MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epini Structured version   Visualization version   GIF version

Theorem epini 6117
Description: Any set is equal to its preimage under the converse membership relation. (Contributed by Mario Carneiro, 9-Mar-2013.)
Hypothesis
Ref Expression
epini.1 𝐴 ∈ V
Assertion
Ref Expression
epini ( E “ {𝐴}) = 𝐴

Proof of Theorem epini
StepHypRef Expression
1 epini.1 . 2 𝐴 ∈ V
2 epin 6116 . 2 (𝐴 ∈ V → ( E “ {𝐴}) = 𝐴)
31, 2ax-mp 5 1 ( E “ {𝐴}) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2106  Vcvv 3478  {csn 4631   E cep 5588  ccnv 5688  cima 5692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-eprel 5589  df-xp 5695  df-cnv 5697  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702
This theorem is referenced by:  infxpenlem  10051  fz1isolem  14497
  Copyright terms: Public domain W3C validator