| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eliniseg | Structured version Visualization version GIF version | ||
| Description: Membership in the inverse image of a singleton. An application is to express initial segments for an order relation. See for example Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| eliniseg.1 | ⊢ 𝐶 ∈ V |
| Ref | Expression |
|---|---|
| eliniseg | ⊢ (𝐵 ∈ 𝑉 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eliniseg.1 | . 2 ⊢ 𝐶 ∈ V | |
| 2 | elinisegg 6067 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ V) → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) | |
| 3 | 1, 2 | mpan2 691 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 Vcvv 3450 {csn 4592 class class class wbr 5110 ◡ccnv 5640 “ cima 5644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 |
| This theorem is referenced by: epin 6069 iniseg 6071 dfco2a 6222 isomin 7315 isoini 7316 fnse 8115 infxpenlem 9973 fpwwe2lem7 10597 fpwwe2lem11 10601 fpwwe2lem12 10602 fpwwe2 10603 canth4 10607 canthwelem 10610 pwfseqlem4 10622 fz1isolem 14433 itg1addlem4 25607 elnlfn 31864 pw2f1ocnv 43033 relpmin 44949 inisegn0a 48828 |
| Copyright terms: Public domain | W3C validator |