Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem80 Structured version   Visualization version   GIF version

Theorem fourierdlem80 46201
Description: The derivative of 𝑂 is bounded on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem80.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem80.xre (𝜑𝑋 ∈ ℝ)
fourierdlem80.a (𝜑𝐴 ∈ ℝ)
fourierdlem80.b (𝜑𝐵 ∈ ℝ)
fourierdlem80.ab (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π))
fourierdlem80.n0 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
fourierdlem80.c (𝜑𝐶 ∈ ℝ)
fourierdlem80.o 𝑂 = (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
fourierdlem80.i 𝐼 = ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))
fourierdlem80.fbdioo ((𝜑𝑗 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤)
fourierdlem80.fdvbdioo ((𝜑𝑗 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)
fourierdlem80.sf (𝜑𝑆:(0...𝑁)⟶(𝐴[,]𝐵))
fourierdlem80.slt ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑆𝑗) < (𝑆‘(𝑗 + 1)))
fourierdlem80.sjss ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)[,](𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵))
fourierdlem80.relioo (((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑆𝑘)(,)(𝑆‘(𝑘 + 1))))
fdv ((𝜑𝑗 ∈ (0..^𝑁)) → (ℝ D (𝐹𝐼)):𝐼⟶ℝ)
fourierdlem80.y 𝑌 = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
fourierdlem80.ch (𝜒 ↔ (((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧))
Assertion
Ref Expression
fourierdlem80 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏)
Distinct variable groups:   𝐴,𝑏,𝑟,𝑠,𝑡   𝐵,𝑏,𝑟,𝑠,𝑡   𝐶,𝑏,𝑟,𝑠,𝑡   𝐹,𝑏,𝑟,𝑠,𝑡   𝑤,𝐹,𝑧,𝑠,𝑡   𝑤,𝐼,𝑧   𝑁,𝑏,𝑗,𝑟,𝑠   𝑘,𝑁,𝑗,𝑟   𝑤,𝑁,𝑧,𝑗   𝑂,𝑏,𝑗,𝑟   𝑤,𝑂,𝑧   𝑆,𝑏,𝑗,𝑟,𝑠,𝑡   𝑆,𝑘   𝑤,𝑆,𝑧   𝑋,𝑏,𝑟,𝑠,𝑡   𝑌,𝑠   𝜑,𝑏,𝑗,𝑟,𝑠   𝜒,𝑠,𝑡   𝜑,𝑤,𝑧
Allowed substitution hints:   𝜑(𝑡,𝑘)   𝜒(𝑧,𝑤,𝑗,𝑘,𝑟,𝑏)   𝐴(𝑧,𝑤,𝑗,𝑘)   𝐵(𝑧,𝑤,𝑗,𝑘)   𝐶(𝑧,𝑤,𝑗,𝑘)   𝐹(𝑗,𝑘)   𝐼(𝑡,𝑗,𝑘,𝑠,𝑟,𝑏)   𝑁(𝑡)   𝑂(𝑡,𝑘,𝑠)   𝑋(𝑧,𝑤,𝑗,𝑘)   𝑌(𝑧,𝑤,𝑡,𝑗,𝑘,𝑟,𝑏)

Proof of Theorem fourierdlem80
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem80.o . . . . . . . . 9 𝑂 = (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
2 oveq2 7439 . . . . . . . . . . . . 13 (𝑠 = 𝑡 → (𝑋 + 𝑠) = (𝑋 + 𝑡))
32fveq2d 6910 . . . . . . . . . . . 12 (𝑠 = 𝑡 → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑡)))
43oveq1d 7446 . . . . . . . . . . 11 (𝑠 = 𝑡 → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) = ((𝐹‘(𝑋 + 𝑡)) − 𝐶))
5 oveq1 7438 . . . . . . . . . . . . 13 (𝑠 = 𝑡 → (𝑠 / 2) = (𝑡 / 2))
65fveq2d 6910 . . . . . . . . . . . 12 (𝑠 = 𝑡 → (sin‘(𝑠 / 2)) = (sin‘(𝑡 / 2)))
76oveq2d 7447 . . . . . . . . . . 11 (𝑠 = 𝑡 → (2 · (sin‘(𝑠 / 2))) = (2 · (sin‘(𝑡 / 2))))
84, 7oveq12d 7449 . . . . . . . . . 10 (𝑠 = 𝑡 → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))) = (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))
98cbvmptv 5255 . . . . . . . . 9 (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))
101, 9eqtr2i 2766 . . . . . . . 8 (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2))))) = 𝑂
1110oveq2i 7442 . . . . . . 7 (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))) = (ℝ D 𝑂)
1211dmeqi 5915 . . . . . 6 dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))) = dom (ℝ D 𝑂)
1312ineq2i 4217 . . . . 5 (ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2))))))) = (ran 𝑆 ∩ dom (ℝ D 𝑂))
1413sneqi 4637 . . . 4 {(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} = {(ran 𝑆 ∩ dom (ℝ D 𝑂))}
1514uneq1i 4164 . . 3 ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
16 snfi 9083 . . . . 5 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∈ Fin
17 fzofi 14015 . . . . . 6 (0..^𝑁) ∈ Fin
18 eqid 2737 . . . . . . 7 (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
1918rnmptfi 45176 . . . . . 6 ((0..^𝑁) ∈ Fin → ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ Fin)
2017, 19ax-mp 5 . . . . 5 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ Fin
21 unfi 9211 . . . . 5 (({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∈ Fin ∧ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ Fin) → ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ∈ Fin)
2216, 20, 21mp2an 692 . . . 4 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ∈ Fin
2322a1i 11 . . 3 (𝜑 → ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ∈ Fin)
2415, 23eqeltrid 2845 . 2 (𝜑 → ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ∈ Fin)
25 id 22 . . . 4 (𝑠 ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑠 ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
2615unieqi 4919 . . . 4 ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
2725, 26eleqtrdi 2851 . . 3 (𝑠 ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
28 simpl 482 . . . . 5 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → 𝜑)
29 uniun 4930 . . . . . . . . 9 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ( {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
3029eleq2i 2833 . . . . . . . 8 (𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ 𝑠 ∈ ( {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
31 elun 4153 . . . . . . . 8 (𝑠 ∈ ( {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ (𝑠 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
3230, 31sylbb 219 . . . . . . 7 (𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → (𝑠 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
