Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem80 Structured version   Visualization version   GIF version

Theorem fourierdlem80 46191
Description: The derivative of 𝑂 is bounded on the given interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem80.f (𝜑𝐹:ℝ⟶ℝ)
fourierdlem80.xre (𝜑𝑋 ∈ ℝ)
fourierdlem80.a (𝜑𝐴 ∈ ℝ)
fourierdlem80.b (𝜑𝐵 ∈ ℝ)
fourierdlem80.ab (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π))
fourierdlem80.n0 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
fourierdlem80.c (𝜑𝐶 ∈ ℝ)
fourierdlem80.o 𝑂 = (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
fourierdlem80.i 𝐼 = ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))
fourierdlem80.fbdioo ((𝜑𝑗 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤)
fourierdlem80.fdvbdioo ((𝜑𝑗 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)
fourierdlem80.sf (𝜑𝑆:(0...𝑁)⟶(𝐴[,]𝐵))
fourierdlem80.slt ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑆𝑗) < (𝑆‘(𝑗 + 1)))
fourierdlem80.sjss ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)[,](𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵))
fourierdlem80.relioo (((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑆𝑘)(,)(𝑆‘(𝑘 + 1))))
fdv ((𝜑𝑗 ∈ (0..^𝑁)) → (ℝ D (𝐹𝐼)):𝐼⟶ℝ)
fourierdlem80.y 𝑌 = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
fourierdlem80.ch (𝜒 ↔ (((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧))
Assertion
Ref Expression
fourierdlem80 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏)
Distinct variable groups:   𝐴,𝑏,𝑟,𝑠,𝑡   𝐵,𝑏,𝑟,𝑠,𝑡   𝐶,𝑏,𝑟,𝑠,𝑡   𝐹,𝑏,𝑟,𝑠,𝑡   𝑤,𝐹,𝑧,𝑠,𝑡   𝑤,𝐼,𝑧   𝑁,𝑏,𝑗,𝑟,𝑠   𝑘,𝑁,𝑗,𝑟   𝑤,𝑁,𝑧,𝑗   𝑂,𝑏,𝑗,𝑟   𝑤,𝑂,𝑧   𝑆,𝑏,𝑗,𝑟,𝑠,𝑡   𝑆,𝑘   𝑤,𝑆,𝑧   𝑋,𝑏,𝑟,𝑠,𝑡   𝑌,𝑠   𝜑,𝑏,𝑗,𝑟,𝑠   𝜒,𝑠,𝑡   𝜑,𝑤,𝑧
Allowed substitution hints:   𝜑(𝑡,𝑘)   𝜒(𝑧,𝑤,𝑗,𝑘,𝑟,𝑏)   𝐴(𝑧,𝑤,𝑗,𝑘)   𝐵(𝑧,𝑤,𝑗,𝑘)   𝐶(𝑧,𝑤,𝑗,𝑘)   𝐹(𝑗,𝑘)   𝐼(𝑡,𝑗,𝑘,𝑠,𝑟,𝑏)   𝑁(𝑡)   𝑂(𝑡,𝑘,𝑠)   𝑋(𝑧,𝑤,𝑗,𝑘)   𝑌(𝑧,𝑤,𝑡,𝑗,𝑘,𝑟,𝑏)

Proof of Theorem fourierdlem80
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fourierdlem80.o . . . . . . . . 9 𝑂 = (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
2 oveq2 7398 . . . . . . . . . . . . 13 (𝑠 = 𝑡 → (𝑋 + 𝑠) = (𝑋 + 𝑡))
32fveq2d 6865 . . . . . . . . . . . 12 (𝑠 = 𝑡 → (𝐹‘(𝑋 + 𝑠)) = (𝐹‘(𝑋 + 𝑡)))
43oveq1d 7405 . . . . . . . . . . 11 (𝑠 = 𝑡 → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) = ((𝐹‘(𝑋 + 𝑡)) − 𝐶))
5 oveq1 7397 . . . . . . . . . . . . 13 (𝑠 = 𝑡 → (𝑠 / 2) = (𝑡 / 2))
65fveq2d 6865 . . . . . . . . . . . 12 (𝑠 = 𝑡 → (sin‘(𝑠 / 2)) = (sin‘(𝑡 / 2)))
76oveq2d 7406 . . . . . . . . . . 11 (𝑠 = 𝑡 → (2 · (sin‘(𝑠 / 2))) = (2 · (sin‘(𝑡 / 2))))
84, 7oveq12d 7408 . . . . . . . . . 10 (𝑠 = 𝑡 → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))) = (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))
98cbvmptv 5214 . . . . . . . . 9 (𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) = (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))
101, 9eqtr2i 2754 . . . . . . . 8 (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2))))) = 𝑂
1110oveq2i 7401 . . . . . . 7 (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))) = (ℝ D 𝑂)
1211dmeqi 5871 . . . . . 6 dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))) = dom (ℝ D 𝑂)
1312ineq2i 4183 . . . . 5 (ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2))))))) = (ran 𝑆 ∩ dom (ℝ D 𝑂))
1413sneqi 4603 . . . 4 {(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} = {(ran 𝑆 ∩ dom (ℝ D 𝑂))}
1514uneq1i 4130 . . 3 ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
16 snfi 9017 . . . . 5 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∈ Fin
17 fzofi 13946 . . . . . 6 (0..^𝑁) ∈ Fin
18 eqid 2730 . . . . . . 7 (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
1918rnmptfi 45172 . . . . . 6 ((0..^𝑁) ∈ Fin → ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ Fin)
2017, 19ax-mp 5 . . . . 5 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ Fin
21 unfi 9141 . . . . 5 (({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∈ Fin ∧ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ∈ Fin) → ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ∈ Fin)
2216, 20, 21mp2an 692 . . . 4 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ∈ Fin
2322a1i 11 . . 3 (𝜑 → ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ∈ Fin)
2415, 23eqeltrid 2833 . 2 (𝜑 → ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ∈ Fin)
25 id 22 . . . 4 (𝑠 ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑠 ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
2615unieqi 4886 . . . 4 ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
2725, 26eleqtrdi 2839 . . 3 (𝑠 ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
28 simpl 482 . . . . 5 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → 𝜑)
29 uniun 4897 . . . . . . . . 9 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ( {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
3029eleq2i 2821 . . . . . . . 8 (𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ 𝑠 ∈ ( {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
31 elun 4119 . . . . . . . 8 (𝑠 ∈ ( {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ (𝑠 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
3230, 31sylbb 219 . . . . . . 7 (𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → (𝑠 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
3332adantl 481 . . . . . 6 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (𝑠 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
34 fourierdlem80.sf . . . . . . . . . . 11 (𝜑𝑆:(0...𝑁)⟶(𝐴[,]𝐵))
35 ovex 7423 . . . . . . . . . . . 12 (0...𝑁) ∈ V
3635a1i 11 . . . . . . . . . . 11 (𝜑 → (0...𝑁) ∈ V)
3734, 36fexd 7204 . . . . . . . . . 10 (𝜑𝑆 ∈ V)
