![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > epin | Structured version Visualization version GIF version |
Description: Any set is equal to its preimage under the converse membership relation. (Contributed by Mario Carneiro, 9-Mar-2013.) Put in closed form. (Revised by BJ, 16-Oct-2024.) |
Ref | Expression |
---|---|
epin | ⊢ (𝐴 ∈ 𝑉 → (◡ E “ {𝐴}) = 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3470 | . . . 4 ⊢ 𝑥 ∈ V | |
2 | 1 | eliniseg 6084 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (◡ E “ {𝐴}) ↔ 𝑥 E 𝐴)) |
3 | epelg 5572 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑥 E 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
4 | 2, 3 | bitrd 279 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (◡ E “ {𝐴}) ↔ 𝑥 ∈ 𝐴)) |
5 | 4 | eqrdv 2722 | 1 ⊢ (𝐴 ∈ 𝑉 → (◡ E “ {𝐴}) = 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 {csn 4621 class class class wbr 5139 E cep 5570 ◡ccnv 5666 “ cima 5670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-br 5140 df-opab 5202 df-eprel 5571 df-xp 5673 df-cnv 5675 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 |
This theorem is referenced by: epini 6086 |
Copyright terms: Public domain | W3C validator |