| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > epin | Structured version Visualization version GIF version | ||
| Description: Any set is equal to its preimage under the converse membership relation. (Contributed by Mario Carneiro, 9-Mar-2013.) Put in closed form. (Revised by BJ, 16-Oct-2024.) |
| Ref | Expression |
|---|---|
| epin | ⊢ (𝐴 ∈ 𝑉 → (◡ E “ {𝐴}) = 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . . . 4 ⊢ 𝑥 ∈ V | |
| 2 | 1 | eliniseg 6038 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (◡ E “ {𝐴}) ↔ 𝑥 E 𝐴)) |
| 3 | epelg 5512 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝑥 E 𝐴 ↔ 𝑥 ∈ 𝐴)) | |
| 4 | 2, 3 | bitrd 279 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ (◡ E “ {𝐴}) ↔ 𝑥 ∈ 𝐴)) |
| 5 | 4 | eqrdv 2729 | 1 ⊢ (𝐴 ∈ 𝑉 → (◡ E “ {𝐴}) = 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {csn 4571 class class class wbr 5086 E cep 5510 ◡ccnv 5610 “ cima 5614 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-eprel 5511 df-xp 5617 df-cnv 5619 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 |
| This theorem is referenced by: epini 6040 |
| Copyright terms: Public domain | W3C validator |