38 rnexg 7881 . . . . . . . . . 10 (𝑆 ∈ V → ran 𝑆 ∈ V)
39 inex1g 5277 . . . . . . . . . 10 (ran 𝑆 ∈ V → (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∈ V)
40 unisng 4892 . . . . . . . . . 10 ((ran 𝑆 ∩ dom (ℝ D 𝑂)) ∈ V → {(ran 𝑆 ∩ dom (ℝ D 𝑂))} = (ran 𝑆 ∩ dom (ℝ D 𝑂)))
4137, 38, 39, 404syl 19 . . . . . . . . 9 (𝜑 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} = (ran 𝑆 ∩ dom (ℝ D 𝑂)))
4241eleq2d 2815 . . . . . . . 8 (𝜑 → (𝑠 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ↔ 𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂))))
4342adantr 480 . . . . . . 7 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (𝑠 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ↔ 𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂))))
4443orbi1d 916 . . . . . 6 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ((𝑠 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∨ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))))
4533, 44mpbid 232 . . . . 5 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∨ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
46 dvf 25815 . . . . . . . . 9 (ℝ D 𝑂):dom (ℝ D 𝑂)⟶ℂ
4746a1i 11 . . . . . . . 8 (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) → (ℝ D 𝑂):dom (ℝ D 𝑂)⟶ℂ)
48 elinel2 4168 . . . . . . . 8 (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) → 𝑠 ∈ dom (ℝ D 𝑂))
4947, 48ffvelcdmd 7060 . . . . . . 7 (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)
5049adantl 481 . . . . . 6 ((𝜑𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)
51 ovex 7423 . . . . . . . . . . . 12 ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ∈ V
5251dfiun3 5936 . . . . . . . . . . 11 𝑗 ∈ (0..^𝑁)((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) = ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
5352eleq2i 2821 . . . . . . . . . 10 (𝑠 𝑗 ∈ (0..^𝑁)((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↔ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
5453biimpri 228 . . . . . . . . 9 (𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 𝑗 ∈ (0..^𝑁)((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
5554adantl 481 . . . . . . . 8 ((𝜑𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑠 𝑗 ∈ (0..^𝑁)((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
56 eliun 4962 . . . . . . . 8 (𝑠 𝑗 ∈ (0..^𝑁)((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↔ ∃𝑗 ∈ (0..^𝑁)𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
5755, 56sylib 218 . . . . . . 7 ((𝜑𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → ∃𝑗 ∈ (0..^𝑁)𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
58 nfv 1914 . . . . . . . . 9 𝑗𝜑
59 nfmpt1 5209 . . . . . . . . . . . 12 𝑗(𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
6059nfrn 5919 . . . . . . . . . . 11 𝑗ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
6160nfuni 4881 . . . . . . . . . 10 𝑗 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
6261nfcri 2884 . . . . . . . . 9 𝑗 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
6358, 62nfan 1899 . . . . . . . 8 𝑗(𝜑𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
64 nfv 1914 . . . . . . . 8 𝑗((ℝ D 𝑂)‘𝑠) ∈ ℂ
6546a1i 11 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → (ℝ D 𝑂):dom (ℝ D 𝑂)⟶ℂ)
66 fourierdlem80.y . . . . . . . . . . . . . . . . . . 19 𝑌 = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
671reseq1i 5949 . . . . . . . . . . . . . . . . . . . 20 (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = ((𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
68 ioossicc 13401 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ((𝑆𝑗)[,](𝑆‘(𝑗 + 1)))
69 fourierdlem80.sjss . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)[,](𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵))
7068, 69sstrid 3961 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵))
7170resmptd 6014 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))
7267, 71eqtrid 2777 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))
7366, 72eqtr4id 2784 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑌 = (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
7473oveq2d 7406 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0..^𝑁)) → (ℝ D 𝑌) = (ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
75 ax-resscn 11132 . . . . . . . . . . . . . . . . . . . . 21 ℝ ⊆ ℂ
7675a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ℝ ⊆ ℂ)
77 fourierdlem80.f . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑𝐹:ℝ⟶ℝ)
7877adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝐹:ℝ⟶ℝ)
79 fourierdlem80.xre . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑋 ∈ ℝ)
8079adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑋 ∈ ℝ)
81 fourierdlem80.a . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐴 ∈ ℝ)
82 fourierdlem80.b . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐵 ∈ ℝ)
8381, 82iccssred 13402 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
8483sselda 3949 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℝ)
8580, 84readdcld 11210 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (𝑋 + 𝑠) ∈ ℝ)
8678, 85ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℝ)
8786recnd 11209 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (𝐹‘(𝑋 + 𝑠)) ∈ ℂ)
88 fourierdlem80.c . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝐶 ∈ ℝ)
8988recnd 11209 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝐶 ∈ ℂ)
9089adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝐶 ∈ ℂ)
9187, 90subcld 11540 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → ((𝐹‘(𝑋 + 𝑠)) − 𝐶) ∈ ℂ)
92 2cnd 12271 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 2 ∈ ℂ)
