MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eliniseg Structured version   Visualization version   GIF version

Theorem eliniseg 6081
Description: Membership in the inverse image of a singleton. An application is to express initial segments for an order relation. See for example Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypothesis
Ref Expression
eliniseg.1 𝐶 ∈ V
Assertion
Ref Expression
eliniseg (𝐵𝑉 → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵))

Proof of Theorem eliniseg
StepHypRef Expression
1 eliniseg.1 . 2 𝐶 ∈ V
2 elinisegg 6080 . 2 ((𝐵𝑉𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵))
31, 2mpan2 691 1 (𝐵𝑉 → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2108  Vcvv 3459  {csn 4601   class class class wbr 5119  ccnv 5653  cima 5657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-xp 5660  df-cnv 5662  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667
This theorem is referenced by:  epin  6082  iniseg  6084  dfco2a  6235  isomin  7330  isoini  7331  fnse  8132  infxpenlem  10027  fpwwe2lem7  10651  fpwwe2lem11  10655  fpwwe2lem12  10656  fpwwe2  10657  canth4  10661  canthwelem  10664  pwfseqlem4  10676  fz1isolem  14479  itg1addlem4  25652  elnlfn  31909  pw2f1ocnv  43061  relpmin  44977  inisegn0a  48814
  Copyright terms: Public domain W3C validator