D 𝑂)⟶ℂ |
49 | 48 | a1i 11 |
. . . . . . . 8
⊢ (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) → (ℝ D 𝑂):dom (ℝ D 𝑂)⟶ℂ) |
50 | | elinel2 4126 |
. . . . . . . 8
⊢ (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) → 𝑠 ∈ dom (ℝ D 𝑂)) |
51 | 49, 50 | ffvelrnd 6944 |
. . . . . . 7
⊢ (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ) |
52 | 51 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ) |
53 | | ovex 7288 |
. . . . . . . . . . . 12
⊢ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ∈ V |
54 | 53 | dfiun3 5864 |
. . . . . . . . . . 11
⊢ ∪ 𝑗 ∈ (0..^𝑁)((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) = ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
55 | 54 | eleq2i 2830 |
. . . . . . . . . 10
⊢ (𝑠 ∈ ∪ 𝑗 ∈ (0..^𝑁)((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↔ 𝑠 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
56 | 55 | biimpri 227 |
. . . . . . . . 9
⊢ (𝑠 ∈ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ ∪
𝑗 ∈ (0..^𝑁)((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
57 | 56 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑠 ∈ ∪
𝑗 ∈ (0..^𝑁)((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
58 | | eliun 4925 |
. . . . . . . 8
⊢ (𝑠 ∈ ∪ 𝑗 ∈ (0..^𝑁)((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↔ ∃𝑗 ∈ (0..^𝑁)𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
59 | 57, 58 | sylib 217 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → ∃𝑗 ∈ (0..^𝑁)𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
60 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑗𝜑 |
61 | | nfmpt1 5178 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
62 | 61 | nfrn 5850 |
. . . . . . . . . . 11
⊢
Ⅎ𝑗ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
63 | 62 | nfuni 4843 |
. . . . . . . . . 10
⊢
Ⅎ𝑗∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
64 | 63 | nfcri 2893 |
. . . . . . . . 9
⊢
Ⅎ𝑗 𝑠 ∈ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
65 | 60, 64 | nfan 1903 |
. . . . . . . 8
⊢
Ⅎ𝑗(𝜑 ∧ 𝑠 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
66 | | nfv 1918 |
. . . . . . . 8
⊢
Ⅎ𝑗((ℝ D
𝑂)‘𝑠) ∈ ℂ |
67 | 48 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (ℝ D 𝑂):dom (ℝ D 𝑂)⟶ℂ) |
68 | | fourierdlem80.y |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑌 = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) |
69 | 1 | reseq1i 5876 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = ((𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
70 | | ioossicc 13094 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑆‘𝑗)[,](𝑆‘(𝑗 + 1))) |
71 | | fourierdlem80.sjss |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗)[,](𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵)) |
72 | 70, 71 | sstrid 3928 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵)) |
73 | 72 | resmptd 5937 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))) |
74 | 69, 73 | syl5eq 2791 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))) |
75 | 68, 74 | eqtr4id 2798 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑌 = (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
76 | 75 | oveq2d 7271 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D 𝑌) = (ℝ D (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
77 | | ax-resscn 10859 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ℝ
⊆ ℂ |
78 | 77 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ℝ ⊆
ℂ) |
79 | | fourierdlem80.f |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → 𝐹:ℝ⟶ℝ) |
80 | 79 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝐹:ℝ⟶ℝ) |
81 | | fourierdlem80.xre |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → 𝑋 ∈ ℝ) |
82 | 81 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑋 ∈ ℝ) |
83 | | fourierdlem80.a |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝐴 ∈ ℝ) |
84 | | fourierdlem80.b |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜑 → 𝐵 ∈ ℝ) |
85 | 83, 84 | iccssred 13095 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
86 | 85 | sselda 3917 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℝ) |
87 | 82, 86 | readdcld 10935 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (𝑋 + 𝑠) ∈ ℝ) |
88 | 80, 87 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ) |
89 | 88 | recnd 10934 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ) |
90 | | fourierdlem80.c |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → 𝐶 ∈ ℝ) |
91 | 90 | recnd 10934 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐶 ∈ ℂ) |
92 | 91 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ) |
93 | 89, 92 | subcld 11262 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ) |
94 | | 2cnd 11981 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 2 ∈ ℂ) |
95 | 85, 78 | sstrd 3927 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℂ) |
96 | 95 | sselda 3917 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℂ) |