9383, 76sstrd 3960 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (𝐴[,]𝐵) ⊆ ℂ)
9493sselda 3949 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ ℂ)
9594halfcld 12434 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (𝑠 / 2) ∈ ℂ)
9695sincld 16105 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (sin‘(𝑠 / 2)) ∈ ℂ)
9792, 96mulcld 11201 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (2 · (sin‘(𝑠 / 2))) ∈ ℂ)
98 2ne0 12297 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ≠ 0
9998a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 2 ≠ 0)
100 fourierdlem80.ab . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑 → (𝐴[,]𝐵) ⊆ (-π[,]π))
101100sselda 3949 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ∈ (-π[,]π))
102 eqcom 2737 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑠 = 0 ↔ 0 = 𝑠)
103102biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑠 = 0 → 0 = 𝑠)
104103adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑠 ∈ (𝐴[,]𝐵) ∧ 𝑠 = 0) → 0 = 𝑠)
105 simpl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑠 ∈ (𝐴[,]𝐵) ∧ 𝑠 = 0) → 𝑠 ∈ (𝐴[,]𝐵))
106104, 105eqeltrd 2829 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑠 ∈ (𝐴[,]𝐵) ∧ 𝑠 = 0) → 0 ∈ (𝐴[,]𝐵))
107106adantll 714 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑠 = 0) → 0 ∈ (𝐴[,]𝐵))
108 fourierdlem80.n0 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ¬ 0 ∈ (𝐴[,]𝐵))
109108ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑠 ∈ (𝐴[,]𝐵)) ∧ 𝑠 = 0) → ¬ 0 ∈ (𝐴[,]𝐵))
110107, 109pm2.65da 816 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → ¬ 𝑠 = 0)
111110neqned 2933 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → 𝑠 ≠ 0)
112 fourierdlem44 46156 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑠 ∈ (-π[,]π) ∧ 𝑠 ≠ 0) → (sin‘(𝑠 / 2)) ≠ 0)
113101, 111, 112syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (sin‘(𝑠 / 2)) ≠ 0)
11492, 96, 99, 113mulne0d 11837 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (2 · (sin‘(𝑠 / 2))) ≠ 0)
11591, 97, 114divcld 11965 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑠 ∈ (𝐴[,]𝐵)) → (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))) ∈ ℂ)
116115, 1fmptd 7089 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑂:(𝐴[,]𝐵)⟶ℂ)
117 ioossre 13375 . . . . . . . . . . . . . . . . . . . . 21 ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ℝ
118117a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ℝ)
119 eqid 2730 . . . . . . . . . . . . . . . . . . . . 21 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
120 tgioo4 24700 . . . . . . . . . . . . . . . . . . . . 21 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
121119, 120dvres 25819 . . . . . . . . . . . . . . . . . . . 20 (((ℝ ⊆ ℂ ∧ 𝑂:(𝐴[,]𝐵)⟶ℂ) ∧ ((𝐴[,]𝐵) ⊆ ℝ ∧ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ ℝ)) → (ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
12276, 116, 83, 118, 121syl22anc 838 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
123 ioontr 45516 . . . . . . . . . . . . . . . . . . . 20 ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))
124123reseq2i 5950 . . . . . . . . . . . . . . . . . . 19 ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
125122, 124eqtrdi 2781 . . . . . . . . . . . . . . . . . 18 (𝜑 → (ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
126125adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0..^𝑁)) → (ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) = ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
12774, 126eqtr2d 2766 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (0..^𝑁)) → ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (ℝ D 𝑌))
128127dmeqd 5872 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0..^𝑁)) → dom ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = dom (ℝ D 𝑌))
12977adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐹:ℝ⟶ℝ)
13079adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑋 ∈ ℝ)
13183adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐴[,]𝐵) ⊆ ℝ)
13234adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑆:(0...𝑁)⟶(𝐴[,]𝐵))
133 elfzofz 13643 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ (0..^𝑁) → 𝑗 ∈ (0...𝑁))
134133adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝑗 ∈ (0...𝑁))
135132, 134ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑆𝑗) ∈ (𝐴[,]𝐵))
136131, 135sseldd 3950 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑆𝑗) ∈ ℝ)
137 fzofzp1 13732 . . . . . . . . . . . . . . . . . . . . . 22 (𝑗 ∈ (0..^𝑁) → (𝑗 + 1) ∈ (0...𝑁))
138137adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑗 + 1) ∈ (0...𝑁))
139132, 138ffvelcdmd 7060 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑆‘(𝑗 + 1)) ∈ (𝐴[,]𝐵))
140131, 139sseldd 3950 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑆‘(𝑗 + 1)) ∈ ℝ)
141 fdv . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑗 ∈ (0..^𝑁)) → (ℝ D (𝐹𝐼)):𝐼⟶ℝ)
142 fourierdlem80.i . . . . . . . . . . . . . . . . . . . . . 22 𝐼 = ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))
143142feq2i 6683 . . . . . . . . . . . . . . . . . . . . 21 ((ℝ D (𝐹𝐼)):𝐼⟶ℝ ↔ (ℝ D (𝐹𝐼)):((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ)
144141, 143sylib 218 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → (ℝ D (𝐹𝐼)):((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ)
145142reseq2i 5950 . . . . . . . . . . . . . . . . . . . . . 22 (𝐹𝐼) = (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))
146145oveq2i 7401 . . . . . . . . . . . . . . . . . . . . 21 (ℝ D (𝐹𝐼)) = (ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))
