MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epin Structured version   Visualization version   GIF version

Theorem epin 6085
Description: Any set is equal to its preimage under the converse membership relation. (Contributed by Mario Carneiro, 9-Mar-2013.) Put in closed form. (Revised by BJ, 16-Oct-2024.)
Assertion
Ref Expression
epin (𝐴𝑉 → ( E “ {𝐴}) = 𝐴)

Proof of Theorem epin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3470 . . . 4 𝑥 ∈ V
21eliniseg 6084 . . 3 (𝐴𝑉 → (𝑥 ∈ ( E “ {𝐴}) ↔ 𝑥 E 𝐴))
3 epelg 5572 . . 3 (𝐴𝑉 → (𝑥 E 𝐴𝑥𝐴))
42, 3bitrd 279 . 2 (𝐴𝑉 → (𝑥 ∈ ( E “ {𝐴}) ↔ 𝑥𝐴))
54eqrdv 2722 1 (𝐴𝑉 → ( E “ {𝐴}) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  {csn 4621   class class class wbr 5139   E cep 5570  ccnv 5666  cima 5670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pr 5418
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-br 5140  df-opab 5202  df-eprel 5571  df-xp 5673  df-cnv 5675  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680
This theorem is referenced by:  epini  6086
  Copyright terms: Public domain W3C validator