97 | 96 | halfcld 12148 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (𝑠 / 2) ∈ ℂ) |
98 | 97 | sincld 15767 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (sin‘(𝑠 / 2)) ∈ ℂ) |
99 | 94, 98 | mulcld 10926 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈
ℂ) |
100 | | 2ne0 12007 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 2 ≠
0 |
101 | 100 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 2 ≠ 0) |
102 | | fourierdlem80.ab |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π)) |
103 | 102 | sselda 3917 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ (-π[,]π)) |
104 | | eqcom 2745 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
30
⊢ (𝑠 = 0 ↔ 0 = 𝑠) |
105 | 104 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
⊢ (𝑠 = 0 → 0 = 𝑠) |
106 | 105 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑠 ∈ (𝐴[,]𝐵) ∧ 𝑠 = 0) → 0 = 𝑠) |
107 | | simpl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ ((𝑠 ∈ (𝐴[,]𝐵) ∧ 𝑠 = 0) → 𝑠 ∈ (𝐴[,]𝐵)) |
108 | 106, 107 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ ((𝑠 ∈ (𝐴[,]𝐵) ∧ 𝑠 = 0) → 0 ∈ (𝐴[,]𝐵)) |
109 | 108 | adantll 710 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑠 = 0) → 0 ∈ (𝐴[,]𝐵)) |
110 | | fourierdlem80.n0 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵)) |
111 | 110 | ad2antrr 722 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑠 = 0) → ¬ 0 ∈ (𝐴[,]𝐵)) |
112 | 109, 111 | pm2.65da 813 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → ¬ 𝑠 = 0) |
113 | 112 | neqned 2949 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ≠ 0) |
114 | | fourierdlem44 43582 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑠 ∈ (-π[,]π) ∧
𝑠 ≠ 0) →
(sin‘(𝑠 / 2)) ≠
0) |
115 | 103, 113,
114 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (sin‘(𝑠 / 2)) ≠ 0) |
116 | 94, 98, 101, 115 | mulne0d 11557 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (2 · (sin‘(𝑠 / 2))) ≠ 0) |
117 | 93, 99, 116 | divcld 11681 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑠 ∈ (𝐴[,]𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))) ∈
ℂ) |
118 | 117, 1 | fmptd 6970 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → 𝑂:(𝐴[,]𝐵)⟶ℂ) |
119 | | ioossre 13069 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ℝ |
120 | 119 | a1i 11 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜑 → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ℝ) |
121 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
122 | 121 | tgioo2 23872 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
123 | 121, 122 | dvres 24980 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((ℝ ⊆ ℂ ∧ 𝑂:(𝐴[,]𝐵)⟶ℂ) ∧ ((𝐴[,]𝐵) ⊆ ℝ ∧ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ℝ)) → (ℝ D
(𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran
(,)))‘((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
124 | 78, 118, 85, 120, 123 | syl22anc 835 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → (ℝ D (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran
(,)))‘((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
125 | | ioontr 42939 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((int‘(topGen‘ran (,)))‘((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) |
126 | 125 | reseq2i 5877 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((ℝ
D 𝑂) ↾
((int‘(topGen‘ran (,)))‘((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
127 | 124, 126 | eqtrdi 2795 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → (ℝ D (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
128 | 127 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
129 | 76, 128 | eqtr2d 2779 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((ℝ D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = (ℝ D 𝑌)) |
130 | 129 | dmeqd 5803 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → dom ((ℝ D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = dom (ℝ D 𝑌)) |
131 | 79 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℝ) |
132 | 81 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑋 ∈ ℝ) |
133 | 85 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐴[,]𝐵) ⊆ ℝ) |
134 | 34 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑆:(0...𝑁)⟶(𝐴[,]𝐵)) |
135 | | elfzofz 13331 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ∈ (0..^𝑁) → 𝑗 ∈ (0...𝑁)) |
136 | 135 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0...𝑁)) |
137 | 134, 136 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘𝑗) ∈ (𝐴[,]𝐵)) |
138 | 133, 137 | sseldd 3918 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘𝑗) ∈ ℝ) |
139 | | fzofzp1 13412 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑗 ∈ (0..^𝑁) → (𝑗 + 1) ∈ (0...𝑁)) |
140 | 139 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑗 + 1) ∈ (0...𝑁)) |
141 | 134, 140 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘(𝑗 + 1)) ∈ (𝐴[,]𝐵)) |
142 | 133, 141 | sseldd 3918 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘(𝑗 + 1)) ∈ ℝ) |
