MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epin Structured version   Visualization version   GIF version

Theorem epin 6095
Description: Any set is equal to its preimage under the converse membership relation. (Contributed by Mario Carneiro, 9-Mar-2013.) Put in closed form. (Revised by BJ, 16-Oct-2024.)
Assertion
Ref Expression
epin (𝐴𝑉 → ( E “ {𝐴}) = 𝐴)

Proof of Theorem epin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3468 . . . 4 𝑥 ∈ V
21eliniseg 6094 . . 3 (𝐴𝑉 → (𝑥 ∈ ( E “ {𝐴}) ↔ 𝑥 E 𝐴))
3 epelg 5567 . . 3 (𝐴𝑉 → (𝑥 E 𝐴𝑥𝐴))
42, 3bitrd 279 . 2 (𝐴𝑉 → (𝑥 ∈ ( E “ {𝐴}) ↔ 𝑥𝐴))
54eqrdv 2732 1 (𝐴𝑉 → ( E “ {𝐴}) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  {csn 4608   class class class wbr 5125   E cep 5565  ccnv 5666  cima 5670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pr 5414
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3421  df-v 3466  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-nul 4316  df-if 4508  df-sn 4609  df-pr 4611  df-op 4615  df-br 5126  df-opab 5188  df-eprel 5566  df-xp 5673  df-cnv 5675  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680
This theorem is referenced by:  epini  6096
  Copyright terms: Public domain W3C validator