| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eliniseg | Structured version Visualization version GIF version | ||
| Description: Membership in the inverse image of a singleton. An application is to express initial segments for an order relation. See for example Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| eliniseg.1 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| eliniseg | ⊢ (𝐵 ∈ 𝑉 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliniseg.1 | . 2 ⊢ 𝐶 ∈ V | |
| 2 | elinisegg 6053 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ V) → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 Vcvv 3444 {csn 4585 class class class wbr 5102 ◡ccnv 5630 “ cima 5634 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-xp 5637 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 |
| This theorem is referenced by: epin 6055 iniseg 6057 dfco2a 6207 isomin 7294 isoini 7295 fnse 8089 infxpenlem 9942 fpwwe2lem7 10566 fpwwe2lem11 10570 fpwwe2lem12 10571 fpwwe2 10572 canth4 10576 canthwelem 10579 pwfseqlem4 10591 fz1isolem 14402 itg1addlem4 25633 elnlfn 31907 pw2f1ocnv 43019 relpmin 44935 inisegn0a 48817 |
| Copyright terms: Public domain | W3C validator |