147146feq1i 6682 . . . . . . . . . . . . . . . . . . . 20 ((ℝ D (𝐹𝐼)):((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ ↔ (ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))):((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ)
148144, 147sylib 218 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → (ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))):((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ)
149100adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝐴[,]𝐵) ⊆ (-π[,]π))
15070, 149sstrd 3960 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ (-π[,]π))
151108adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → ¬ 0 ∈ (𝐴[,]𝐵))
15270, 151ssneldd 3952 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → ¬ 0 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
15388adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑗 ∈ (0..^𝑁)) → 𝐶 ∈ ℝ)
154129, 130, 136, 140, 148, 150, 152, 153, 66fourierdlem57 46168 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (0..^𝑁)) → ((ℝ D 𝑌):((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))⟶ℝ ∧ (ℝ D 𝑌) = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2))))) ∧ (ℝ D (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (2 · (sin‘(𝑠 / 2))))) = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (cos‘(𝑠 / 2))))
155154simpli 483 . . . . . . . . . . . . . . . . 17 ((𝜑𝑗 ∈ (0..^𝑁)) → ((ℝ D 𝑌):((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))⟶ℝ ∧ (ℝ D 𝑌) = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((((ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘(𝑋 + 𝑠)) · (2 · (sin‘(𝑠 / 2)))) − ((cos‘(𝑠 / 2)) · ((𝐹‘(𝑋 + 𝑠)) − 𝐶))) / ((2 · (sin‘(𝑠 / 2)))↑2)))))
156155simpld 494 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (0..^𝑁)) → (ℝ D 𝑌):((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))⟶ℝ)
157 fdm 6700 . . . . . . . . . . . . . . . 16 ((ℝ D 𝑌):((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))⟶ℝ → dom (ℝ D 𝑌) = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
158156, 157syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (0..^𝑁)) → dom (ℝ D 𝑌) = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
159128, 158eqtr2d 2766 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) = dom ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
160 resss 5975 . . . . . . . . . . . . . . 15 ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ⊆ (ℝ D 𝑂)
161 dmss 5869 . . . . . . . . . . . . . . 15 (((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ⊆ (ℝ D 𝑂) → dom ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ⊆ dom (ℝ D 𝑂))
162160, 161mp1i 13 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (0..^𝑁)) → dom ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ⊆ dom (ℝ D 𝑂))
163159, 162eqsstrd 3984 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ dom (ℝ D 𝑂))
1641633adant3 1132 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ dom (ℝ D 𝑂))
165 simp3 1138 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
166164, 165sseldd 3950 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → 𝑠 ∈ dom (ℝ D 𝑂))
16765, 166ffvelcdmd 7060 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)
1681673exp 1119 . . . . . . . . 9 (𝜑 → (𝑗 ∈ (0..^𝑁) → (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)))
169168adantr 480 . . . . . . . 8 ((𝜑𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → (𝑗 ∈ (0..^𝑁) → (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)))
17063, 64, 169rexlimd 3245 . . . . . . 7 ((𝜑𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → (∃𝑗 ∈ (0..^𝑁)𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ))
17157, 170mpd 15 . . . . . 6 ((𝜑𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)
17250, 171jaodan 959 . . . . 5 ((𝜑 ∧ (𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∨ 𝑠 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)
17328, 45, 172syl2anc 584 . . . 4 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)
174173abscld 15412 . . 3 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ)
17527, 174sylan2 593 . 2 ((𝜑𝑠 ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ)
176 id 22 . . . 4 (𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
177176, 15eleqtrdi 2839 . . 3 (𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → 𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
178 elsni 4609 . . . . . 6 (𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))} → 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)))
179 simpr 484 . . . . . . . 8 ((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)))
180 fzfid 13945 . . . . . . . . . . 11 (𝜑 → (0...𝑁) ∈ Fin)
181 rnffi 45176 . . . . . . . . . . 11 ((𝑆:(0...𝑁)⟶(𝐴[,]𝐵) ∧ (0...𝑁) ∈ Fin) → ran 𝑆 ∈ Fin)
18234, 180, 181syl2anc 584 . . . . . . . . . 10 (𝜑 → ran 𝑆 ∈ Fin)
183 infi 9220 . . . . . . . . . 10 (ran 𝑆 ∈ Fin → (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∈ Fin)
184182, 183syl 17 . . . . . . . . 9 (𝜑 → (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∈ Fin)
185184adantr 480 . . . . . . . 8 ((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∈ Fin)
186179, 185eqeltrd 2829 . . . . . . 7 ((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → 𝑟 ∈ Fin)
187 nfv 1914 . . . . . . . . 9 𝑠𝜑
188 nfcv 2892 . . . . . . . . . . 11 𝑠ran 𝑆
189 nfcv 2892 . . . . . . . . . . . . 13 𝑠
190 nfcv 2892 . . . . . . . . . . . . 13 𝑠 D
191 nfmpt1 5209 . . . . . . . . . . . . . 14 𝑠(𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2)))))
1921, 191nfcxfr 2890 . . . . . . . . . . . . 13 𝑠𝑂
193189, 190, 192nfov 7420 . . . . . . . . . . . 12 𝑠(ℝ D 𝑂)
194193nfdm 5918 . . . . . . . . . . 11 𝑠dom (ℝ D 𝑂)
195188, 194nfin 4190 . . . . . . . . . 10 𝑠(ran 𝑆 ∩ dom (ℝ D 𝑂))
