MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unielxp Structured version   Visualization version   GIF version

Theorem unielxp 8031
Description: The membership relation for a Cartesian product is inherited by union. (Contributed by NM, 16-Sep-2006.)
Assertion
Ref Expression
unielxp (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 (𝐵 × 𝐶))

Proof of Theorem unielxp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elxp7 8028 . 2 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))
2 elvvuni 5736 . . . 4 (𝐴 ∈ (V × V) → 𝐴𝐴)
32adantr 480 . . 3 ((𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)) → 𝐴𝐴)
4 simprl 770 . . . . . 6 (( 𝐴𝐴 ∧ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶))) → 𝐴 ∈ (V × V))
5 eleq2 2824 . . . . . . . 8 (𝑥 = 𝐴 → ( 𝐴𝑥 𝐴𝐴))
6 eleq1 2823 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥 ∈ (V × V) ↔ 𝐴 ∈ (V × V)))
7 fveq2 6881 . . . . . . . . . . 11 (𝑥 = 𝐴 → (1st𝑥) = (1st𝐴))
87eleq1d 2820 . . . . . . . . . 10 (𝑥 = 𝐴 → ((1st𝑥) ∈ 𝐵 ↔ (1st𝐴) ∈ 𝐵))
9 fveq2 6881 . . . . . . . . . . 11 (𝑥 = 𝐴 → (2nd𝑥) = (2nd𝐴))
109eleq1d 2820 . . . . . . . . . 10 (𝑥 = 𝐴 → ((2nd𝑥) ∈ 𝐶 ↔ (2nd𝐴) ∈ 𝐶))
118, 10anbi12d 632 . . . . . . . . 9 (𝑥 = 𝐴 → (((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶) ↔ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))
126, 11anbi12d 632 . . . . . . . 8 (𝑥 = 𝐴 → ((𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶)) ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶))))
135, 12anbi12d 632 . . . . . . 7 (𝑥 = 𝐴 → (( 𝐴𝑥 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶))) ↔ ( 𝐴𝐴 ∧ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))))
1413spcegv 3581 . . . . . 6 (𝐴 ∈ (V × V) → (( 𝐴𝐴 ∧ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶))) → ∃𝑥( 𝐴𝑥 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶)))))
154, 14mpcom 38 . . . . 5 (( 𝐴𝐴 ∧ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶))) → ∃𝑥( 𝐴𝑥 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶))))
16 eluniab 4902 . . . . 5 ( 𝐴 {𝑥 ∣ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶))} ↔ ∃𝑥( 𝐴𝑥 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶))))
1715, 16sylibr 234 . . . 4 (( 𝐴𝐴 ∧ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶))) → 𝐴 {𝑥 ∣ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶))})
18 xp2 8030 . . . . . 6 (𝐵 × 𝐶) = {𝑥 ∈ (V × V) ∣ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶)}
19 df-rab 3421 . . . . . 6 {𝑥 ∈ (V × V) ∣ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶)} = {𝑥 ∣ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶))}
2018, 19eqtri 2759 . . . . 5 (𝐵 × 𝐶) = {𝑥 ∣ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶))}
2120unieqi 4900 . . . 4 (𝐵 × 𝐶) = {𝑥 ∣ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶))}
2217, 21eleqtrrdi 2846 . . 3 (( 𝐴𝐴 ∧ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶))) → 𝐴 (𝐵 × 𝐶))
233, 22mpancom 688 . 2 ((𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)) → 𝐴 (𝐵 × 𝐶))
241, 23sylbi 217 1 (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 (𝐵 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2714  {crab 3420  Vcvv 3464   cuni 4888   × cxp 5657  cfv 6536  1st c1st 7991  2nd c2nd 7992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fv 6544  df-1st 7993  df-2nd 7994
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator