Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem80 Structured version   Visualization version   GIF version

Theorem fourierdlem80 42828
Description: The derivative of 𝑂 is bounded on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem80.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem80.xre (𝜑𝑋 ∈ ℝ)
fourierdlem80.a (𝜑𝐴 ∈ ℝ)
fourierdlem80.b (𝜑𝐵 ∈ ℝ)
fourierdlem80.ab (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π))
fourierdlem80.n0 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
fourierdlem80.c (𝜑𝐶 ∈ ℝ)
fourierdlem80.o 𝑂 = (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
fourierdlem80.i 𝐼 = ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))
fourierdlem80.fbdioo ((𝜑𝑗 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤)
fourierdlem80.fdvbdioo ((𝜑𝑗 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)
fourierdlem80.sf (𝜑𝑆:(0...𝑁)⟶(𝐴[,]𝐵))
fourierdlem80.slt ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑆𝑗) < (𝑆‘(𝑗 + 1)))
fourierdlem80.sjss ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)[,](𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵))
fourierdlem80.relioo (((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑆𝑘)(,)(𝑆‘(𝑘 + 1))))
fdv ((𝜑𝑗 ∈ (0..^𝑁)) → (ℝ D (𝐹𝐼)):𝐼⟶ℝ)
fourierdlem80.y 𝑌 = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
fourierdlem80.ch (𝜒 ↔ (((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧))
Assertion
Ref Expression
fourierdlem80 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏)
Distinct variable groups:   𝐴,𝑏,𝑟,𝑠,𝑡   𝐵,𝑏,𝑟,𝑠,𝑡   𝐶,𝑏,𝑟,𝑠,𝑡   𝐹,𝑏,𝑟,𝑠,𝑡   𝑤,𝐹,𝑧,𝑠,𝑡   𝑤,𝐼,𝑧   𝑁,𝑏,𝑗,𝑟,𝑠   𝑘,𝑁,𝑗,𝑟   𝑤,𝑁,𝑧,𝑗   𝑂,𝑏,𝑗,𝑟   𝑤,𝑂,𝑧   𝑆,𝑏,𝑗,𝑟,𝑠,𝑡   𝑆,𝑘   𝑤,𝑆,𝑧   𝑋,𝑏,𝑟,𝑠,𝑡   𝑌,𝑠   𝜑,𝑏,𝑗,𝑟,𝑠   𝜒,𝑠,𝑡   𝜑,𝑤,𝑧
Allowed substitution hints:   𝜑(𝑡,𝑘)   𝜒(𝑧,𝑤,𝑗,𝑘,𝑟,𝑏)   𝐴(𝑧,𝑤,𝑗,𝑘)   𝐵(𝑧,𝑤,𝑗,𝑘)   𝐶(𝑧,𝑤,𝑗,𝑘)   𝐹(𝑗,𝑘)   𝐼(𝑡,𝑗,𝑘,𝑠,𝑟,𝑏)   𝑁(𝑡)   𝑂(𝑡,𝑘,𝑠)   𝑋(𝑧,𝑤,𝑗,𝑘)   𝑌(𝑧,𝑤,𝑡,𝑗,𝑘,𝑟,𝑏)

Proof of Theorem fourierdlem80
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem80.o . . . . . . . . 9 𝑂 = (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
2 oveq2 7143 . . . . . . . . . . . . 13 (𝑠 = 𝑡 → (𝑋 + 𝑠) = (𝑋 + 𝑡))
32fveq2d 6649 . . . . . . . . . . . 12 (𝑠 = 𝑡 → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑡)))
43oveq1d 7150 . . . . . . . . . . 11 (𝑠 = 𝑡 → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) = ((𝐹‘(𝑋 + 𝑡)) − 𝐶))
5 oveq1 7142 . . . . . . . . . . . . 13 (𝑠 = 𝑡 → (𝑠 / 2) = (𝑡 / 2))
65fveq2d 6649 . . . . . . . . . . . 12 (𝑠 = 𝑡 → (sin‘(𝑠 / 2)) = (sin‘(𝑡 / 2)))
76oveq2d 7151 . . . . . . . . . . 11 (𝑠 = 𝑡 → (2 · (sin‘(𝑠 / 2))) = (2 · (sin‘(𝑡 / 2))))
84, 7oveq12d 7153 . . . . . . . . . 10 (𝑠 = 𝑡 → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))) = (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))
98cbvmptv 5133 . . . . . . . . 9 (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))
101, 9eqtr2i 2822 . . . . . . . 8 (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2))))) = 𝑂
1110oveq2i 7146 . . . . . . 7 (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))) = (ℝ D 𝑂)
1211dmeqi 5737 . . . . . 6 dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))) = dom (ℝ D 𝑂)
1312ineq2i 4136 . . . . 5 (ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2))))))) = (ran 𝑆 ∩ dom (ℝ D 𝑂))
1413sneqi 4536 . . . 4 {(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} = {(ran 𝑆 ∩ dom (ℝ D 𝑂))}
1514uneq1i 4086 . . 3 ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
16 snfi 8577 . . . . 5 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∈ Fin
17 fzofi 13337 . . . . . 6 (0..^𝑁) ∈ Fin
18 eqid 2798 . . . . . . 7 (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
1918rnmptfi 41795 . . . . . 6 ((0..^𝑁) ∈ Fin → ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ Fin)
2017, 19ax-mp 5 . . . . 5 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ Fin
21 unfi 8769 . . . . 5 (({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∈ Fin ∧ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ Fin) → ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ∈ Fin)
2216, 20, 21mp2an 691 . . . 4 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ∈ Fin
2322a1i 11 . . 3 (𝜑 → ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ∈ Fin)
2415, 23eqeltrid 2894 . 2 (𝜑 → ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ∈ Fin)
25 id 22 . . . 4 (𝑠 ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑠 ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
2615unieqi 4813 . . . 4 ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
2725, 26eleqtrdi 2900 . . 3 (𝑠 ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
28 simpl 486 . . . . 5 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → 𝜑)
29 uniun 4823 . . . . . . . . 9 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ( {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
3029eleq2i 2881 . . . . . . . 8 (𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ 𝑠 ∈ ( {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
31 elun 4076 . . . . . . . 8 (𝑠 ∈ ( {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ (𝑠 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
3230, 31sylbb 222 . . . . . . 7 (𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → (𝑠 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
3332adantl 485 . . . . . 6 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (𝑠 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
34 fourierdlem80.sf . . . . . . . . . . . . 13 (𝜑𝑆:(0...𝑁)⟶(𝐴[,]𝐵))
35 ovex 7168 . . . . . . . . . . . . . 14 (0...𝑁) ∈ V
3635a1i 11 . . . . . . . . . . . . 13 (𝜑 → (0...𝑁) ∈ V)
37 fex 6966 . . . . . . . . . . . . 13 ((𝑆:(0...𝑁)⟶(𝐴[,]𝐵) ∧ (0...𝑁) ∈ V) → 𝑆 ∈ V)
3834, 36, 37syl2anc 587 . . . . . . . . . . . 12 (𝜑𝑆 ∈ V)
39 rnexg 7595 . . . . . . . . . . . 12 (𝑆 ∈ V → ran 𝑆 ∈ V)
4038, 39syl 17 . . . . . . . . . . 11 (𝜑 → ran 𝑆 ∈ V)
41 inex1g 5187 . . . . . . . . . . 11 (ran 𝑆 ∈ V → (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∈ V)
4240, 41syl 17 . . . . . . . . . 10 (𝜑 → (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∈ V)
43 unisng 4819 . . . . . . . . . 10 ((ran 𝑆 ∩ dom (ℝ D 𝑂)) ∈ V → {(ran 𝑆 ∩ dom (ℝ D 𝑂))} = (ran 𝑆 ∩ dom (ℝ D 𝑂)))
4442, 43syl 17 . . . . . . . . 9 (𝜑 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} = (ran 𝑆 ∩ dom (ℝ D 𝑂)))
4544eleq2d 2875 . . . . . . . 8 (𝜑 → (𝑠 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ↔ 𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂))))
4645adantr 484 . . . . . . 7 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (𝑠 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ↔ 𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂))))
4746orbi1d 914 . . . . . 6 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ((𝑠 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∨ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))))
4833, 47mpbid 235 . . . . 5 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∨ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
49 dvf 24510 . . . . . . . . 9 (ℝ D 𝑂):dom (ℝ D 𝑂)⟶ℂ
5049a1i 11 . . . . . . . 8 (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) → (ℝ D 𝑂):dom (ℝ D 𝑂)⟶ℂ)
51 elinel2 4123 . . . . . . . 8 (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) → 𝑠 ∈ dom (ℝ D 𝑂))
5250, 51ffvelrnd 6829 . . . . . . 7 (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)
5352adantl 485 . . . . . 6 ((𝜑𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)
54 ovex 7168 . . . . . . . . . . . 12 ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ∈ V
5554dfiun3 5802 . . . . . . . . . . 11 𝑗 ∈ (0..^𝑁)((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) = ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
5655eleq2i 2881 . . . . . . . . . 10 (𝑠 𝑗 ∈ (0..^𝑁)((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↔ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
5756biimpri 231 . . . . . . . . 9 (𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 𝑗 ∈ (0..^𝑁)((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
5857adantl 485 . . . . . . . 8 ((𝜑𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑠 𝑗 ∈ (0..^𝑁)((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
59 eliun 4885 . . . . . . . 8 (𝑠 𝑗 ∈ (0..^𝑁)((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↔ ∃𝑗 ∈ (0..^𝑁)𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
6058, 59sylib 221 . . . . . . 7 ((𝜑𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → ∃𝑗 ∈ (0..^𝑁)𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
61 nfv 1915 . . . . . . . . 9 𝑗𝜑
62 nfmpt1 5128 . . . . . . . . . . . 12 𝑗(𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
6362nfrn 5788 . . . . . . . . . . 11 𝑗ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
6463nfuni 4807 . . . . . . . . . 10 𝑗 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
6564nfcri 2943 . . . . . . . . 9 𝑗 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
6661, 65nfan 1900 . . . . . . . 8 𝑗(𝜑𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
67 nfv 1915 . . . . . . . 8 𝑗((ℝ D 𝑂)‘𝑠) ∈ ℂ
6849a1i 11 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → (ℝ D 𝑂):dom (ℝ D 𝑂)⟶ℂ)
69 fourierdlem80.y . . . . . . . . . . . . . . . . . . 19 𝑌 = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
701reseq1i 5814 . . . . . . . . . . . . . . . . . . . 20 (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = ((𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
71 ioossicc 12811 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑆𝑗)[,](𝑆‘(𝑗 + 1)))
72 fourierdlem80.sjss . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)[,](𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵))
7371, 72sstrid 3926 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵))
7473resmptd 5875 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))
7570, 74syl5eq 2845 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))
7669, 75eqtr4id 2852 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑌 = (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
7776oveq2d 7151 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0..^𝑁)) → (ℝ D 𝑌) = (ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
78 ax-resscn 10583 . . . . . . . . . . . . . . . . . . . . 21 ℝ ⊆ ℂ
7978a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ℝ ⊆ ℂ)
80 fourierdlem80.f . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐹:ℝ⟶ℝ)
8180adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝐹:ℝ⟶ℝ)
82 fourierdlem80.xre . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑋 ∈ ℝ)
8382adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑋 ∈ ℝ)
84 fourierdlem80.a . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐴 ∈ ℝ)
85 fourierdlem80.b . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐵 ∈ ℝ)
8684, 85iccssred 12812 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
8786sselda 3915 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℝ)
8883, 87readdcld 10659 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
8981, 88ffvelrnd 6829 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
9089recnd 10658 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
91 fourierdlem80.c . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐶 ∈ ℝ)
9291recnd 10658 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐶 ∈ ℂ)
9392adantr 484 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ)
9490, 93subcld 10986 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ)
95 2cnd 11703 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 2 ∈ ℂ)
9686, 79sstrd 3925 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
9796sselda 3915 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℂ)
9897halfcld 11870 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (𝑠 / 2) ∈ ℂ)
9998sincld 15475 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (sin‘(𝑠 / 2)) ∈ ℂ)
10095, 99mulcld 10650 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
101 2ne0 11729 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ≠ 0
102101a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 2 ≠ 0)
103 fourierdlem80.ab . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π))
104103sselda 3915 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ (-π[,]π))
105 eqcom 2805 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑠 = 0 ↔ 0 = 𝑠)
106105biimpi 219 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑠 = 0 → 0 = 𝑠)
107106adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑠 ∈ (𝐴[,]𝐵) ∧ 𝑠 = 0) → 0 = 𝑠)
108 simpl 486 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑠 ∈ (𝐴[,]𝐵) ∧ 𝑠 = 0) → 𝑠 ∈ (𝐴[,]𝐵))
109107, 108eqeltrd 2890 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑠 ∈ (𝐴[,]𝐵) ∧ 𝑠 = 0) → 0 ∈ (𝐴[,]𝐵))
110109adantll 713 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑠 = 0) → 0 ∈ (𝐴[,]𝐵))
111 fourierdlem80.n0 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
112111ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑠 = 0) → ¬ 0 ∈ (𝐴[,]𝐵))
113110, 112pm2.65da 816 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → ¬ 𝑠 = 0)
114113neqned 2994 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ≠ 0)
115 fourierdlem44 42793 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
116104, 114, 115syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (sin‘(𝑠 / 2)) ≠ 0)
11795, 99, 102, 116mulne0d 11281 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
11894, 100, 117divcld 11405 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))) ∈ ℂ)
119118, 1fmptd 6855 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑂:(𝐴[,]𝐵)⟶ℂ)
120 ioossre 12786 . . . . . . . . . . . . . . . . . . . . 21 ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ℝ
121120a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ℝ)
122 eqid 2798 . . . . . . . . . . . . . . . . . . . . 21 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
123122tgioo2 23408 . . . . . . . . . . . . . . . . . . . . 21 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
124122, 123dvres 24514 . . . . . . . . . . . . . . . . . . . 20 (((ℝ ⊆ ℂ ∧ 𝑂:(𝐴[,]𝐵)⟶ℂ) ∧ ((𝐴[,]𝐵) ⊆ ℝ ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ℝ)) → (ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
12579, 119, 86, 121, 124syl22anc 837 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
126 ioontr 42148 . . . . . . . . . . . . . . . . . . . 20 ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))
127126reseq2i 5815 . . . . . . . . . . . . . . . . . . 19 ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
128125, 127eqtrdi 2849 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
129128adantr 484 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0..^𝑁)) → (ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
13077, 129eqtr2d 2834 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (0..^𝑁)) → ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (ℝ D 𝑌))
131130dmeqd 5738 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0..^𝑁)) → dom ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = dom (ℝ D 𝑌))
13280adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℝ)
13382adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑋 ∈ ℝ)
13486adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐴[,]𝐵) ⊆ ℝ)
13534adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑆:(0...𝑁)⟶(𝐴[,]𝐵))
136 elfzofz 13048 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ (0..^𝑁) → 𝑗 ∈ (0...𝑁))
137136adantl 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0...𝑁))
138135, 137ffvelrnd 6829 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑆𝑗) ∈ (𝐴[,]𝐵))
139134, 138sseldd 3916 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑆𝑗) ∈ ℝ)
140 fzofzp1 13129 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ (0..^𝑁) → (𝑗 + 1) ∈ (0...𝑁))
141140adantl 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑗 + 1) ∈ (0...𝑁))
142135, 141ffvelrnd 6829 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑆‘(𝑗 + 1)) ∈ (𝐴[,]𝐵))
143134, 142sseldd 3916 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑆‘(𝑗 + 1)) ∈ ℝ)
144 fdv . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0..^𝑁)) → (ℝ D (𝐹𝐼)):𝐼⟶ℝ)
145 fourierdlem80.i . . . . . . . . . . . . . . . . . . . . . 22 𝐼 = ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))
146145feq2i 6479 . . . . . . . . . . . . . . . . . . . . 21 ((ℝ D (𝐹𝐼)):𝐼⟶ℝ ↔ (ℝ D (𝐹𝐼)):((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ)
147144, 146sylib 221 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → (ℝ D (𝐹𝐼)):((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ)
148145reseq2i 5815 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹𝐼) = (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))
149148oveq2i 7146 . . . . . . . . . . . . . . . . . . . . 21 (ℝ D (𝐹𝐼)) = (ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))
150149feq1i 6478 . . . . . . . . . . . . . . . . . . . 20 ((ℝ D (𝐹𝐼)):((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ ↔ (ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))):((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ)
151147, 150sylib 221 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))):((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ)
152103adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐴[,]𝐵) ⊆ (-π[,]π))
15373, 152sstrd 3925 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ (-π[,]π))
154111adantr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → ¬ 0 ∈ (𝐴[,]𝐵))
15573, 154ssneldd 3918 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → ¬ 0 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
15691adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐶 ∈ ℝ)
157132, 133, 139, 143, 151, 153, 155, 156, 69fourierdlem57 42805 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (0..^𝑁)) → ((ℝ D 𝑌):((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))⟶ℝ ∧ (ℝ D 𝑌) = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))))) ∧ (ℝ D (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (cos‘(𝑠 / 2))))
158157simpli 487 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0..^𝑁)) → ((ℝ D 𝑌):((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))⟶ℝ ∧ (ℝ D 𝑌) = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2)))))
159158simpld 498 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (0..^𝑁)) → (ℝ D 𝑌):((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))⟶ℝ)
160 fdm 6495 . . . . . . . . . . . . . . . 16 ((ℝ D 𝑌):((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))⟶ℝ → dom (ℝ D 𝑌) = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
161159, 160syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0..^𝑁)) → dom (ℝ D 𝑌) = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
162131, 161eqtr2d 2834 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) = dom ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
163 resss 5843 . . . . . . . . . . . . . . 15 ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ⊆ (ℝ D 𝑂)
164 dmss 5735 . . . . . . . . . . . . . . 15 (((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ⊆ (ℝ D 𝑂) → dom ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ⊆ dom (ℝ D 𝑂))
165163, 164mp1i 13 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑁)) → dom ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ⊆ dom (ℝ D 𝑂))
166162, 165eqsstrd 3953 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ dom (ℝ D 𝑂))
1671663adant3 1129 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ dom (ℝ D 𝑂))
168 simp3 1135 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
169167, 168sseldd 3916 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ dom (ℝ D 𝑂))
17068, 169ffvelrnd 6829 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)
1711703exp 1116 . . . . . . . . 9 (𝜑 → (𝑗 ∈ (0..^𝑁) → (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)))
172171adantr 484 . . . . . . . 8 ((𝜑𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → (𝑗 ∈ (0..^𝑁) → (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)))
17366, 67, 172rexlimd 3276 . . . . . . 7 ((𝜑𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → (∃𝑗 ∈ (0..^𝑁)𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ))
17460, 173mpd 15 . . . . . 6 ((𝜑𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)
17553, 174jaodan 955 . . . . 5 ((𝜑 ∧ (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∨ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)
17628, 48, 175syl2anc 587 . . . 4 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)
177176abscld 14788 . . 3 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ)
17827, 177sylan2 595 . 2 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ)
179 id 22 . . . 4 (𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
180179, 15eleqtrdi 2900 . . 3 (𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
181 elsni 4542 . . . . . 6 (𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))} → 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)))
182 simpr 488 . . . . . . . 8 ((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)))
183 fzfid 13336 . . . . . . . . . . 11 (𝜑 → (0...𝑁) ∈ Fin)
184 rnffi 41799 . . . . . . . . . . 11 ((𝑆:(0...𝑁)⟶(𝐴[,]𝐵) ∧ (0...𝑁) ∈ Fin) → ran 𝑆 ∈ Fin)
18534, 183, 184syl2anc 587 . . . . . . . . . 10 (𝜑 → ran 𝑆 ∈ Fin)
186 infi 8726 . . . . . . . . . 10 (ran 𝑆 ∈ Fin → (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∈ Fin)
187185, 186syl 17 . . . . . . . . 9 (𝜑 → (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∈ Fin)
188187adantr 484 . . . . . . . 8 ((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∈ Fin)
189182, 188eqeltrd 2890 . . . . . . 7 ((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → 𝑟 ∈ Fin)
190 nfv 1915 . . . . . . . . 9 𝑠𝜑
191 nfcv 2955 . . . . . . . . . . 11 𝑠ran 𝑆
192 nfcv 2955 . . . . . . . . . . . . 13 𝑠
193 nfcv 2955 . . . . . . . . . . . . 13 𝑠 D
194 nfmpt1 5128 . . . . . . . . . . . . . 14 𝑠(𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
1951, 194nfcxfr 2953 . . . . . . . . . . . . 13 𝑠𝑂
196192, 193, 195nfov 7165 . . . . . . . . . . . 12 𝑠(ℝ D 𝑂)
197196nfdm 5787 . . . . . . . . . . 11 𝑠dom (ℝ D 𝑂)
198191, 197nfin 4143 . . . . . . . . . 10 𝑠(ran 𝑆 ∩ dom (ℝ D 𝑂))
199198nfeq2 2972 . . . . . . . . 9 𝑠 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))
200190, 199nfan 1900 . . . . . . . 8 𝑠(𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)))
201 simpr 488 . . . . . . . . . . . . 13 ((𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∧ 𝑠𝑟) → 𝑠𝑟)
202 simpl 486 . . . . . . . . . . . . 13 ((𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∧ 𝑠𝑟) → 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)))
203201, 202eleqtrd 2892 . . . . . . . . . . . 12 ((𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∧ 𝑠𝑟) → 𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)))
204203, 51syl 17 . . . . . . . . . . 11 ((𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∧ 𝑠𝑟) → 𝑠 ∈ dom (ℝ D 𝑂))
205204adantll 713 . . . . . . . . . 10 (((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) ∧ 𝑠𝑟) → 𝑠 ∈ dom (ℝ D 𝑂))
20649ffvelrni 6827 . . . . . . . . . . 11 (𝑠 ∈ dom (ℝ D 𝑂) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)
207206abscld 14788 . . . . . . . . . 10 (𝑠 ∈ dom (ℝ D 𝑂) → (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ)
208205, 207syl 17 . . . . . . . . 9 (((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) ∧ 𝑠𝑟) → (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ)
209208ex 416 . . . . . . . 8 ((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → (𝑠𝑟 → (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ))
210200, 209ralrimi 3180 . . . . . . 7 ((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ)
211 fimaxre3 11575 . . . . . . 7 ((𝑟 ∈ Fin ∧ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
212189, 210, 211syl2anc 587 . . . . . 6 ((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
213181, 212sylan2 595 . . . . 5 ((𝜑𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
214213adantlr 714 . . . 4 (((𝜑𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) ∧ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
215 simpll 766 . . . . 5 (((𝜑𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) ∧ ¬ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → 𝜑)
216 elunnel1 4077 . . . . . 6 ((𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ∧ ¬ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
217216adantll 713 . . . . 5 (((𝜑𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) ∧ ¬ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
218 vex 3444 . . . . . . . . 9 𝑟 ∈ V
21918elrnmpt 5792 . . . . . . . . 9 (𝑟 ∈ V → (𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ↔ ∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
220218, 219ax-mp 5 . . . . . . . 8 (𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ↔ ∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
221220biimpi 219 . . . . . . 7 (𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → ∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
222221adantl 485 . . . . . 6 ((𝜑𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → ∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
22363nfcri 2943 . . . . . . . 8 𝑗 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
22461, 223nfan 1900 . . . . . . 7 𝑗(𝜑𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
225 nfv 1915 . . . . . . 7 𝑗𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦
226 fourierdlem80.fbdioo . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤)
227 fourierdlem80.fdvbdioo . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)
228 reeanv 3320 . . . . . . . . . . . . 13 (∃𝑤 ∈ ℝ ∃𝑧 ∈ ℝ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧) ↔ (∃𝑤 ∈ ℝ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧))
229226, 227, 228sylanbrc 586 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∃𝑧 ∈ ℝ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧))
230 simp1 1133 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → (𝜑𝑗 ∈ (0..^𝑁)))
231 simp2l 1196 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → 𝑤 ∈ ℝ)
232 simp2r 1197 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → 𝑧 ∈ ℝ)
233230, 231, 232jca31 518 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ))
234 simp3l 1198 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤)
235 simp3r 1199 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)
236233, 234, 235jca31 518 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → (((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧))
237 fourierdlem80.ch . . . . . . . . . . . . . . . 16 (𝜒 ↔ (((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧))
238236, 237sylibr 237 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → 𝜒)
239237biimpi 219 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧))
240 simp-5l 784 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧) → 𝜑)
241239, 240syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝜑)
242241, 80syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝐹:ℝ⟶ℝ)
243241, 82syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑋 ∈ ℝ)
244 simp-4l 782 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧) → (𝜑𝑗 ∈ (0..^𝑁)))
245239, 244syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝜑𝑗 ∈ (0..^𝑁)))
246245, 139syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑆𝑗) ∈ ℝ)
247245, 143syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑆‘(𝑗 + 1)) ∈ ℝ)
248 fourierdlem80.slt . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑆𝑗) < (𝑆‘(𝑗 + 1)))
249245, 248syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑆𝑗) < (𝑆‘(𝑗 + 1)))
25072, 152sstrd 3925 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)[,](𝑆‘(𝑗 + 1))) ⊆ (-π[,]π))
251245, 250syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒 → ((𝑆𝑗)[,](𝑆‘(𝑗 + 1))) ⊆ (-π[,]π))
25272, 154ssneldd 3918 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → ¬ 0 ∈ ((𝑆𝑗)[,](𝑆‘(𝑗 + 1))))
253245, 252syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒 → ¬ 0 ∈ ((𝑆𝑗)[,](𝑆‘(𝑗 + 1))))
254245, 151syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))):((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ)
255 simp-4r 783 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧) → 𝑤 ∈ ℝ)
256239, 255syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑤 ∈ ℝ)
257239simplrd 769 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤)
258 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 ∈ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))) → 𝑡 ∈ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))
259258, 145eleqtrrdi 2901 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ∈ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))) → 𝑡𝐼)
260 rspa 3171 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤𝑡𝐼) → (abs‘(𝐹𝑡)) ≤ 𝑤)
261257, 259, 260syl2an 598 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑡 ∈ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))) → (abs‘(𝐹𝑡)) ≤ 𝑤)
262 simpllr 775 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧) → 𝑧 ∈ ℝ)
263239, 262syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑧 ∈ ℝ)
264149fveq1i 6646 . . . . . . . . . . . . . . . . . . . . . 22 ((ℝ D (𝐹𝐼))‘𝑡) = ((ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘𝑡)
265264fveq2i 6648 . . . . . . . . . . . . . . . . . . . . 21 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) = (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘𝑡))
266239simprd 499 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)
267266r19.21bi 3173 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑡𝐼) → (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)
268265, 267eqbrtrrid 5066 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑡𝐼) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘𝑡)) ≤ 𝑧)
269259, 268sylan2 595 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑡 ∈ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘𝑡)) ≤ 𝑧)
270241, 91syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝐶 ∈ ℝ)
271242, 243, 246, 247, 249, 251, 253, 254, 256, 261, 263, 269, 270, 69fourierdlem68 42816 . . . . . . . . . . . . . . . . . 18 (𝜒 → (dom (ℝ D 𝑌) = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ∧ ∃𝑦 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑌)(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦))
272271simprd 499 . . . . . . . . . . . . . . . . 17 (𝜒 → ∃𝑦 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑌)(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦)
273271simpld 498 . . . . . . . . . . . . . . . . . . 19 (𝜒 → dom (ℝ D 𝑌) = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
274273raleqdv 3364 . . . . . . . . . . . . . . . . . 18 (𝜒 → (∀𝑠 ∈ dom (ℝ D 𝑌)(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦 ↔ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦))
275274rexbidv 3256 . . . . . . . . . . . . . . . . 17 (𝜒 → (∃𝑦 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑌)(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦))
276272, 275mpbid 235 . . . . . . . . . . . . . . . 16 (𝜒 → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦)
277126eqcomi 2807 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) = ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
278277reseq2i 5815 . . . . . . . . . . . . . . . . . . . . . 22 ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
279278fveq1i 6646 . . . . . . . . . . . . . . . . . . . . 21 (((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑠) = (((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠)
280 fvres 6664 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → (((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑠) = ((ℝ D 𝑂)‘𝑠))
281280adantl 485 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → (((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑠) = ((ℝ D 𝑂)‘𝑠))
282245, 73syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜒 → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵))
283282resmptd 5875 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜒 → ((𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))
28470, 283syl5eq 2845 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒 → (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))
28569, 284eqtr4id 2852 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒𝑌 = (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
286285oveq2d 7151 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → (ℝ D 𝑌) = (ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
287286fveq1d 6647 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → ((ℝ D 𝑌)‘𝑠) = ((ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠))
288125fveq1d 6647 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠) = (((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠))
289241, 288syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → ((ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠) = (((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠))
290287, 289eqtr2d 2834 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠) = ((ℝ D 𝑌)‘𝑠))
291290adantr 484 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → (((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠) = ((ℝ D 𝑌)‘𝑠))
292279, 281, 2913eqtr3a 2857 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((ℝ D 𝑂)‘𝑠) = ((ℝ D 𝑌)‘𝑠))
293292fveq2d 6649 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → (abs‘((ℝ D 𝑂)‘𝑠)) = (abs‘((ℝ D 𝑌)‘𝑠)))
294293breq1d 5040 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ (abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦))
295294ralbidva 3161 . . . . . . . . . . . . . . . . 17 (𝜒 → (∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦))
296295rexbidv 3256 . . . . . . . . . . . . . . . 16 (𝜒 → (∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦))
297276, 296mpbird 260 . . . . . . . . . . . . . . 15 (𝜒 → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
298238, 297syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
2992983exp 1116 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)))
300299rexlimdvv 3252 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑁)) → (∃𝑤 ∈ ℝ ∃𝑧 ∈ ℝ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦))
301229, 300mpd 15 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑁)) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
3023013adant3 1129 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
303 raleq 3358 . . . . . . . . . . . 12 (𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → (∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦))
3043033ad2ant3 1132 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → (∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦))
305304rexbidv 3256 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → (∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦))
306302, 305mpbird 260 . . . . . . . . 9 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
3073063exp 1116 . . . . . . . 8 (𝜑 → (𝑗 ∈ (0..^𝑁) → (𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)))
308307adantr 484 . . . . . . 7 ((𝜑𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → (𝑗 ∈ (0..^𝑁) → (𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)))
309224, 225, 308rexlimd 3276 . . . . . 6 ((𝜑𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → (∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦))
310222, 309mpd 15 . . . . 5 ((𝜑𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
311215, 217, 310syl2anc 587 . . . 4 (((𝜑𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) ∧ ¬ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
312214, 311pm2.61dan 812 . . 3 ((𝜑𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
313180, 312sylan2 595 . 2 ((𝜑𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
314 pm3.22 463 . . . . . . . . . . . 12 ((𝑟 ∈ dom (ℝ D 𝑂) ∧ 𝑟 ∈ ran 𝑆) → (𝑟 ∈ ran 𝑆𝑟 ∈ dom (ℝ D 𝑂)))
315 elin 3897 . . . . . . . . . . . 12 (𝑟 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) ↔ (𝑟 ∈ ran 𝑆𝑟 ∈ dom (ℝ D 𝑂)))
316314, 315sylibr 237 . . . . . . . . . . 11 ((𝑟 ∈ dom (ℝ D 𝑂) ∧ 𝑟 ∈ ran 𝑆) → 𝑟 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)))
317316adantll 713 . . . . . . . . . 10 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ 𝑟 ∈ ran 𝑆) → 𝑟 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)))
31844eqcomd 2804 . . . . . . . . . . 11 (𝜑 → (ran 𝑆 ∩ dom (ℝ D 𝑂)) = {(ran 𝑆 ∩ dom (ℝ D 𝑂))})
319318ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ 𝑟 ∈ ran 𝑆) → (ran 𝑆 ∩ dom (ℝ D 𝑂)) = {(ran 𝑆 ∩ dom (ℝ D 𝑂))})
320317, 319eleqtrd 2892 . . . . . . . . 9 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ 𝑟 ∈ ran 𝑆) → 𝑟 {(ran 𝑆 ∩ dom (ℝ D 𝑂))})
321320orcd 870 . . . . . . . 8 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ 𝑟 ∈ ran 𝑆) → (𝑟 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑟 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
322 simpll 766 . . . . . . . . . . 11 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → 𝜑)
32378a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → ℝ ⊆ ℂ)
324119adantr 484 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → 𝑂:(𝐴[,]𝐵)⟶ℂ)
32584adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → 𝐴 ∈ ℝ)
32685adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → 𝐵 ∈ ℝ)
327325, 326iccssred 12812 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → (𝐴[,]𝐵) ⊆ ℝ)
328323, 324, 327dvbss 24504 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → dom (ℝ D 𝑂) ⊆ (𝐴[,]𝐵))
329 simpr 488 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → 𝑟 ∈ dom (ℝ D 𝑂))
330328, 329sseldd 3916 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → 𝑟 ∈ (𝐴[,]𝐵))
331330adantr 484 . . . . . . . . . . 11 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → 𝑟 ∈ (𝐴[,]𝐵))
332 simpr 488 . . . . . . . . . . 11 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ¬ 𝑟 ∈ ran 𝑆)
333 fourierdlem80.relioo . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑆𝑘)(,)(𝑆‘(𝑘 + 1))))
334 fveq2 6645 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑘 → (𝑆𝑗) = (𝑆𝑘))
335 oveq1 7142 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑘 → (𝑗 + 1) = (𝑘 + 1))
336335fveq2d 6649 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑘 → (𝑆‘(𝑗 + 1)) = (𝑆‘(𝑘 + 1)))
337334, 336oveq12d 7153 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑘 → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) = ((𝑆𝑘)(,)(𝑆‘(𝑘 + 1))))
338 ovex 7168 . . . . . . . . . . . . . . . 16 ((𝑆𝑘)(,)(𝑆‘(𝑘 + 1))) ∈ V
339337, 18, 338fvmpt 6745 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0..^𝑁) → ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘) = ((𝑆𝑘)(,)(𝑆‘(𝑘 + 1))))
340339eleq2d 2875 . . . . . . . . . . . . . 14 (𝑘 ∈ (0..^𝑁) → (𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘) ↔ 𝑟 ∈ ((𝑆𝑘)(,)(𝑆‘(𝑘 + 1)))))
341340rexbiia 3209 . . . . . . . . . . . . 13 (∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘) ↔ ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑆𝑘)(,)(𝑆‘(𝑘 + 1))))
342333, 341sylibr 237 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘))
34354, 18dmmpti 6464 . . . . . . . . . . . . 13 dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (0..^𝑁)
344343rexeqi 3363 . . . . . . . . . . . 12 (∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘) ↔ ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘))
345342, 344sylibr 237 . . . . . . . . . . 11 (((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘))
346322, 331, 332, 345syl21anc 836 . . . . . . . . . 10 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘))
347 funmpt 6362 . . . . . . . . . . 11 Fun (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
348 elunirn 6988 . . . . . . . . . . 11 (Fun (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑟 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ↔ ∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘)))
349347, 348mp1i 13 . . . . . . . . . 10 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → (𝑟 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ↔ ∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘)))
350346, 349mpbird 260 . . . . . . . . 9 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → 𝑟 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
351350olcd 871 . . . . . . . 8 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → (𝑟 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑟 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
352321, 351pm2.61dan 812 . . . . . . 7 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → (𝑟 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑟 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
353 elun 4076 . . . . . . 7 (𝑟 ∈ ( {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ (𝑟 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑟 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
354352, 353sylibr 237 . . . . . 6 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → 𝑟 ∈ ( {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
355354, 29eleqtrrdi 2901 . . . . 5 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → 𝑟 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
356355ralrimiva 3149 . . . 4 (𝜑 → ∀𝑟 ∈ dom (ℝ D 𝑂)𝑟 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
357 dfss3 3903 . . . 4 (dom (ℝ D 𝑂) ⊆ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ ∀𝑟 ∈ dom (ℝ D 𝑂)𝑟 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
358356, 357sylibr 237 . . 3 (𝜑 → dom (ℝ D 𝑂) ⊆ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
359358, 26sseqtrrdi 3966 . 2 (𝜑 → dom (ℝ D 𝑂) ⊆ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
36024, 178, 313, 359ssfiunibd 41941 1 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  Vcvv 3441  cun 3879  cin 3880  wss 3881  {csn 4525   cuni 4800   ciun 4881   class class class wbr 5030  cmpt 5110  dom cdm 5519  ran crn 5520  cres 5521  Fun wfun 6318  wf 6320  cfv 6324  (class class class)co 7135  Fincfn 8492  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859  -cneg 10860   / cdiv 11286  2c2 11680  (,)cioo 12726  [,]cicc 12729  ...cfz 12885  ..^cfzo 13028  cexp 13425  abscabs 14585  sincsin 15409  cosccos 15410  πcpi 15412  TopOpenctopn 16687  topGenctg 16703  fldccnfld 20091  intcnt 21622   D cdv 24466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604  ax-addf 10605  ax-mulf 10606
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-fi 8859  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-q 12337  df-rp 12378  df-xneg 12495  df-xadd 12496  df-xmul 12497  df-ioo 12730  df-ioc 12731  df-ico 12732  df-icc 12733  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-seq 13365  df-exp 13426  df-fac 13630  df-bc 13659  df-hash 13687  df-shft 14418  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-limsup 14820  df-clim 14837  df-rlim 14838  df-sum 15035  df-ef 15413  df-sin 15415  df-cos 15416  df-pi 15418  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-starv 16572  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-unif 16580  df-hom 16581  df-cco 16582  df-rest 16688  df-topn 16689  df-0g 16707  df-gsum 16708  df-topgen 16709  df-pt 16710  df-prds 16713  df-xrs 16767  df-qtop 16772  df-imas 16773  df-xps 16775  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-mulg 18217  df-cntz 18439  df-cmn 18900  df-psmet 20083  df-xmet 20084  df-met 20085  df-bl 20086  df-mopn 20087  df-fbas 20088  df-fg 20089  df-cnfld 20092  df-top 21499  df-topon 21516  df-topsp 21538  df-bases 21551  df-cld 21624  df-ntr 21625  df-cls 21626  df-nei 21703  df-lp 21741  df-perf 21742  df-cn 21832  df-cnp 21833  df-t1 21919  df-haus 21920  df-cmp 21992  df-tx 22167  df-hmeo 22360  df-fil 22451  df-fm 22543  df-flim 22544  df-flf 22545  df-xms 22927  df-ms 22928  df-tms 22929  df-cncf 23483  df-limc 24469  df-dv 24470
This theorem is referenced by:  fourierdlem103  42851  fourierdlem104  42852
  Copyright terms: Public domain W3C validator