143 | | fdv |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ 𝐼)):𝐼⟶ℝ) |
144 | | fourierdlem80.i |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ 𝐼 = ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))) |
145 | 144 | feq2i 6576 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((ℝ
D (𝐹 ↾ 𝐼)):𝐼⟶ℝ ↔ (ℝ D (𝐹 ↾ 𝐼)):((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ) |
146 | 143, 145 | sylib 217 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ 𝐼)):((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ) |
147 | 144 | reseq2i 5877 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝐹 ↾ 𝐼) = (𝐹 ↾ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))) |
148 | 147 | oveq2i 7266 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (ℝ
D (𝐹 ↾ 𝐼)) = (ℝ D (𝐹 ↾ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))) |
149 | 148 | feq1i 6575 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((ℝ
D (𝐹 ↾ 𝐼)):((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ ↔ (ℝ D
(𝐹 ↾ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))):((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ) |
150 | 146, 149 | sylib 217 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))):((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ) |
151 | 102 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝐴[,]𝐵) ⊆ (-π[,]π)) |
152 | 72, 151 | sstrd 3927 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆
(-π[,]π)) |
153 | 110 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ¬ 0 ∈ (𝐴[,]𝐵)) |
154 | 72, 153 | ssneldd 3920 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ¬ 0 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
155 | 90 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → 𝐶 ∈ ℝ) |
156 | 131, 132,
138, 142, 150, 152, 154, 155, 68 | fourierdlem57 43594 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((ℝ D 𝑌):((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))⟶ℝ ∧ (ℝ D 𝑌) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) −
((cos‘(𝑠 / 2))
· ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))))) ∧
(ℝ D (𝑠 ∈
((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (cos‘(𝑠 / 2)))) |
157 | 156 | simpli 483 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((ℝ D 𝑌):((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))⟶ℝ ∧ (ℝ D 𝑌) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) −
((cos‘(𝑠 / 2))
· ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 /
2)))↑2))))) |
158 | 157 | simpld 494 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (ℝ D 𝑌):((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))⟶ℝ) |
159 | | fdm 6593 |
. . . . . . . . . . . . . . . 16
⊢ ((ℝ
D 𝑌):((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))⟶ℝ → dom (ℝ D
𝑌) = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
160 | 158, 159 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → dom (ℝ D 𝑌) = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
161 | 130, 160 | eqtr2d 2779 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) = dom ((ℝ D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
162 | | resss 5905 |
. . . . . . . . . . . . . . 15
⊢ ((ℝ
D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ⊆ (ℝ D 𝑂) |
163 | | dmss 5800 |
. . . . . . . . . . . . . . 15
⊢
(((ℝ D 𝑂)
↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ⊆ (ℝ D 𝑂) → dom ((ℝ D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ⊆ dom (ℝ D 𝑂)) |
164 | 162, 163 | mp1i 13 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → dom ((ℝ D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ⊆ dom (ℝ D 𝑂)) |
165 | 161, 164 | eqsstrd 3955 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ dom (ℝ D 𝑂)) |
166 | 165 | 3adant3 1130 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ dom (ℝ D 𝑂)) |
167 | | simp3 1136 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
168 | 166, 167 | sseldd 3918 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ dom (ℝ D 𝑂)) |
169 | 67, 168 | ffvelrnd 6944 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ) |
170 | 169 | 3exp 1117 |
. . . . . . . . 9
⊢ (𝜑 → (𝑗 ∈ (0..^𝑁) → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ))) |
171 | 170 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → (𝑗 ∈ (0..^𝑁) → (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ))) |
172 | 65, 66, 171 | rexlimd 3245 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → (∃𝑗 ∈ (0..^𝑁)𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)) |
173 | 59, 172 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ) |
174 | 52, 173 | jaodan 954 |
. . . . 5
⊢ ((𝜑 ∧ (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∨ 𝑠 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ) |
175 | 28, 47, 174 | syl2anc 583 |
. . . 4
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ) |
176 | 175 | abscld 15076 |
. . 3
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (abs‘((ℝ D
𝑂)‘𝑠)) ∈ ℝ) |
177 | 27, 176 | sylan2 592 |
. 2
⊢ ((𝜑 ∧ 𝑠 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
(𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (abs‘((ℝ D
𝑂)‘𝑠)) ∈ ℝ) |
178 | | id 22 |
. . . 4
⊢ (𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
179 | 178, 15 | eleqtrdi 2849 |
. . 3
⊢ (𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
180 | | elsni 4575 |
. . . . . 6
⊢ (𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))} → 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) |
181 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) |
182 | | fzfid 13621 |
. . . . . . . . . . 11
⊢ (𝜑 → (0...𝑁) ∈ Fin) |
183 | | rnffi 42600 |
. . . . . . . . . . 11
⊢ ((𝑆:(0...𝑁)⟶(𝐴[,]𝐵) ∧ (0...𝑁) ∈ Fin) → ran 𝑆 ∈ Fin) |
184 | 34, 182, 183 | syl2anc 583 |
. . . . . . . . . 10
⊢ (𝜑 → ran 𝑆 ∈ Fin) |
185 | | infi 8972 |
. . . . . . . . . 10
⊢ (ran
𝑆 ∈ Fin → (ran
𝑆 ∩ dom (ℝ D
𝑂)) ∈
Fin) |
186 | 184, 185 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∈ Fin) |
187 | 186 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∈ Fin) |
188 | 181, 187 | eqeltrd 2839 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → 𝑟 ∈ Fin) |
189 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑠𝜑 |
190 | | nfcv 2906 |
. . . . . . . . . . 11
⊢
Ⅎ𝑠ran
𝑆 |
191 | | nfcv 2906 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑠ℝ |
192 | | nfcv 2906 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑠
D |
193 | | nfmpt1 5178 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑠(𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) |
194 | 1, 193 | nfcxfr 2904 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑠𝑂 |
195 | 191, 192,
194 | nfov 7285 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑠(ℝ D 𝑂) |
196 | 195 | nfdm 5849 |
. . . . . . . . . . 11
⊢
Ⅎ𝑠dom
(ℝ D 𝑂) |
197 | 190, 196 | nfin 4147 |
. . . . . . . . . 10
⊢
Ⅎ𝑠(ran
𝑆 ∩ dom (ℝ D
𝑂)) |
198 | 197 | nfeq2 2923 |
. . . . . . . . 9
⊢
Ⅎ𝑠 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)) |
199 | 189, 198 | nfan 1903 |
. . . . . . . 8
⊢
Ⅎ𝑠(𝜑 ∧ 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) |
200 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∧ 𝑠 ∈ 𝑟) → 𝑠 ∈ 𝑟) |
201 | | simpl 482 |
. . . . . . . . . . . . 13
⊢ ((𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∧ 𝑠 ∈ 𝑟) → 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) |
202 | 200, 201 | eleqtrd 2841 |
. . . . . . . . . . . 12
⊢ ((𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∧ 𝑠 ∈ 𝑟) → 𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂))) |
203 | 202, 50 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∧ 𝑠 ∈ 𝑟) → 𝑠 ∈ dom (ℝ D 𝑂)) |
204 | 203 | adantll 710 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) ∧ 𝑠 ∈ 𝑟) → 𝑠 ∈ dom (ℝ D 𝑂)) |
205 | 48 | ffvelrni 6942 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ dom (ℝ D 𝑂) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ) |
206 | 205 | abscld 15076 |
. . . . . . . . . 10
⊢ (𝑠 ∈ dom (ℝ D 𝑂) → (abs‘((ℝ D
𝑂)‘𝑠)) ∈ ℝ) |
207 | 204, 206 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) ∧ 𝑠 ∈ 𝑟) → (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ) |
208 | 207 | ex 412 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → (𝑠 ∈ 𝑟 → (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ)) |
209 | 199, 208 | ralrimi 3139 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ) |
210 | | fimaxre3 11851 |
. . . . . . 7
⊢ ((𝑟 ∈ Fin ∧ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
211 | 188, 209,
210 | syl2anc 583 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
212 | 180, 211 | sylan2 592 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
213 | 212 | adantlr 711 |
. . . 4
⊢ (((𝜑 ∧ 𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) ∧ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
214 | | simpll 763 |
. . . . 5
⊢ (((𝜑 ∧ 𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) ∧ ¬ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → 𝜑) |
215 | | elunnel1 4080 |
. . . . . 6
⊢ ((𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) ∧ ¬ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
216 | 215 | adantll 710 |
. . . . 5
⊢ (((𝜑 ∧ 𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) ∧ ¬ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
217 | | vex 3426 |
. . . . . . . . 9
⊢ 𝑟 ∈ V |
218 | 18 | elrnmpt 5854 |
. . . . . . . . 9
⊢ (𝑟 ∈ V → (𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ↔ ∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
219 | 217, 218 | ax-mp 5 |
. . . . . . . 8
⊢ (𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ↔ ∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
220 | 219 | biimpi 215 |
. . . . . . 7
⊢ (𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → ∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
221 | 220 | adantl 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → ∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
222 | 62 | nfcri 2893 |
. . . . . . . 8
⊢
Ⅎ𝑗 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
223 | 60, 222 | nfan 1903 |
. . . . . . 7
⊢
Ⅎ𝑗(𝜑 ∧ 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
224 | | nfv 1918 |
. . . . . . 7
⊢
Ⅎ𝑗∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 |
225 | | fourierdlem80.fbdioo |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤) |
226 | | fourierdlem80.fdvbdioo |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧) |
227 | | reeanv 3292 |
. . . . . . . . . . . . 13
⊢
(∃𝑤 ∈
ℝ ∃𝑧 ∈
ℝ (∀𝑡 ∈
𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧) ↔ (∃𝑤 ∈ ℝ ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) |
228 | 225, 226,
227 | sylanbrc 582 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∃𝑧 ∈ ℝ (∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) |
229 | | simp1 1134 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) → (𝜑 ∧ 𝑗 ∈ (0..^𝑁))) |
230 | | simp2l 1197 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) → 𝑤 ∈ ℝ) |
231 | | simp2r 1198 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) → 𝑧 ∈ ℝ) |
232 | 229, 230,
231 | jca31 514 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) → (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ)) |
233 | | simp3l 1199 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) → ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤) |
234 | | simp3r 1200 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) → ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧) |
235 | 232, 233,
234 | jca31 514 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) → (((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤) ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) |
236 | | fourierdlem80.ch |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 ↔ (((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤) ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) |
237 | 235, 236 | sylibr 233 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) → 𝜒) |
238 | 236 | biimpi 215 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝜒 → (((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤) ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) |
239 | | simp-5l 781 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤) ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧) → 𝜑) |
240 | 238, 239 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜒 → 𝜑) |
241 | 240, 79 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → 𝐹:ℝ⟶ℝ) |
242 | 240, 81 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → 𝑋 ∈ ℝ) |
243 | | simp-4l 779 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤) ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧) → (𝜑 ∧ 𝑗 ∈ (0..^𝑁))) |
244 | 238, 243 | syl 17 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜒 → (𝜑 ∧ 𝑗 ∈ (0..^𝑁))) |
245 | 244, 138 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → (𝑆‘𝑗) ∈ ℝ) |
246 | 244, 142 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → (𝑆‘(𝑗 + 1)) ∈ ℝ) |
247 | | fourierdlem80.slt |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (𝑆‘𝑗) < (𝑆‘(𝑗 + 1))) |
248 | 244, 247 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → (𝑆‘𝑗) < (𝑆‘(𝑗 + 1))) |
249 | 71, 151 | sstrd 3927 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑆‘𝑗)[,](𝑆‘(𝑗 + 1))) ⊆
(-π[,]π)) |
250 | 244, 249 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → ((𝑆‘𝑗)[,](𝑆‘(𝑗 + 1))) ⊆
(-π[,]π)) |
251 | 71, 153 | ssneldd 3920 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ¬ 0 ∈ ((𝑆‘𝑗)[,](𝑆‘(𝑗 + 1)))) |
252 | 244, 251 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → ¬ 0 ∈ ((𝑆‘𝑗)[,](𝑆‘(𝑗 + 1)))) |
253 | 244, 150 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → (ℝ D (𝐹 ↾ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))):((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ) |
254 | | simp-4r 780 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤) ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧) → 𝑤 ∈ ℝ) |
255 | 238, 254 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → 𝑤 ∈ ℝ) |
256 | 238 | simplrd 766 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝜒 → ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤) |
257 | | id 22 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑡 ∈ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))) → 𝑡 ∈ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))) |
258 | 257, 144 | eleqtrrdi 2850 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑡 ∈ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))) → 𝑡 ∈ 𝐼) |
259 | | rspa 3130 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((∀𝑡 ∈
𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ 𝑡 ∈ 𝐼) → (abs‘(𝐹‘𝑡)) ≤ 𝑤) |
260 | 256, 258,
259 | syl2an 595 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜒 ∧ 𝑡 ∈ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))) → (abs‘(𝐹‘𝑡)) ≤ 𝑤) |
261 | | simpllr 772 |
. . . . . . . . . . . . . . . . . . . 20
⊢
((((((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤) ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧) → 𝑧 ∈ ℝ) |
262 | 238, 261 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → 𝑧 ∈ ℝ) |
263 | 148 | fveq1i 6757 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((ℝ
D (𝐹 ↾ 𝐼))‘𝑡) = ((ℝ D (𝐹 ↾ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘𝑡) |
264 | 263 | fveq2i 6759 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) = (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘𝑡)) |
265 | 238 | simprd 495 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜒 → ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧) |
266 | 265 | r19.21bi 3132 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜒 ∧ 𝑡 ∈ 𝐼) → (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧) |
267 | 264, 266 | eqbrtrrid 5106 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜒 ∧ 𝑡 ∈ 𝐼) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘𝑡)) ≤ 𝑧) |
268 | 258, 267 | sylan2 592 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜒 ∧ 𝑡 ∈ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))) → (abs‘((ℝ D
(𝐹 ↾ ((𝑋 + (𝑆‘𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘𝑡)) ≤ 𝑧) |
269 | 240, 90 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → 𝐶 ∈ ℝ) |
270 | 241, 242,
245, 246, 248, 250, 252, 253, 255, 260, 262, 268, 269, 68 | fourierdlem68 43605 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (dom (ℝ D 𝑌) = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ∧ ∃𝑦 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑌)(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦)) |
271 | 270 | simprd 495 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → ∃𝑦 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑌)(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦) |
272 | 270 | simpld 494 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜒 → dom (ℝ D 𝑌) = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
273 | 272 | raleqdv 3339 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜒 → (∀𝑠 ∈ dom (ℝ D 𝑌)(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦 ↔ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦)) |
274 | 273 | rexbidv 3225 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → (∃𝑦 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑌)(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦)) |
275 | 271, 274 | mpbid 231 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦) |
276 | 125 | eqcomi 2747 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) = ((int‘(topGen‘ran
(,)))‘((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
277 | 276 | reseq2i 5877 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((ℝ
D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran
(,)))‘((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
278 | 277 | fveq1i 6757 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((ℝ D 𝑂)
↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑠) = (((ℝ D 𝑂) ↾ ((int‘(topGen‘ran
(,)))‘((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠) |
279 | | fvres 6775 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) → (((ℝ D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑠) = ((ℝ D 𝑂)‘𝑠)) |
280 | 279 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (((ℝ D 𝑂) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑠) = ((ℝ D 𝑂)‘𝑠)) |
281 | 244, 72 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
⊢ (𝜒 → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵)) |
282 | 281 | resmptd 5937 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝜒 → ((𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))) |
283 | 69, 282 | syl5eq 2791 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝜒 → (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))) |
284 | 68, 283 | eqtr4id 2798 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝜒 → 𝑌 = (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
285 | 284 | oveq2d 7271 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜒 → (ℝ D 𝑌) = (ℝ D (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
286 | 285 | fveq1d 6758 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜒 → ((ℝ D 𝑌)‘𝑠) = ((ℝ D (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠)) |
287 | 124 | fveq1d 6758 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → ((ℝ D (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠) = (((ℝ D 𝑂) ↾ ((int‘(topGen‘ran
(,)))‘((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠)) |
288 | 240, 287 | syl 17 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜒 → ((ℝ D (𝑂 ↾ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠) = (((ℝ D 𝑂) ↾ ((int‘(topGen‘ran
(,)))‘((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠)) |
289 | 286, 288 | eqtr2d 2779 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝜒 → (((ℝ D 𝑂) ↾
