| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > epini | Structured version Visualization version GIF version | ||
| Description: Any set is equal to its preimage under the converse membership relation. (Contributed by Mario Carneiro, 9-Mar-2013.) |
| Ref | Expression |
|---|---|
| epini.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| epini | ⊢ (◡ E “ {𝐴}) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | epini.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | epin 6066 | . 2 ⊢ (𝐴 ∈ V → (◡ E “ {𝐴}) = 𝐴) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (◡ E “ {𝐴}) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3447 {csn 4589 E cep 5537 ◡ccnv 5637 “ cima 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-eprel 5538 df-xp 5644 df-cnv 5646 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 |
| This theorem is referenced by: infxpenlem 9966 fz1isolem 14426 |
| Copyright terms: Public domain | W3C validator |