| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eliniseg | Structured version Visualization version GIF version | ||
| Description: Membership in the inverse image of a singleton. An application is to express initial segments for an order relation. See for example Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| eliniseg.1 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| eliniseg | ⊢ (𝐵 ∈ 𝑉 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliniseg.1 | . 2 ⊢ 𝐶 ∈ V | |
| 2 | elinisegg 6064 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ V) → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 Vcvv 3447 {csn 4589 class class class wbr 5107 ◡ccnv 5637 “ cima 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: epin 6066 iniseg 6068 dfco2a 6219 isomin 7312 isoini 7313 fnse 8112 infxpenlem 9966 fpwwe2lem7 10590 fpwwe2lem11 10594 fpwwe2lem12 10595 fpwwe2 10596 canth4 10600 canthwelem 10603 pwfseqlem4 10615 fz1isolem 14426 itg1addlem4 25600 elnlfn 31857 pw2f1ocnv 43026 relpmin 44942 inisegn0a 48824 |
| Copyright terms: Public domain | W3C validator |