MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epin Structured version   Visualization version   GIF version

Theorem epin 5952
Description: Any set is equal to its preimage under the converse membership relation. (Contributed by Mario Carneiro, 9-Mar-2013.) Put in closed form. (Revised by BJ, 16-Oct-2024.)
Assertion
Ref Expression
epin (𝐴𝑉 → ( E “ {𝐴}) = 𝐴)

Proof of Theorem epin
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3405 . . . 4 𝑥 ∈ V
21eliniseg 5951 . . 3 (𝐴𝑉 → (𝑥 ∈ ( E “ {𝐴}) ↔ 𝑥 E 𝐴))
3 epelg 5450 . . 3 (𝐴𝑉 → (𝑥 E 𝐴𝑥𝐴))
42, 3bitrd 282 . 2 (𝐴𝑉 → (𝑥 ∈ ( E “ {𝐴}) ↔ 𝑥𝐴))
54eqrdv 2732 1 (𝐴𝑉 → ( E “ {𝐴}) = 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2110  {csn 4531   class class class wbr 5043   E cep 5448  ccnv 5539  cima 5543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pr 5311
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2713  df-cleq 2726  df-clel 2812  df-ne 2936  df-ral 3059  df-rex 3060  df-rab 3063  df-v 3403  df-dif 3860  df-un 3862  df-in 3864  df-nul 4228  df-if 4430  df-sn 4532  df-pr 4534  df-op 4538  df-br 5044  df-opab 5106  df-eprel 5449  df-xp 5546  df-cnv 5548  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553
This theorem is referenced by:  epini  5953
  Copyright terms: Public domain W3C validator