196195nfeq2 2910 . . . . . . . . 9 𝑠 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))
197187, 196nfan 1899 . . . . . . . 8 𝑠(𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)))
198 simpr 484 . . . . . . . . . . . . 13 ((𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∧ 𝑠𝑟) → 𝑠𝑟)
199 simpl 482 . . . . . . . . . . . . 13 ((𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∧ 𝑠𝑟) → 𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)))
200198, 199eleqtrd 2831 . . . . . . . . . . . 12 ((𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∧ 𝑠𝑟) → 𝑠 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)))
201200, 48syl 17 . . . . . . . . . . 11 ((𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂)) ∧ 𝑠𝑟) → 𝑠 ∈ dom (ℝ D 𝑂))
202201adantll 714 . . . . . . . . . 10 (((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) ∧ 𝑠𝑟) → 𝑠 ∈ dom (ℝ D 𝑂))
20346ffvelcdmi 7058 . . . . . . . . . . 11 (𝑠 ∈ dom (ℝ D 𝑂) → ((ℝ D 𝑂)‘𝑠) ∈ ℂ)
204203abscld 15412 . . . . . . . . . 10 (𝑠 ∈ dom (ℝ D 𝑂) → (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ)
205202, 204syl 17 . . . . . . . . 9 (((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) ∧ 𝑠𝑟) → (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ)
206205ex 412 . . . . . . . 8 ((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → (𝑠𝑟 → (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ))
207197, 206ralrimi 3236 . . . . . . 7 ((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ)
208 fimaxre3 12136 . . . . . . 7 ((𝑟 ∈ Fin ∧ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ∈ ℝ) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
209186, 207, 208syl2anc 584 . . . . . 6 ((𝜑𝑟 = (ran 𝑆 ∩ dom (ℝ D 𝑂))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
210178, 209sylan2 593 . . . . 5 ((𝜑𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
211210adantlr 715 . . . 4 (((𝜑𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) ∧ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
212 simpll 766 . . . . 5 (((𝜑𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) ∧ ¬ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → 𝜑)
213 elunnel1 4120 . . . . . 6 ((𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ∧ ¬ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
214213adantll 714 . . . . 5 (((𝜑𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) ∧ ¬ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
215 vex 3454 . . . . . . . . 9 𝑟 ∈ V
21618elrnmpt 5925 . . . . . . . . 9 (𝑟 ∈ V → (𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ↔ ∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
217215, 216ax-mp 5 . . . . . . . 8 (𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ↔ ∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
218217biimpi 216 . . . . . . 7 (𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → ∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
219218adantl 481 . . . . . 6 ((𝜑𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → ∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
22060nfcri 2884 . . . . . . . 8 𝑗 𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
22158, 220nfan 1899 . . . . . . 7 𝑗(𝜑𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
222 nfv 1914 . . . . . . 7 𝑗𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦
223 fourierdlem80.fbdioo . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤)
224 fourierdlem80.fdvbdioo . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → ∃𝑧 ∈ ℝ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)
225 reeanv 3210 . . . . . . . . . . . . 13 (∃𝑤 ∈ ℝ ∃𝑧 ∈ ℝ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧) ↔ (∃𝑤 ∈ ℝ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∃𝑧 ∈ ℝ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧))
226223, 224, 225sylanbrc 583 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑁)) → ∃𝑤 ∈ ℝ ∃𝑧 ∈ ℝ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧))
227 simp1 1136 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → (𝜑𝑗 ∈ (0..^𝑁)))
228 simp2l 1200 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → 𝑤 ∈ ℝ)
229 simp2r 1201 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → 𝑧 ∈ ℝ)
230227, 228, 229jca31 514 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → (((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ))
231 simp3l 1202 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤)
232 simp3r 1203 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)
233230, 231, 232jca31 514 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → (((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧))
234 fourierdlem80.ch . . . . . . . . . . . . . . . 16 (𝜒 ↔ (((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧))
235233, 234sylibr 234 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → 𝜒)
236234biimpi 216 . . . . . . . . . . . . . . . . . . . . 21 (𝜒 → (((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧))
237 simp-5l 784 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧) → 𝜑)
238236, 237syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜒𝜑)
239238, 77syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝐹:ℝ⟶ℝ)
240238, 79syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑋 ∈ ℝ)
241 simp-4l 782 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧) → (𝜑𝑗 ∈ (0..^𝑁)))
242236, 241syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → (𝜑𝑗 ∈ (0..^𝑁)))
243242, 136syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑆𝑗) ∈ ℝ)
244242, 140syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑆‘(𝑗 + 1)) ∈ ℝ)
245 fourierdlem80.slt . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → (𝑆𝑗) < (𝑆‘(𝑗 + 1)))
