MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  epini Structured version   Visualization version   GIF version

Theorem epini 5993
Description: Any set is equal to its preimage under the converse membership relation. (Contributed by Mario Carneiro, 9-Mar-2013.)
Hypothesis
Ref Expression
epini.1 𝐴 ∈ V
Assertion
Ref Expression
epini ( E “ {𝐴}) = 𝐴

Proof of Theorem epini
StepHypRef Expression
1 epini.1 . 2 𝐴 ∈ V
2 epin 5992 . 2 (𝐴 ∈ V → ( E “ {𝐴}) = 𝐴)
31, 2ax-mp 5 1 ( E “ {𝐴}) = 𝐴
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2108  Vcvv 3422  {csn 4558   E cep 5485  ccnv 5579  cima 5583
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-eprel 5486  df-xp 5586  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593
This theorem is referenced by:  infxpenlem  9700  fz1isolem  14103
  Copyright terms: Public domain W3C validator