![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eliniseg | Structured version Visualization version GIF version |
Description: Membership in the inverse image of a singleton. An application is to express initial segments for an order relation. See for example Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
eliniseg.1 | ⊢ 𝐶 ∈ V |
Ref | Expression |
---|---|
eliniseg | ⊢ (𝐵 ∈ 𝑉 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eliniseg.1 | . 2 ⊢ 𝐶 ∈ V | |
2 | elinisegg 6123 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ V) → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) | |
3 | 1, 2 | mpan2 690 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 Vcvv 3488 {csn 4648 class class class wbr 5166 ◡ccnv 5699 “ cima 5703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-xp 5706 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 |
This theorem is referenced by: epin 6125 iniseg 6127 dfco2a 6277 isomin 7373 isoini 7374 fnse 8174 infxpenlem 10082 fpwwe2lem7 10706 fpwwe2lem11 10710 fpwwe2lem12 10711 fpwwe2 10712 canth4 10716 canthwelem 10719 pwfseqlem4 10731 fz1isolem 14510 itg1addlem4 25753 itg1addlem4OLD 25754 elnlfn 31960 pw2f1ocnv 42994 |
Copyright terms: Public domain | W3C validator |