3332adantl 481 . . . . . 6 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (𝑠 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
34 fourierdlem80.sf . . . . . . . . . . 11 (𝜑𝑆:(0...𝑁)⟶(𝐴[,]𝐵))
35 ovex 7464 . . . . . . . . . . . 12 (0...𝑁) ∈ V
3635a1i 11 . . . . . . . . . . 11 (𝜑 → (0...𝑁) ∈ V)
3734, 36fexd 7247 . . . . . . . . . 10 (𝜑𝑆 ∈ V)
38 rnexg 7924 . . . . . . . . . 10 (𝑆 ∈ V → ran 𝑆 ∈ V)
39 inex1g 5319 . . . . . . . . . 10 (ran 𝑆 ∈ V → (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∈ V)
40 unisng 4925 . . . . . . . . . 10 ((ran 𝑆 ∩ dom (ℝ D 𝑂)) ∈ V → {(ran 𝑆 ∩ dom (ℝ D 𝑂))} = (ran 𝑆 ∩ dom (ℝ D 𝑂)))
4137, 38, 39, 404syl 19 . . . . . . . . 9 (𝜑 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} = (ran 𝑆 ∩ dom (ℝ D 𝑂)))
4241eleq2d 2827 . . . . . . . 8 (𝜑 → (𝑠 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ↔ 𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂))))
4342adantr 480 . . . . . . 7 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (𝑠 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ↔ 𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂))))
4443orbi1d 917 . . . . . 6 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ((𝑠 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∨ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))))
4533, 44mpbid 232 . . . . 5 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∨ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
46 dvf 25942 . . . . . . . . 9 (ℝ D 𝑂):dom (ℝ D 𝑂)⟶ℂ
4746a1i 11 . . . . . . . 8 (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) → (ℝ D 𝑂):dom (ℝ D 𝑂)⟶ℂ)
48 elinel2 4202 . . . . . . . 8 (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) → 𝑠 ∈ dom (ℝ D 𝑂))
4947, 48ffvelcdmd 7105 . . . . . . 7 (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)
5049adantl 481 . . . . . 6 ((𝜑𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)
51 ovex 7464 . . . . . . . . . . . 12 ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ∈ V
5251dfiun3 5980 . . . . . . . . . . 11 𝑗 ∈ (0..^𝑁)((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) = ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
5352eleq2i 2833 . . . . . . . . . 10 (𝑠 𝑗 ∈ (0..^𝑁)((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↔ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
5453biimpri 228 . . . . . . . . 9 (𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 𝑗 ∈ (0..^𝑁)((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
5554adantl 481 . . . . . . . 8 ((𝜑𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑠 𝑗 ∈ (0..^𝑁)((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
56 eliun 4995 . . . . . . . 8 (𝑠 𝑗 ∈ (0..^𝑁)((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↔ ∃𝑗 ∈ (0..^𝑁)𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
5755, 56sylib 218 . . . . . . 7 ((𝜑𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → ∃𝑗 ∈ (0..^𝑁)𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
58 nfv 1914 . . . . . . . . 9 𝑗𝜑
59 nfmpt1 5250 . . . . . . . . . . . 12 𝑗(𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
6059nfrn 5963 . . . . . . . . . . 11 𝑗ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
6160nfuni 4914 . . . . . . . . . 10 𝑗 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
6261nfcri 2897 . . . . . . . . 9 𝑗 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
6358, 62nfan 1899 . . . . . . . 8 𝑗(𝜑𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
64 nfv 1914 . . . . . . . 8 𝑗((ℝ D 𝑂)‘𝑠) ∈ ℂ
6546a1i 11 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → (ℝ D 𝑂):dom (ℝ D 𝑂)⟶ℂ)
66 fourierdlem80.y . . . . . . . . . . . . . . . . . . 19 𝑌 = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
671reseq1i 5993 . . . . . . . . . . . . . . . . . . . 20 (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = ((𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
68 ioossicc 13473 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑆𝑗)[,](𝑆‘(𝑗 + 1)))
69 fourierdlem80.sjss . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)[,](𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵))
7068, 69sstrid 3995 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵))
7170resmptd 6058 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))
7267, 71eqtrid 2789 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))
7366, 72eqtr4id 2796 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑌 = (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
7473oveq2d 7447 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0..^𝑁)) → (ℝ D 𝑌) = (ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
75 ax-resscn 11212 . . . . . . . . . . . . . . . . . . . . 21 ℝ ⊆ ℂ
7675a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ℝ ⊆ ℂ)
77 fourierdlem80.f . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐹:ℝ⟶ℝ)
7877adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝐹:ℝ⟶ℝ)
79 fourierdlem80.xre . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑋 ∈ ℝ)
8079adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑋 ∈ ℝ)
81 fourierdlem80.a . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐴 ∈ ℝ)
82 fourierdlem80.b . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐵 ∈ ℝ)
8381, 82iccssred 13474 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
8483sselda 3983 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℝ)
8580, 84readdcld 11290 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
8678, 85ffvelcdmd 7105 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
8786recnd 11289 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
88 fourierdlem80.c . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐶 ∈ ℝ)
8988recnd 11289 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐶 ∈ ℂ)
9089adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ)
9187, 90subcld 11620 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ)
92 2cnd 12344 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 2 ∈ ℂ)
9383, 76sstrd 3994 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
9493sselda 3983 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℂ)
9594halfcld 12511 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (𝑠 / 2) ∈ ℂ)
9695sincld 16166 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (sin‘(𝑠 / 2)) ∈ ℂ)
9792, 96mulcld 11281 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
98 2ne0 12370 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ≠ 0
9998a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 2 ≠ 0)
100 fourierdlem80.ab . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π))
101100sselda 3983 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ (-π[,]π))
102 eqcom 2744 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑠 = 0 ↔ 0 = 𝑠)
103102biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑠 = 0 → 0 = 𝑠)
104103adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑠 ∈ (𝐴[,]𝐵) ∧ 𝑠 = 0) → 0 = 𝑠)
105 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑠 ∈ (𝐴[,]𝐵) ∧ 𝑠 = 0) → 𝑠 ∈ (𝐴[,]𝐵))
106104, 105eqeltrd 2841 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑠 ∈ (𝐴[,]𝐵) ∧ 𝑠 = 0) → 0 ∈ (𝐴[,]𝐵))
107106adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑠 = 0) → 0 ∈ (𝐴[,]𝐵))
108 fourierdlem80.n0 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
109108ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑠 = 0) → ¬ 0 ∈ (𝐴[,]𝐵))
110107, 109pm2.65da 817 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → ¬ 𝑠 = 0)
111110neqned 2947 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ≠ 0)
112 fourierdlem44 46166 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
113101, 111, 112syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (sin‘(𝑠 / 2)) ≠ 0)
11492, 96, 99, 113mulne0d 11915 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
11591, 97, 114divcld 12043 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))) ∈ ℂ)
116115, 1fmptd 7134 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑂:(𝐴[,]𝐵)⟶ℂ)
117 ioossre 13448 . . . . . . . . . . . . . . . . . . . . 21 ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ℝ
118117a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ℝ)
119 eqid 2737 . . . . . . . . . . . . . . . . . . . . 21 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
120 tgioo4 24826 . . . . . . . . . . . . . . . . . . . . 21 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
121119, 120dvres 25946 . . . . . . . . . . . . . . . . . . . 20 (((ℝ ⊆ ℂ ∧ 𝑂:(𝐴[,]𝐵)⟶ℂ) ∧ ((𝐴[,]𝐵) ⊆ ℝ ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ℝ)) → (ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
12276, 116, 83, 118, 121syl22anc 839 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
123 ioontr 45524 . . . . . . . . . . . . . . . . . . . 20 ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))
124123reseq2i 5994 . . . . . . . . . . . . . . . . . . 19 ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
125122, 124eqtrdi 2793 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
126125adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0..^𝑁)) → (ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
12774, 126eqtr2d 2778 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (0..^𝑁)) → ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (ℝ D 𝑌))
128127dmeqd 5916 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0..^𝑁)) → dom ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = dom (ℝ D 𝑌))
12977adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℝ)
13079adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑋 ∈ ℝ)
13183adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐴[,]𝐵) ⊆ ℝ)
13234adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑆:(0...𝑁)⟶(𝐴[,]𝐵))
133 elfzofz 13715 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ (0..^𝑁) → 𝑗 ∈ (0...𝑁))
134133adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0...𝑁))
135132, 134ffvelcdmd 7105 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑆𝑗) ∈ (𝐴[,]𝐵))
136131, 135sseldd 3984 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑆𝑗) ∈ ℝ)
137 fzofzp1 13803 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ (0..^𝑁) → (𝑗 + 1) ∈ (0...𝑁))
138137adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑗 + 1) ∈ (0...𝑁))
139132, 138ffvelcdmd 7105 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑆‘(𝑗 + 1)) ∈ (𝐴[,]𝐵))
140131, 139sseldd 3984 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑆‘(𝑗 + 1)) ∈ ℝ)
141 fdv . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0..^𝑁)) → (ℝ D (𝐹𝐼)):𝐼⟶ℝ)
142 fourierdlem80.i . . . . . . . . . . . . . . . . . . . . . 22 𝐼 = ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))
143142feq2i 6728 . . . . . . . . . . . . . . . . . . . . 21 ((ℝ D (𝐹𝐼)):𝐼⟶ℝ ↔ (ℝ D (𝐹𝐼)):((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ)
144141, 143sylib 218 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → (ℝ D (𝐹𝐼)):((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ)
145142reseq2i 5994 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹𝐼) = (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))
146145oveq2i 7442 . . . . . . . . . . . . . . . . . . . . 21 (ℝ D (𝐹𝐼)) = (ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))
147146feq1i 6727 . . . . . . . . . . . . . . . . . . . 20 ((ℝ D (𝐹𝐼)):((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ ↔ (ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))):((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ)
148144, 147sylib 218 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))):((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ)
149100adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐴[,]𝐵) ⊆ (-π[,]π))
15070, 149sstrd 3994 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ (-π[,]π))
151108adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → ¬ 0 ∈ (𝐴[,]𝐵))
15270, 151ssneldd 3986 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → ¬ 0 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
15388adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐶 ∈ ℝ)
154129, 130, 136, 140, 148, 150, 152, 153, 66fourierdlem57 46178 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (0..^𝑁)) → ((ℝ D 𝑌):((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))⟶ℝ ∧ (ℝ D 𝑌) = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))))) ∧ (ℝ D (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (cos‘(𝑠 / 2))))
155154simpli 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0..^𝑁)) → ((ℝ D 𝑌):((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))⟶ℝ ∧ (ℝ D 𝑌) = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2)))))
156155simpld 494 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (0..^𝑁)) → (ℝ D 𝑌):((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))⟶ℝ)
157 fdm 6745 . . . . . . . . . . . . . . . 16 ((ℝ D 𝑌):((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))⟶ℝ → dom (ℝ D 𝑌) = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
158156, 157syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0..^𝑁)) → dom (ℝ D 𝑌) = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
159128, 158eqtr2d 2778 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) = dom ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
160 resss 6019 . . . . . . . . . . . . . . 15 ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ⊆ (ℝ D 𝑂)
161 dmss 5913 . . . . . . . . . . . . . . 15 (((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ⊆ (ℝ D 𝑂) → dom ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ⊆ dom (ℝ D 𝑂))
162160, 161mp1i 13 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑁)) → dom ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ⊆ dom (ℝ D 𝑂))
163159, 162eqsstrd 4018 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ dom (ℝ D 𝑂))
1641633adant3 1133 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ dom (ℝ D 𝑂))
165 simp3 1139 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
166164, 165sseldd 3984 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ dom (ℝ D 𝑂))
16765, 166ffvelcdmd 7105 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)
1681673exp 1120 . . . . . . . . 9 (𝜑 → (𝑗 ∈ (0..^𝑁) → (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)))
169168adantr 480 . . . . . . . 8 ((𝜑𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → (𝑗 ∈ (0..^𝑁) → (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)))
17063, 64, 169rexlimd 3266 . . . . . . 7 ((𝜑𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → (∃𝑗 ∈ (0..^𝑁)𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ))
17157, 170mpd 15 . . . . . 6 ((𝜑𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)
17250, 171jaodan 960 . . . . 5 ((𝜑 ∧ (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∨ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)
17328, 45, 172syl2anc 584 . . . 4 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)
174173abscld 15475 . . 3 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ)
17527, 174sylan2 593 . 2 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ)
176 id 22 . . . 4 (𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
177176, 15eleqtrdi 2851 . . 3 (𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
178 elsni 4643 . . . . . 6 (𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))} → 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)))
179 simpr 484 . . . . . . . 8 ((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)))
180 fzfid 14014 . . . . . . . . . . 11 (𝜑 → (0...𝑁) ∈ Fin)
181 rnffi 45180 . . . . . . . . . . 11 ((𝑆:(0...𝑁)⟶(𝐴[,]𝐵) ∧ (0...𝑁) ∈ Fin) → ran 𝑆 ∈ Fin)
18234, 180, 181syl2anc 584 . . . . . . . . . 10 (𝜑 → ran 𝑆 ∈ Fin)
183 infi 9302 . . . . . . . . . 10 (ran 𝑆 ∈ Fin → (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∈ Fin)