((int‘(topGen‘ran (,)))‘((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠) = ((ℝ D 𝑌)‘𝑠)) |
290 | 289 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (((ℝ D 𝑂) ↾
((int‘(topGen‘ran (,)))‘((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠) = ((ℝ D 𝑌)‘𝑠)) |
291 | 278, 280,
290 | 3eqtr3a 2803 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((ℝ D 𝑂)‘𝑠) = ((ℝ D 𝑌)‘𝑠)) |
292 | 291 | fveq2d 6760 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (abs‘((ℝ D 𝑂)‘𝑠)) = (abs‘((ℝ D 𝑌)‘𝑠))) |
293 | 292 | breq1d 5080 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜒 ∧ 𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ (abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦)) |
294 | 293 | ralbidva 3119 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜒 → (∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦)) |
295 | 294 | rexbidv 3225 |
. . . . . . . . . . . . . . . 16
⊢ (𝜒 → (∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦)) |
296 | 275, 295 | mpbird 256 |
. . . . . . . . . . . . . . 15
⊢ (𝜒 → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
297 | 237, 296 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧)) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
298 | 297 | 3exp 1117 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦))) |
299 | 298 | rexlimdvv 3221 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → (∃𝑤 ∈ ℝ ∃𝑧 ∈ ℝ (∀𝑡 ∈ 𝐼 (abs‘(𝐹‘𝑡)) ≤ 𝑤 ∧ ∀𝑡 ∈ 𝐼 (abs‘((ℝ D (𝐹 ↾ 𝐼))‘𝑡)) ≤ 𝑧) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)) |
300 | 228, 299 | mpd 15 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁)) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
301 | 300 | 3adant3 1130 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ 𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
302 | | raleq 3333 |
. . . . . . . . . . . 12
⊢ (𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) → (∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)) |
303 | 302 | 3ad2ant3 1133 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ 𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)) |
304 | 303 | rexbidv 3225 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ 𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)) |
305 | 301, 304 | mpbird 256 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0..^𝑁) ∧ 𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
306 | 305 | 3exp 1117 |
. . . . . . . 8
⊢ (𝜑 → (𝑗 ∈ (0..^𝑁) → (𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦))) |
307 | 306 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → (𝑗 ∈ (0..^𝑁) → (𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦))) |
308 | 223, 224,
307 | rexlimd 3245 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → (∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)) |
309 | 221, 308 | mpd 15 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
310 | 214, 216,
309 | syl2anc 583 |
. . . 4
⊢ (((𝜑 ∧ 𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) ∧ ¬ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
311 | 213, 310 | pm2.61dan 809 |
. . 3
⊢ ((𝜑 ∧ 𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
312 | 179, 311 | sylan2 592 |
. 2
⊢ ((𝜑 ∧ 𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ 𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦) |
313 | | pm3.22 459 |
. . . . . . . . . . . 12
⊢ ((𝑟 ∈ dom (ℝ D 𝑂) ∧ 𝑟 ∈ ran 𝑆) → (𝑟 ∈ ran 𝑆 ∧ 𝑟 ∈ dom (ℝ D 𝑂))) |
314 | | elin 3899 |
. . . . . . . . . . . 12
⊢ (𝑟 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) ↔ (𝑟 ∈ ran 𝑆 ∧ 𝑟 ∈ dom (ℝ D 𝑂))) |
315 | 313, 314 | sylibr 233 |
. . . . . . . . . . 11
⊢ ((𝑟 ∈ dom (ℝ D 𝑂) ∧ 𝑟 ∈ ran 𝑆) → 𝑟 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂))) |
316 | 315 | adantll 710 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) ∧ 𝑟 ∈ ran 𝑆) → 𝑟 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂))) |
317 | 43 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ (𝜑 → (ran 𝑆 ∩ dom (ℝ D 𝑂)) = ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))}) |
318 | 317 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) ∧ 𝑟 ∈ ran 𝑆) → (ran 𝑆 ∩ dom (ℝ D 𝑂)) = ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))}) |
319 | 316, 318 | eleqtrd 2841 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) ∧ 𝑟 ∈ ran 𝑆) → 𝑟 ∈ ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))}) |
320 | 319 | orcd 869 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) ∧ 𝑟 ∈ ran 𝑆) → (𝑟 ∈ ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∨ 𝑟 ∈ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
321 | | simpll 763 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → 𝜑) |
322 | 77 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) → ℝ ⊆
ℂ) |
323 | 118 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) → 𝑂:(𝐴[,]𝐵)⟶ℂ) |
324 | 83 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) → 𝐴 ∈ ℝ) |