246242, 245syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (𝑆𝑗) < (𝑆‘(𝑗 + 1)))
24769, 149sstrd 3960 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑆𝑗)[,](𝑆‘(𝑗 + 1))) ⊆ (-π[,]π))
248242, 247syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒 → ((𝑆𝑗)[,](𝑆‘(𝑗 + 1))) ⊆ (-π[,]π))
24969, 151ssneldd 3952 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑗 ∈ (0..^𝑁)) → ¬ 0 ∈ ((𝑆𝑗)[,](𝑆‘(𝑗 + 1))))
250242, 249syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒 → ¬ 0 ∈ ((𝑆𝑗)[,](𝑆‘(𝑗 + 1))))
251242, 148syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒 → (ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))):((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))⟶ℝ)
252 simp-4r 783 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧) → 𝑤 ∈ ℝ)
253236, 252syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑤 ∈ ℝ)
254236simplrd 769 . . . . . . . . . . . . . . . . . . . 20 (𝜒 → ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤)
255 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 ∈ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))) → 𝑡 ∈ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))))
256255, 142eleqtrrdi 2840 . . . . . . . . . . . . . . . . . . . 20 (𝑡 ∈ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1)))) → 𝑡𝐼)
257 rspa 3227 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤𝑡𝐼) → (abs‘(𝐹𝑡)) ≤ 𝑤)
258254, 256, 257syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑡 ∈ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))) → (abs‘(𝐹𝑡)) ≤ 𝑤)
259 simpllr 775 . . . . . . . . . . . . . . . . . . . 20 ((((((𝜑𝑗 ∈ (0..^𝑁)) ∧ 𝑤 ∈ ℝ) ∧ 𝑧 ∈ ℝ) ∧ ∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤) ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧) → 𝑧 ∈ ℝ)
260236, 259syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝑧 ∈ ℝ)
261146fveq1i 6862 . . . . . . . . . . . . . . . . . . . . . 22 ((ℝ D (𝐹𝐼))‘𝑡) = ((ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘𝑡)
262261fveq2i 6864 . . . . . . . . . . . . . . . . . . . . 21 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) = (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘𝑡))
263236simprd 495 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)
264263r19.21bi 3230 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑡𝐼) → (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)
265262, 264eqbrtrrid 5146 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑡𝐼) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘𝑡)) ≤ 𝑧)
266256, 265sylan2 593 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑡 ∈ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))) → (abs‘((ℝ D (𝐹 ↾ ((𝑋 + (𝑆𝑗))(,)(𝑋 + (𝑆‘(𝑗 + 1))))))‘𝑡)) ≤ 𝑧)
267238, 88syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜒𝐶 ∈ ℝ)
268239, 240, 243, 244, 246, 248, 250, 251, 253, 258, 260, 266, 267, 66fourierdlem68 46179 . . . . . . . . . . . . . . . . . 18 (𝜒 → (dom (ℝ D 𝑌) = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ∧ ∃𝑦 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑌)(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦))
269268simprd 495 . . . . . . . . . . . . . . . . 17 (𝜒 → ∃𝑦 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑌)(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦)
270268simpld 494 . . . . . . . . . . . . . . . . . . 19 (𝜒 → dom (ℝ D 𝑌) = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
271270raleqdv 3301 . . . . . . . . . . . . . . . . . 18 (𝜒 → (∀𝑠 ∈ dom (ℝ D 𝑌)(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦 ↔ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦))
272271rexbidv 3158 . . . . . . . . . . . . . . . . 17 (𝜒 → (∃𝑦 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑌)(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦))
273269, 272mpbid 232 . . . . . . . . . . . . . . . 16 (𝜒 → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦)
274123eqcomi 2739 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) = ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
275274reseq2i 5950 . . . . . . . . . . . . . . . . . . . . . 22 ((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = ((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
276275fveq1i 6862 . . . . . . . . . . . . . . . . . . . . 21 (((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑠) = (((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠)
277 fvres 6880 . . . . . . . . . . . . . . . . . . . . . 22 (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → (((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑠) = ((ℝ D 𝑂)‘𝑠))
278277adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → (((ℝ D 𝑂) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑠) = ((ℝ D 𝑂)‘𝑠))
279242, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜒 → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ⊆ (𝐴[,]𝐵))
280279resmptd 6014 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜒 → ((𝑠 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))) ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))
28167, 280eqtrid 2777 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜒 → (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) ↦ (((𝐹‘(𝑋 + 𝑠)) − 𝐶) / (2 · (sin‘(𝑠 / 2))))))
28266, 281eqtr4id 2784 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜒𝑌 = (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
283282oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜒 → (ℝ D 𝑌) = (ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
284283fveq1d 6863 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → ((ℝ D 𝑌)‘𝑠) = ((ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠))
