MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epin Structured version   Visualization version   GIF version

Theorem epin 6003
Description: Any set is equal to its preimage under the converse membership relation. (Contributed by Mario Carneiro, 9-Mar-2013.) Put in closed form. (Revised by BJ, 16-Oct-2024.)
Assertion
Ref Expression
epin (𝐴𝑉 → ( E “ {𝐴}) = 𝐴)

Proof of Theorem epin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3436 . . . 4 𝑥 ∈ V
21eliniseg 6002 . . 3 (𝐴𝑉 → (𝑥 ∈ ( E “ {𝐴}) ↔ 𝑥 E 𝐴))
3 epelg 5496 . . 3 (𝐴𝑉 → (𝑥 E 𝐴𝑥𝐴))
42, 3bitrd 278 . 2 (𝐴𝑉 → (𝑥 ∈ ( E “ {𝐴}) ↔ 𝑥𝐴))
54eqrdv 2736 1 (𝐴𝑉 → ( E “ {𝐴}) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  {csn 4561   class class class wbr 5074   E cep 5494  ccnv 5588  cima 5592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-eprel 5495  df-xp 5595  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602
This theorem is referenced by:  epini  6004
  Copyright terms: Public domain W3C validator