325 | 84 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) → 𝐵 ∈ ℝ) |
326 | 324, 325 | iccssred 13095 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) → (𝐴[,]𝐵) ⊆ ℝ) |
327 | 322, 323,
326 | dvbss 24970 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) → dom (ℝ D 𝑂) ⊆ (𝐴[,]𝐵)) |
328 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) → 𝑟 ∈ dom (ℝ D 𝑂)) |
329 | 327, 328 | sseldd 3918 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) → 𝑟 ∈ (𝐴[,]𝐵)) |
330 | 329 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → 𝑟 ∈ (𝐴[,]𝐵)) |
331 | | simpr 484 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ¬ 𝑟 ∈ ran 𝑆) |
332 | | fourierdlem80.relioo |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑟 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑆‘𝑘)(,)(𝑆‘(𝑘 + 1)))) |
333 | | fveq2 6756 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑘 → (𝑆‘𝑗) = (𝑆‘𝑘)) |
334 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝑘 → (𝑗 + 1) = (𝑘 + 1)) |
335 | 334 | fveq2d 6760 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑘 → (𝑆‘(𝑗 + 1)) = (𝑆‘(𝑘 + 1))) |
336 | 333, 335 | oveq12d 7273 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑘 → ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))) = ((𝑆‘𝑘)(,)(𝑆‘(𝑘 + 1)))) |
337 | | ovex 7288 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑆‘𝑘)(,)(𝑆‘(𝑘 + 1))) ∈ V |
338 | 336, 18, 337 | fvmpt 6857 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0..^𝑁) → ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘) = ((𝑆‘𝑘)(,)(𝑆‘(𝑘 + 1)))) |
339 | 338 | eleq2d 2824 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0..^𝑁) → (𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘) ↔ 𝑟 ∈ ((𝑆‘𝑘)(,)(𝑆‘(𝑘 + 1))))) |
340 | 339 | rexbiia 3176 |
. . . . . . . . . . . . 13
⊢
(∃𝑘 ∈
(0..^𝑁)𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘) ↔ ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑆‘𝑘)(,)(𝑆‘(𝑘 + 1)))) |
341 | 332, 340 | sylibr 233 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑟 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘)) |
342 | 53, 18 | dmmpti 6561 |
. . . . . . . . . . . . 13
⊢ dom
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) = (0..^𝑁) |
343 | 342 | rexeqi 3338 |
. . . . . . . . . . . 12
⊢
(∃𝑘 ∈ dom
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘) ↔ ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘)) |
344 | 341, 343 | sylibr 233 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑟 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘)) |
345 | 321, 330,
331, 344 | syl21anc 834 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘)) |
346 | | funmpt 6456 |
. . . . . . . . . . 11
⊢ Fun
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) |
347 | | elunirn 7106 |
. . . . . . . . . . 11
⊢ (Fun
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑟 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ↔ ∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘))) |
348 | 346, 347 | mp1i 13 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → (𝑟 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))) ↔ ∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘))) |
349 | 345, 348 | mpbird 256 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → 𝑟 ∈ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) |
350 | 349 | olcd 870 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → (𝑟 ∈ ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∨ 𝑟 ∈ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
351 | 320, 350 | pm2.61dan 809 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) → (𝑟 ∈ ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∨ 𝑟 ∈ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
352 | | elun 4079 |
. . . . . . 7
⊢ (𝑟 ∈ (∪ {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ∪ ran
(𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ (𝑟 ∈ ∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∨ 𝑟 ∈ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
353 | 351, 352 | sylibr 233 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) → 𝑟 ∈ (∪ {(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
354 | 353, 29 | eleqtrrdi 2850 |
. . . . 5
⊢ ((𝜑 ∧ 𝑟 ∈ dom (ℝ D 𝑂)) → 𝑟 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
355 | 354 | ralrimiva 3107 |
. . . 4
⊢ (𝜑 → ∀𝑟 ∈ dom (ℝ D 𝑂)𝑟 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
356 | | dfss3 3905 |
. . . 4
⊢ (dom
(ℝ D 𝑂) ⊆ ∪ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ ∀𝑟 ∈ dom (ℝ D 𝑂)𝑟 ∈ ∪ ({(ran
𝑆 ∩ dom (ℝ D
𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
357 | 355, 356 | sylibr 233 |
. . 3
⊢ (𝜑 → dom (ℝ D 𝑂) ⊆ ∪ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
358 | 357, 26 | sseqtrrdi 3968 |
. 2
⊢ (𝜑 → dom (ℝ D 𝑂) ⊆ ∪ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆‘𝑗)(,)(𝑆‘(𝑗 + 1)))))) |
359 | 24, 177, 312, 358 | ssfiunibd 42738 |
1
⊢ (𝜑 → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏) |