| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > epini | Structured version Visualization version GIF version | ||
| Description: Any set is equal to its preimage under the converse membership relation. (Contributed by Mario Carneiro, 9-Mar-2013.) |
| Ref | Expression |
|---|---|
| epini.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| epini | ⊢ (◡ E “ {𝐴}) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epini.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | epin 6095 | . 2 ⊢ (𝐴 ∈ V → (◡ E “ {𝐴}) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (◡ E “ {𝐴}) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∈ wcel 2107 Vcvv 3464 {csn 4608 E cep 5565 ◡ccnv 5666 “ cima 5670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-sn 4609 df-pr 4611 df-op 4615 df-br 5126 df-opab 5188 df-eprel 5566 df-xp 5673 df-cnv 5675 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 |
| This theorem is referenced by: infxpenlem 10036 fz1isolem 14483 |
| Copyright terms: Public domain | W3C validator |