MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eliniseg Structured version   Visualization version   GIF version

Theorem eliniseg 6082
Description: Membership in the inverse image of a singleton. An application is to express initial segments for an order relation. See for example Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypothesis
Ref Expression
eliniseg.1 𝐶 ∈ V
Assertion
Ref Expression
eliniseg (𝐵𝑉 → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵))

Proof of Theorem eliniseg
StepHypRef Expression
1 eliniseg.1 . 2 𝐶 ∈ V
2 elinisegg 6081 . 2 ((𝐵𝑉𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵))
31, 2mpan2 689 1 (𝐵𝑉 → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2106  Vcvv 3473  {csn 4622   class class class wbr 5141  ccnv 5668  cima 5672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2709  df-cleq 2723  df-clel 2809  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-sn 4623  df-pr 4625  df-op 4629  df-br 5142  df-opab 5204  df-xp 5675  df-cnv 5677  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682
This theorem is referenced by:  epin  6083  iniseg  6085  dfco2a  6234  isomin  7318  isoini  7319  fnse  8101  infxpenlem  9990  fpwwe2lem7  10614  fpwwe2lem11  10618  fpwwe2lem12  10619  fpwwe2  10620  canth4  10624  canthwelem  10627  pwfseqlem4  10639  fz1isolem  14404  itg1addlem4  25145  itg1addlem4OLD  25146  elnlfn  31044  pw2f1ocnv  41547
  Copyright terms: Public domain W3C validator