| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eliniseg | Structured version Visualization version GIF version | ||
| Description: Membership in the inverse image of a singleton. An application is to express initial segments for an order relation. See for example Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| eliniseg.1 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| eliniseg | ⊢ (𝐵 ∈ 𝑉 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliniseg.1 | . 2 ⊢ 𝐶 ∈ V | |
| 2 | elinisegg 6041 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ V) → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2111 Vcvv 3436 {csn 4573 class class class wbr 5089 ◡ccnv 5613 “ cima 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-xp 5620 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 |
| This theorem is referenced by: epin 6043 iniseg 6045 dfco2a 6193 isomin 7271 isoini 7272 fnse 8063 infxpenlem 9904 fpwwe2lem7 10528 fpwwe2lem11 10532 fpwwe2lem12 10533 fpwwe2 10534 canth4 10538 canthwelem 10541 pwfseqlem4 10553 fz1isolem 14368 itg1addlem4 25627 elnlfn 31908 pw2f1ocnv 43129 relpmin 45044 inisegn0a 48935 |
| Copyright terms: Public domain | W3C validator |