184182, 183syl 17 . . . . . . . . 9 (𝜑 → (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∈ Fin)
185184adantr 480 . . . . . . . 8 ((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∈ Fin)
186179, 185eqeltrd 2841 . . . . . . 7 ((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → 𝑟 ∈ Fin)
187 nfv 1914 . . . . . . . . 9 𝑠𝜑
188 nfcv 2905 . . . . . . . . . . 11 𝑠ran 𝑆
189 nfcv 2905 . . . . . . . . . . . . 13 𝑠
190 nfcv 2905 . . . . . . . . . . . . 13 𝑠 D
191 nfmpt1 5250 . . . . . . . . . . . . . 14 𝑠(𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
1921, 191nfcxfr 2903 . . . . . . . . . . . . 13 𝑠𝑂
193189, 190, 192nfov 7461 . . . . . . . . . . . 12 𝑠(ℝ D 𝑂)
194193nfdm 5962 . . . . . . . . . . 11 𝑠dom (ℝ D 𝑂)
195188, 194nfin 4224 . . . . . . . . . 10 𝑠(ran 𝑆 ∩ dom (ℝ D 𝑂))
196195nfeq2 2923 . . . . . . . . 9 𝑠 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))
197187, 196nfan 1899 . . . . . . . 8 𝑠(𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)))
198 simpr 484 . . . . . . . . . . . . 13 ((𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∧ 𝑠𝑟) → 𝑠𝑟)
199 simpl 482 . . . . . . . . . . . . 13 ((𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∧ 𝑠𝑟) → 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)))
200198, 199eleqtrd 2843 . . . . . . . . . . . 12 ((𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∧ 𝑠𝑟) → 𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)))
201200, 48syl 17 . . . . . . . . . . 11 ((𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∧ 𝑠𝑟) → 𝑠 ∈ dom (ℝ D 𝑂))
202201adantll 714 . . . . . . . . . 10 (((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) ∧ 𝑠𝑟) → 𝑠 ∈ dom (ℝ D 𝑂))
20346ffvelcdmi 7103 . . . . . . . . . . 11 (𝑠 ∈ dom (ℝ D 𝑂) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)
204203abscld 15475 . . . . . . . . . 10 (𝑠 ∈ dom (ℝ D 𝑂) → (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ)
205202, 204syl 17 . . . . . . . . 9 (((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) ∧ 𝑠𝑟) → (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ)
206205ex 412 . . . . . . . 8 ((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → (𝑠𝑟 → (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ))
207197, 206ralrimi 3257 . . . . . . 7 ((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ)
208 fimaxre3 12214 . . . . . . 7 ((𝑟 ∈ Fin ∧ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
209186, 207, 208syl2anc 584 . . . . . 6 ((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
210178, 209sylan2 593 . . . . 5 ((𝜑𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
211210adantlr 715 . . . 4 (((𝜑𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) ∧ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
212 simpll 767 . . . . 5 (((𝜑𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) ∧ ¬ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → 𝜑)
213 elunnel1 4154 . . . . . 6 ((𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ∧ ¬ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
214213adantll 714 . . . . 5 (((𝜑𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) ∧ ¬ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
215 vex 3484 . . . . . . . . 9 𝑟 ∈ V
21618elrnmpt 5969 . . . . . . . . 9 (𝑟 ∈ V → (𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ↔ ∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
217215, 216ax-mp 5 . . . . . . . 8 (𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ↔ ∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
218217biimpi 216 . . . . . . 7 (𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → ∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
219218adantl 481 . . . . . 6 ((𝜑𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → ∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
22060nfcri 2897 . . . . . . . 8 𝑗 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
22158, 220nfan 1899 . . . . . . 7 𝑗(𝜑𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
222 nfv 1914 . . . . . . 7 𝑗𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦
223 fourierdlem80.fbdioo . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤)
224 fourierdlem80.fdvbdioo . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)
225 reeanv 3229 . . . . . . . . . . . . 13 (∃𝑤 ∈ ℝ ∃𝑧 ∈ ℝ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧) ↔ (∃𝑤 ∈ ℝ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧))
226223, 224, 225sylanbrc 583 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∃𝑧 ∈ ℝ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧))
227 simp1 1137 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → (𝜑𝑗 ∈ (0..^𝑁)))
228 simp2l 1200 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → 𝑤 ∈ ℝ)
229 simp2r 1201 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → 𝑧 ∈ ℝ)
230227, 228, 229jca31 514 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ))
231 simp3l 1202 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤)
232 simp3r 1203 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)
233230, 231, 232jca31 514 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → (((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧))
234 fourierdlem80.ch . . . . . . . . . . . . . . . 16 (𝜒 ↔ (((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧))
