MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unielxp Structured version   Visualization version   GIF version

Theorem unielxp 7937
Description: The membership relation for a Cartesian product is inherited by union. (Contributed by NM, 16-Sep-2006.)
Assertion
Ref Expression
unielxp (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 (𝐵 × 𝐶))

Proof of Theorem unielxp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elxp7 7934 . 2 (𝐴 ∈ (𝐵 × 𝐶) ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))
2 elvvuni 5694 . . . 4 (𝐴 ∈ (V × V) → 𝐴𝐴)
32adantr 481 . . 3 ((𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)) → 𝐴𝐴)
4 simprl 768 . . . . . 6 (( 𝐴𝐴 ∧ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶))) → 𝐴 ∈ (V × V))
5 eleq2 2825 . . . . . . . 8 (𝑥 = 𝐴 → ( 𝐴𝑥 𝐴𝐴))
6 eleq1 2824 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑥 ∈ (V × V) ↔ 𝐴 ∈ (V × V)))
7 fveq2 6825 . . . . . . . . . . 11 (𝑥 = 𝐴 → (1st𝑥) = (1st𝐴))
87eleq1d 2821 . . . . . . . . . 10 (𝑥 = 𝐴 → ((1st𝑥) ∈ 𝐵 ↔ (1st𝐴) ∈ 𝐵))
9 fveq2 6825 . . . . . . . . . . 11 (𝑥 = 𝐴 → (2nd𝑥) = (2nd𝐴))
109eleq1d 2821 . . . . . . . . . 10 (𝑥 = 𝐴 → ((2nd𝑥) ∈ 𝐶 ↔ (2nd𝐴) ∈ 𝐶))
118, 10anbi12d 631 . . . . . . . . 9 (𝑥 = 𝐴 → (((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶) ↔ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))
126, 11anbi12d 631 . . . . . . . 8 (𝑥 = 𝐴 → ((𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶)) ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶))))
135, 12anbi12d 631 . . . . . . 7 (𝑥 = 𝐴 → (( 𝐴𝑥 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶))) ↔ ( 𝐴𝐴 ∧ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)))))
1413spcegv 3545 . . . . . 6 (𝐴 ∈ (V × V) → (( 𝐴𝐴 ∧ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶))) → ∃𝑥( 𝐴𝑥 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶)))))
154, 14mpcom 38 . . . . 5 (( 𝐴𝐴 ∧ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶))) → ∃𝑥( 𝐴𝑥 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶))))
16 eluniab 4867 . . . . 5 ( 𝐴 {𝑥 ∣ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶))} ↔ ∃𝑥( 𝐴𝑥 ∧ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶))))
1715, 16sylibr 233 . . . 4 (( 𝐴𝐴 ∧ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶))) → 𝐴 {𝑥 ∣ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶))})
18 xp2 7936 . . . . . 6 (𝐵 × 𝐶) = {𝑥 ∈ (V × V) ∣ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶)}
19 df-rab 3404 . . . . . 6 {𝑥 ∈ (V × V) ∣ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶)} = {𝑥 ∣ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶))}
2018, 19eqtri 2764 . . . . 5 (𝐵 × 𝐶) = {𝑥 ∣ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶))}
2120unieqi 4865 . . . 4 (𝐵 × 𝐶) = {𝑥 ∣ (𝑥 ∈ (V × V) ∧ ((1st𝑥) ∈ 𝐵 ∧ (2nd𝑥) ∈ 𝐶))}
2217, 21eleqtrrdi 2848 . . 3 (( 𝐴𝐴 ∧ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶))) → 𝐴 (𝐵 × 𝐶))
233, 22mpancom 685 . 2 ((𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝐵 ∧ (2nd𝐴) ∈ 𝐶)) → 𝐴 (𝐵 × 𝐶))
241, 23sylbi 216 1 (𝐴 ∈ (𝐵 × 𝐶) → 𝐴 (𝐵 × 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wex 1780  wcel 2105  {cab 2713  {crab 3403  Vcvv 3441   cuni 4852   × cxp 5618  cfv 6479  1st c1st 7897  2nd c2nd 7898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pr 5372  ax-un 7650
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-iota 6431  df-fun 6481  df-fv 6487  df-1st 7899  df-2nd 7900
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator