Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > epin | Structured version Visualization version GIF version |
Description: Any set is equal to its preimage under the converse membership relation. (Contributed by Mario Carneiro, 9-Mar-2013.) Put in closed form. (Revised by BJ, 16-Oct-2024.) |
Ref | Expression |
---|---|
epin | ⊢ (𝐴 ∈ 𝑉 → (◡ E “ {𝐴}) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3426 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | 1 | eliniseg 5991 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (◡ E “ {𝐴}) ↔ 𝑥 E 𝐴)) |
3 | epelg 5487 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑥 E 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
4 | 2, 3 | bitrd 278 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (◡ E “ {𝐴}) ↔ 𝑥 ∈ 𝐴)) |
5 | 4 | eqrdv 2736 | 1 ⊢ (𝐴 ∈ 𝑉 → (◡ E “ {𝐴}) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 {csn 4558 class class class wbr 5070 E cep 5485 ◡ccnv 5579 “ cima 5583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-eprel 5486 df-xp 5586 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 |
This theorem is referenced by: epini 5993 |
Copyright terms: Public domain | W3C validator |