235233, 234sylibr 234 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → 𝜒)
236234biimpi 216 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧))
237 simp-5l 785 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧) → 𝜑)
238236, 237syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝜑)
239238, 77syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝐹:ℝ⟶ℝ)
240238, 79syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑋 ∈ ℝ)
241 simp-4l 783 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧) → (𝜑𝑗 ∈ (0..^𝑁)))
242236, 241syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝜑𝑗 ∈ (0..^𝑁)))
243242, 136syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑆𝑗) ∈ ℝ)
244242, 140syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑆‘(𝑗 + 1)) ∈ ℝ)
245 fourierdlem80.slt . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑆𝑗) < (𝑆‘(𝑗 + 1)))
246242, 245syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑆𝑗) < (𝑆‘(𝑗 + 1)))
24769, 149sstrd 3994 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)[,](𝑆‘(𝑗 + 1))) ⊆ (-π[,]π))
248242, 247syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒 → ((𝑆𝑗)[,](𝑆‘(𝑗 + 1))) ⊆ (-π[,]π))
24969, 151ssneldd 3986 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → ¬ 0 ∈ ((𝑆𝑗)[,](𝑆‘(𝑗 + 1))))
250242, 249syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒 → ¬ 0 ∈ ((𝑆𝑗)[,](𝑆‘(𝑗 + 1))))
251242, 148syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))):((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ)
252 simp-4r 784 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧) → 𝑤 ∈ ℝ)
253236, 252syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑤 ∈ ℝ)
254236simplrd 770 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤)
255 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 ∈ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))) → 𝑡 ∈ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))
256255, 142eleqtrrdi 2852 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ∈ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))) → 𝑡𝐼)
257 rspa 3248 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤𝑡𝐼) → (abs‘(𝐹𝑡)) ≤ 𝑤)
258254, 256, 257syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑡 ∈ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))) → (abs‘(𝐹𝑡)) ≤ 𝑤)
259 simpllr 776 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧) → 𝑧 ∈ ℝ)
260236, 259syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑧 ∈ ℝ)
261146fveq1i 6907 . . . . . . . . . . . . . . . . . . . . . 22 ((ℝ D (𝐹𝐼))‘𝑡) = ((ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘𝑡)
262261fveq2i 6909 . . . . . . . . . . . . . . . . . . . . 21 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) = (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘𝑡))
263236simprd 495 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)
264263r19.21bi 3251 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑡𝐼) → (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)
265262, 264eqbrtrrid 5179 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑡𝐼) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘𝑡)) ≤ 𝑧)
266256, 265sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑡 ∈ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘𝑡)) ≤ 𝑧)
267238, 88syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝐶 ∈ ℝ)
268239, 240, 243, 244, 246, 248, 250, 251, 253, 258, 260, 266, 267, 66fourierdlem68 46189 . . . . . . . . . . . . . . . . . 18 (𝜒 → (dom (ℝ D 𝑌) = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ∧ ∃𝑦 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑌)(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦))
269268simprd 495 . . . . . . . . . . . . . . . . 17 (𝜒 → ∃𝑦 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑌)(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦)
270268simpld 494 . . . . . . . . . . . . . . . . . . 19 (𝜒 → dom (ℝ D 𝑌) = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
271270raleqdv 3326 . . . . . . . . . . . . . . . . . 18 (𝜒 → (∀𝑠 ∈ dom (ℝ D 𝑌)(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦 ↔ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦))
272271rexbidv 3179 . . . . . . . . . . . . . . . . 17 (𝜒 → (∃𝑦 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑌)(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦))
273269, 272mpbid 232 . . . . . . . . . . . . . . . 16 (𝜒 → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦)
274123eqcomi 2746 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) = ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
275274reseq2i 5994 . . . . . . . . . . . . . . . . . . . . . 22 ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
276275fveq1i 6907 . . . . . . . . . . . . . . . . . . . . 21 (((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑠) = (((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠)
277 fvres 6925 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → (((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑠) = ((ℝ D 𝑂)‘𝑠))
278277adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → (((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑠) = ((ℝ D 𝑂)‘𝑠))
279242, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜒 → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵))
280279resmptd 6058 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜒 → ((𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))
28167, 280eqtrid 2789 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒 → (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))
28266, 281eqtr4id 2796 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒𝑌 = (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
283282oveq2d 7447 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → (ℝ D 𝑌) = (ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
284283fveq1d 6908 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → ((ℝ D 𝑌)‘𝑠) = ((ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠))
285122fveq1d 6908 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠) = (((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠))
286238, 285syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → ((ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠) = (((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠))
287284, 286eqtr2d 2778 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠) = ((ℝ D 𝑌)‘𝑠))
288287adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → (((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠) = ((ℝ D 𝑌)‘𝑠))
289276, 278, 2883eqtr3a 2801 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((ℝ D 𝑂)‘𝑠) = ((ℝ D 𝑌)‘𝑠))
290289fveq2d 6910 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → (abs‘((ℝ D 𝑂)‘𝑠)) = (abs‘((ℝ D 𝑌)‘𝑠)))
291290breq1d 5153 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ (abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦))
292291ralbidva 3176 . . . . . . . . . . . . . . . . 17 (𝜒 → (∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦))
293292rexbidv 3179 . . . . . . . . . . . . . . . 16 (𝜒 → (∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦))
294273, 293mpbird 257 . . . . . . . . . . . . . . 15 (𝜒 → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
295235, 294syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
2962953exp 1120 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)))
297296rexlimdvv 3212 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑁)) → (∃𝑤 ∈ ℝ ∃𝑧 ∈ ℝ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦))
298226, 297mpd 15 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑁)) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
2992983adant3 1133 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
300 raleq 3323 . . . . . . . . . . . 12 (𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → (∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦))
3013003ad2ant3 1136 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → (∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦))
302301rexbidv 3179 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → (∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦))
303299, 302mpbird 257 . . . . . . . . 9 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
3043033exp 1120 . . . . . . . 8 (𝜑 → (𝑗 ∈ (0..^𝑁) → (𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)))
305304adantr 480 . . . . . . 7 ((𝜑𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → (𝑗 ∈ (0..^𝑁) → (𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)))
306221, 222, 305rexlimd 3266 . . . . . 6 ((𝜑𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → (∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦))
307219, 306mpd 15 . . . . 5 ((𝜑𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
308212, 214, 307syl2anc 584 . . . 4 (((𝜑𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) ∧ ¬ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
309211, 308pm2.61dan 813 . . 3 ((𝜑𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
310177, 309sylan2 593 . 2 ((𝜑𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
311 pm3.22 459 . . . . . . . . . . . 12 ((𝑟 ∈ dom (ℝ D 𝑂) ∧ 𝑟 ∈ ran 𝑆) → (𝑟 ∈ ran 𝑆𝑟 ∈ dom (ℝ D 𝑂)))
312 elin 3967 . . . . . . . . . . . 12 (𝑟 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) ↔ (𝑟 ∈ ran 𝑆𝑟 ∈ dom (ℝ D 𝑂)))
313311, 312sylibr 234 . . . . . . . . . . 11 ((𝑟 ∈ dom (ℝ D 𝑂) ∧ 𝑟 ∈ ran 𝑆) → 𝑟 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)))
314313adantll 714 . . . . . . . . . 10 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ 𝑟 ∈ ran 𝑆) → 𝑟 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)))
31541eqcomd 2743 . . . . . . . . . . 11 (𝜑 → (ran 𝑆 ∩ dom (ℝ D 𝑂)) = {(ran 𝑆 ∩ dom (ℝ D 𝑂))})
316315ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ 𝑟 ∈ ran 𝑆) → (ran 𝑆 ∩ dom (ℝ D 𝑂)) = {(ran 𝑆 ∩ dom (ℝ D 𝑂))})
317314, 316eleqtrd 2843 . . . . . . . . 9 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ 𝑟 ∈ ran 𝑆) → 𝑟 {(ran 𝑆 ∩ dom (ℝ D 𝑂))})
318317orcd 874 . . . . . . . 8 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ 𝑟 ∈ ran 𝑆) → (𝑟 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑟 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
319 simpll 767 . . . . . . . . . . 11 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → 𝜑)
32075a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → ℝ ⊆ ℂ)
321116adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → 𝑂:(𝐴[,]𝐵)⟶ℂ)
32281adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → 𝐴 ∈ ℝ)
32382adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → 𝐵 ∈ ℝ)
324322, 323iccssred 13474 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → (𝐴[,]𝐵) ⊆ ℝ)
325320, 321, 324dvbss 25936 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → dom (ℝ D 𝑂) ⊆ (𝐴[,]𝐵))
326 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → 𝑟 ∈ dom (ℝ D 𝑂))
327325, 326sseldd 3984 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → 𝑟 ∈ (𝐴[,]𝐵))
328327adantr 480 . . . . . . . . . . 11 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → 𝑟 ∈ (𝐴[,]𝐵))
329 simpr 484 . . . . . . . . . . 11 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ¬ 𝑟 ∈ ran 𝑆)
330 fourierdlem80.relioo . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑆𝑘)(,)(𝑆‘(𝑘 + 1))))
331 fveq2 6906 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑘 → (𝑆𝑗) = (𝑆𝑘))
332 oveq1 7438 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑘 → (𝑗 + 1) = (𝑘 + 1))
333332fveq2d 6910 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑘 → (𝑆‘(𝑗 + 1)) = (𝑆‘(𝑘 + 1)))
334331, 333oveq12d 7449 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑘 → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) = ((𝑆𝑘)(,)(𝑆‘(𝑘 + 1))))
335 ovex 7464 . . . . . . . . . . . . . . . 16 ((𝑆𝑘)(,)(𝑆‘(𝑘 + 1))) ∈ V
336334, 18, 335fvmpt 7016 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0..^𝑁) → ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘) = ((𝑆𝑘)(,)(𝑆‘(𝑘 + 1))))
337336eleq2d 2827 . . . . . . . . . . . . . 14 (𝑘 ∈ (0..^𝑁) → (𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘) ↔ 𝑟 ∈ ((𝑆𝑘)(,)(𝑆‘(𝑘 + 1)))))
338337rexbiia 3092 . . . . . . . . . . . . 13 (∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘) ↔ ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑆𝑘)(,)(𝑆‘(𝑘 + 1))))
339330, 338sylibr 234 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘))
34051, 18dmmpti 6712 . . . . . . . . . . . . 13 dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (0..^𝑁)
341340rexeqi 3325 . . . . . . . . . . . 12 (∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘) ↔ ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘))
342339, 341sylibr 234 . . . . . . . . . . 11 (((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘))
343319, 328, 329, 342syl21anc 838 . . . . . . . . . 10 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘))
344 funmpt 6604 . . . . . . . . . . 11 Fun (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
345 elunirn 7271 . . . . . . . . . . 11 (Fun (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑟 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ↔ ∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘)))
346344, 345mp1i 13 . . . . . . . . . 10 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → (𝑟 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ↔ ∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘)))
347343, 346mpbird 257 . . . . . . . . 9 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → 𝑟 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
348347olcd 875 . . . . . . . 8 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → (𝑟 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑟 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
349318, 348pm2.61dan 813 . . . . . . 7 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → (𝑟 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑟 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
350 elun 4153 . . . . . . 7 (𝑟 ∈ ( {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ (𝑟 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑟 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
351349, 350sylibr 234 . . . . . 6 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → 𝑟 ∈ ( {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
352351, 29eleqtrrdi 2852 . . . . 5 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → 𝑟 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
353352ralrimiva 3146 . . . 4 (𝜑 → ∀𝑟 ∈ dom (ℝ D 𝑂)𝑟 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
354 dfss3 3972 . . . 4 (dom (ℝ D 𝑂) ⊆ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ ∀𝑟 ∈ dom (ℝ D 𝑂)𝑟 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
355353, 354sylibr 234 . . 3 (𝜑 → dom (ℝ D 𝑂) ⊆ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
356355, 26sseqtrrdi 4025 . 2 (𝜑 → dom (ℝ D 𝑂) ⊆ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
35724, 175, 310, 356ssfiunibd 45321 1 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  Vcvv 3480  cun 3949  cin 3950  wss 3951  {csn 4626   cuni 4907   ciun 4991   class class class wbr 5143  cmpt 5225  dom cdm 5685  ran crn 5686  cres 5687  Fun wfun 6555  wf 6557  cfv 6561  (class class class)co 7431  Fincfn 8985  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492  -cneg 11493   / cdiv 11920  2c2 12321  (,)cioo 13387  [,]cicc 13390  ...cfz 13547  ..^cfzo 13694  cexp 14102  abscabs 15273  sincsin 16099  cosccos 16100  πcpi 16102  TopOpenctopn 17466  topGenctg 17482  fldccnfld 21364  intcnt 23025   D cdv 25898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-t1 23322  df-haus 23323  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902
This theorem is referenced by:  fourierdlem103  46224  fourierdlem104  46225
  Copyright terms: Public domain W3C validator