285122fveq1d 6863 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → ((ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠) = (((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠))
286238, 285syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜒 → ((ℝ D (𝑂 ↾ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠) = (((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠))
287284, 286eqtr2d 2766 . . . . . . . . . . . . . . . . . . . . . 22 (𝜒 → (((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠) = ((ℝ D 𝑌)‘𝑠))
288287adantr 480 . . . . . . . . . . . . . . . . . . . . 21 ((𝜒𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → (((ℝ D 𝑂) ↾ ((int‘(topGen‘ran (,)))‘((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))‘𝑠) = ((ℝ D 𝑌)‘𝑠))
289276, 278, 2883eqtr3a 2789 . . . . . . . . . . . . . . . . . . . 20 ((𝜒𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((ℝ D 𝑂)‘𝑠) = ((ℝ D 𝑌)‘𝑠))
290289fveq2d 6865 . . . . . . . . . . . . . . . . . . 19 ((𝜒𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → (abs‘((ℝ D 𝑂)‘𝑠)) = (abs‘((ℝ D 𝑌)‘𝑠)))
291290breq1d 5120 . . . . . . . . . . . . . . . . . 18 ((𝜒𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → ((abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ (abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦))
292291ralbidva 3155 . . . . . . . . . . . . . . . . 17 (𝜒 → (∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦))
293292rexbidv 3158 . . . . . . . . . . . . . . . 16 (𝜒 → (∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑌)‘𝑠)) ≤ 𝑦))
294273, 293mpbird 257 . . . . . . . . . . . . . . 15 (𝜒 → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
295235, 294syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (0..^𝑁)) ∧ (𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) ∧ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧)) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
2962953exp 1119 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0..^𝑁)) → ((𝑤 ∈ ℝ ∧ 𝑧 ∈ ℝ) → ((∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)))
297296rexlimdvv 3194 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0..^𝑁)) → (∃𝑤 ∈ ℝ ∃𝑧 ∈ ℝ (∀𝑡𝐼 (abs‘(𝐹𝑡)) ≤ 𝑤 ∧ ∀𝑡𝐼 (abs‘((ℝ D (𝐹𝐼))‘𝑡)) ≤ 𝑧) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦))
298226, 297mpd 15 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑁)) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
2992983adant3 1132 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
300 raleq 3298 . . . . . . . . . . . 12 (𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → (∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦))
3013003ad2ant3 1135 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → (∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦))
302301rexbidv 3158 . . . . . . . . . 10 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → (∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑠 ∈ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦))
303299, 302mpbird 257 . . . . . . . . 9 ((𝜑𝑗 ∈ (0..^𝑁) ∧ 𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
3043033exp 1119 . . . . . . . 8 (𝜑 → (𝑗 ∈ (0..^𝑁) → (𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)))
305304adantr 480 . . . . . . 7 ((𝜑𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → (𝑗 ∈ (0..^𝑁) → (𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)))
306221, 222, 305rexlimd 3245 . . . . . 6 ((𝜑𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → (∃𝑗 ∈ (0..^𝑁)𝑟 = ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦))
307219, 306mpd 15 . . . . 5 ((𝜑𝑟 ∈ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
308212, 214, 307syl2anc 584 . . . 4 (((𝜑𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) ∧ ¬ 𝑟 ∈ {(ran 𝑆 ∩ dom (ℝ D 𝑂))}) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
309211, 308pm2.61dan 812 . . 3 ((𝜑𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
310177, 309sylan2 593 . 2 ((𝜑𝑟 ∈ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))) → ∃𝑦 ∈ ℝ ∀𝑠𝑟 (abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑦)
311 pm3.22 459 . . . . . . . . . . . 12 ((𝑟 ∈ dom (ℝ D 𝑂) ∧ 𝑟 ∈ ran 𝑆) → (𝑟 ∈ ran 𝑆𝑟 ∈ dom (ℝ D 𝑂)))
312 elin 3933 . . . . . . . . . . . 12 (𝑟 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)) ↔ (𝑟 ∈ ran 𝑆𝑟 ∈ dom (ℝ D 𝑂)))
313311, 312sylibr 234 . . . . . . . . . . 11 ((𝑟 ∈ dom (ℝ D 𝑂) ∧ 𝑟 ∈ ran 𝑆) → 𝑟 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)))
314313adantll 714 . . . . . . . . . 10 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ 𝑟 ∈ ran 𝑆) → 𝑟 ∈ (ran 𝑆 ∩ dom (ℝ D 𝑂)))
31541eqcomd 2736 . . . . . . . . . . 11 (𝜑 → (ran 𝑆 ∩ dom (ℝ D 𝑂)) = {(ran 𝑆 ∩ dom (ℝ D 𝑂))})
316315ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ 𝑟 ∈ ran 𝑆) → (ran 𝑆 ∩ dom (ℝ D 𝑂)) = {(ran 𝑆 ∩ dom (ℝ D 𝑂))})
317314, 316eleqtrd 2831 . . . . . . . . 9 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ 𝑟 ∈ ran 𝑆) → 𝑟 {(ran 𝑆 ∩ dom (ℝ D 𝑂))})
318317orcd 873 . . . . . . . 8 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ 𝑟 ∈ ran 𝑆) → (𝑟 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑟 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
319 simpll 766 . . . . . . . . . . 11 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → 𝜑)
32075a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → ℝ ⊆ ℂ)
321116adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → 𝑂:(𝐴[,]𝐵)⟶ℂ)
32281adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → 𝐴 ∈ ℝ)
32382adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → 𝐵 ∈ ℝ)
324322, 323iccssred 13402 . . . . . . . . . . . . . 14 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → (𝐴[,]𝐵) ⊆ ℝ)
325320, 321, 324dvbss 25809 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → dom (ℝ D 𝑂) ⊆ (𝐴[,]𝐵))
326 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → 𝑟 ∈ dom (ℝ D 𝑂))
327325, 326sseldd 3950 . . . . . . . . . . . 12 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → 𝑟 ∈ (𝐴[,]𝐵))
328327adantr 480 . . . . . . . . . . 11 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → 𝑟 ∈ (𝐴[,]𝐵))
329 simpr 484 . . . . . . . . . . 11 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ¬ 𝑟 ∈ ran 𝑆)
330 fourierdlem80.relioo . . . . . . . . . . . . 13 (((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑆𝑘)(,)(𝑆‘(𝑘 + 1))))
331 fveq2 6861 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑘 → (𝑆𝑗) = (𝑆𝑘))
332 oveq1 7397 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑘 → (𝑗 + 1) = (𝑘 + 1))
333332fveq2d 6865 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑘 → (𝑆‘(𝑗 + 1)) = (𝑆‘(𝑘 + 1)))
334331, 333oveq12d 7408 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑘 → ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))) = ((𝑆𝑘)(,)(𝑆‘(𝑘 + 1))))
335 ovex 7423 . . . . . . . . . . . . . . . 16 ((𝑆𝑘)(,)(𝑆‘(𝑘 + 1))) ∈ V
336334, 18, 335fvmpt 6971 . . . . . . . . . . . . . . 15 (𝑘 ∈ (0..^𝑁) → ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘) = ((𝑆𝑘)(,)(𝑆‘(𝑘 + 1))))
337336eleq2d 2815 . . . . . . . . . . . . . 14 (𝑘 ∈ (0..^𝑁) → (𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘) ↔ 𝑟 ∈ ((𝑆𝑘)(,)(𝑆‘(𝑘 + 1)))))
338337rexbiia 3075 . . . . . . . . . . . . 13 (∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘) ↔ ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑆𝑘)(,)(𝑆‘(𝑘 + 1))))
339330, 338sylibr 234 . . . . . . . . . . . 12 (((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘))
34051, 18dmmpti 6665 . . . . . . . . . . . . 13 dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) = (0..^𝑁)
341340rexeqi 3300 . . . . . . . . . . . 12 (∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘) ↔ ∃𝑘 ∈ (0..^𝑁)𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘))
342339, 341sylibr 234 . . . . . . . . . . 11 (((𝜑𝑟 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘))
343319, 328, 329, 342syl21anc 837 . . . . . . . . . 10 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → ∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘))
344 funmpt 6557 . . . . . . . . . . 11 Fun (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))
345 elunirn 7228 . . . . . . . . . . 11 (Fun (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) → (𝑟 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ↔ ∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘)))
346344, 345mp1i 13 . . . . . . . . . 10 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → (𝑟 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))) ↔ ∃𝑘 ∈ dom (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))𝑟 ∈ ((𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))‘𝑘)))
347343, 346mpbird 257 . . . . . . . . 9 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → 𝑟 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1)))))
348347olcd 874 . . . . . . . 8 (((𝜑𝑟 ∈ dom (ℝ D 𝑂)) ∧ ¬ 𝑟 ∈ ran 𝑆) → (𝑟 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑟 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
349318, 348pm2.61dan 812 . . . . . . 7 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → (𝑟 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑟 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
350 elun 4119 . . . . . . 7 (𝑟 ∈ ( {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ (𝑟 {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∨ 𝑟 ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
351349, 350sylibr 234 . . . . . 6 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → 𝑟 ∈ ( {(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
352351, 29eleqtrrdi 2840 . . . . 5 ((𝜑𝑟 ∈ dom (ℝ D 𝑂)) → 𝑟 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
353352ralrimiva 3126 . . . 4 (𝜑 → ∀𝑟 ∈ dom (ℝ D 𝑂)𝑟 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
354 dfss3 3938 . . . 4 (dom (ℝ D 𝑂) ⊆ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))) ↔ ∀𝑟 ∈ dom (ℝ D 𝑂)𝑟 ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
355353, 354sylibr 234 . . 3 (𝜑 → dom (ℝ D 𝑂) ⊆ ({(ran 𝑆 ∩ dom (ℝ D 𝑂))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
356355, 26sseqtrrdi 3991 . 2 (𝜑 → dom (ℝ D 𝑂) ⊆ ({(ran 𝑆 ∩ dom (ℝ D (𝑡 ∈ (𝐴[,]𝐵) ↦ (((𝐹‘(𝑋 + 𝑡)) − 𝐶) / (2 · (sin‘(𝑡 / 2)))))))} ∪ ran (𝑗 ∈ (0..^𝑁) ↦ ((𝑆𝑗)(,)(𝑆‘(𝑗 + 1))))))
35724, 175, 310, 356ssfiunibd 45314 1 (𝜑 → ∃𝑏 ∈ ℝ ∀𝑠 ∈ dom (ℝ D 𝑂)(abs‘((ℝ D 𝑂)‘𝑠)) ≤ 𝑏)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  Vcvv 3450  cun 3915  cin 3916  wss 3917  {csn 4592   cuni 4874   ciun 4958   class class class wbr 5110  cmpt 5191  dom cdm 5641  ran crn 5642  cres 5643  Fun wfun 6508  wf 6510  cfv 6514  (class class class)co 7390  Fincfn 8921  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cmin 11412  -cneg 11413   / cdiv 11842  2c2 12248  (,)cioo 13313  [,]cicc 13316  ...cfz 13475  ..^cfzo 13622  cexp 14033  abscabs 15207  sincsin 16036  cosccos 16037  πcpi 16039  TopOpenctopn 17391  topGenctg 17407  fldccnfld 21271  intcnt 22911   D cdv 25771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-fac 14246  df-bc 14275  df-hash 14303  df-shft 15040  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-ef 16040  df-sin 16042  df-cos 16043  df-pi 16045  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-t1 23208  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775
This theorem is referenced by:  fourierdlem103  46214  fourierdlem104  46215
  Copyright terms: Public domain W3C validator