MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsquadlem1 Structured version   Visualization version   GIF version

Theorem lgsquadlem1 25870
Description: Lemma for lgsquad 25873. Count the members of 𝑆 with odd coordinates. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
lgseisen.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgseisen.2 (𝜑𝑄 ∈ (ℙ ∖ {2}))
lgseisen.3 (𝜑𝑃𝑄)
lgsquad.4 𝑀 = ((𝑃 − 1) / 2)
lgsquad.5 𝑁 = ((𝑄 − 1) / 2)
lgsquad.6 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}
Assertion
Ref Expression
lgsquadlem1 (𝜑 → (-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})))
Distinct variable groups:   𝑥,𝑢,𝑦,𝑧,𝑃   𝜑,𝑢,𝑥,𝑦,𝑧   𝑢,𝑀,𝑦,𝑧   𝑢,𝑁,𝑥,𝑦,𝑧   𝑢,𝑄,𝑥,𝑦,𝑧   𝑢,𝑆,𝑥,𝑧   𝑥,𝑀   𝑦,𝑆

Proof of Theorem lgsquadlem1
Dummy variables 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neg1cn 11743 . . . 4 -1 ∈ ℂ
21a1i 11 . . 3 (𝜑 → -1 ∈ ℂ)
3 neg1ne0 11745 . . . 4 -1 ≠ 0
43a1i 11 . . 3 (𝜑 → -1 ≠ 0)
5 fzfid 13334 . . . 4 (𝜑 → (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∈ Fin)
6 lgseisen.2 . . . . . . . . . 10 (𝜑𝑄 ∈ (ℙ ∖ {2}))
76gausslemma2dlem0a 25846 . . . . . . . . 9 (𝜑𝑄 ∈ ℕ)
87nnred 11645 . . . . . . . 8 (𝜑𝑄 ∈ ℝ)
9 lgseisen.1 . . . . . . . . 9 (𝜑𝑃 ∈ (ℙ ∖ {2}))
109gausslemma2dlem0a 25846 . . . . . . . 8 (𝜑𝑃 ∈ ℕ)
118, 10nndivred 11683 . . . . . . 7 (𝜑 → (𝑄 / 𝑃) ∈ ℝ)
1211adantr 481 . . . . . 6 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 / 𝑃) ∈ ℝ)
13 2z 12006 . . . . . . . 8 2 ∈ ℤ
14 elfzelz 12901 . . . . . . . . 9 (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) → 𝑢 ∈ ℤ)
1514adantl 482 . . . . . . . 8 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑢 ∈ ℤ)
16 zmulcl 12023 . . . . . . . 8 ((2 ∈ ℤ ∧ 𝑢 ∈ ℤ) → (2 · 𝑢) ∈ ℤ)
1713, 15, 16sylancr 587 . . . . . . 7 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) ∈ ℤ)
1817zred 12079 . . . . . 6 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) ∈ ℝ)
1912, 18remulcld 10663 . . . . 5 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℝ)
2019flcld 13161 . . . 4 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℤ)
215, 20fsumzcl 15084 . . 3 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℤ)
222, 4, 21expclzd 13508 . 2 (𝜑 → (-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℂ)
23 fzfid 13334 . . . . . . 7 (𝜑 → (1...𝑀) ∈ Fin)
24 fzfid 13334 . . . . . . 7 (𝜑 → (1...𝑁) ∈ Fin)
25 xpfi 8781 . . . . . . 7 (((1...𝑀) ∈ Fin ∧ (1...𝑁) ∈ Fin) → ((1...𝑀) × (1...𝑁)) ∈ Fin)
2623, 24, 25syl2anc 584 . . . . . 6 (𝜑 → ((1...𝑀) × (1...𝑁)) ∈ Fin)
27 lgsquad.6 . . . . . . 7 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}
28 opabssxp 5641 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ⊆ ((1...𝑀) × (1...𝑁))
2927, 28eqsstri 4004 . . . . . 6 𝑆 ⊆ ((1...𝑀) × (1...𝑁))
30 ssfi 8730 . . . . . 6 ((((1...𝑀) × (1...𝑁)) ∈ Fin ∧ 𝑆 ⊆ ((1...𝑀) × (1...𝑁))) → 𝑆 ∈ Fin)
3126, 29, 30sylancl 586 . . . . 5 (𝜑𝑆 ∈ Fin)
32 ssrab2 4059 . . . . 5 {𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)} ⊆ 𝑆
33 ssfi 8730 . . . . 5 ((𝑆 ∈ Fin ∧ {𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)} ⊆ 𝑆) → {𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)} ∈ Fin)
3431, 32, 33sylancl 586 . . . 4 (𝜑 → {𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)} ∈ Fin)
35 hashcl 13710 . . . 4 ({𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)} ∈ Fin → (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}) ∈ ℕ0)
3634, 35syl 17 . . 3 (𝜑 → (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}) ∈ ℕ0)
37 expcl 13440 . . 3 ((-1 ∈ ℂ ∧ (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}) ∈ ℕ0) → (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) ∈ ℂ)
381, 36, 37sylancr 587 . 2 (𝜑 → (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) ∈ ℂ)
3936nn0zd 12077 . . 3 (𝜑 → (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}) ∈ ℤ)
402, 4, 39expne0d 13509 . 2 (𝜑 → (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) ≠ 0)
4138, 40recidd 11403 . . . 4 (𝜑 → ((-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) · (1 / (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})))) = 1)
42 1div1e1 11322 . . . . . . . . 9 (1 / 1) = 1
4342negeqi 10871 . . . . . . . 8 -(1 / 1) = -1
44 ax-1cn 10587 . . . . . . . . 9 1 ∈ ℂ
45 ax-1ne0 10598 . . . . . . . . 9 1 ≠ 0
46 divneg2 11356 . . . . . . . . 9 ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(1 / 1) = (1 / -1))
4744, 44, 45, 46mp3an 1454 . . . . . . . 8 -(1 / 1) = (1 / -1)
4843, 47eqtr3i 2850 . . . . . . 7 -1 = (1 / -1)
4948oveq1i 7161 . . . . . 6 (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) = ((1 / -1)↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))
502, 4, 39exprecd 13511 . . . . . 6 (𝜑 → ((1 / -1)↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) = (1 / (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))))
5149, 50syl5eq 2872 . . . . 5 (𝜑 → (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) = (1 / (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))))
5251oveq2d 7167 . . . 4 (𝜑 → ((-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) · (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))) = ((-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) · (1 / (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})))))
5331adantr 481 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑆 ∈ Fin)
54 ssrab2 4059 . . . . . . . . . . . 12 {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ⊆ 𝑆
55 ssfi 8730 . . . . . . . . . . . 12 ((𝑆 ∈ Fin ∧ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ⊆ 𝑆) → {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ∈ Fin)
5653, 54, 55sylancl 586 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ∈ Fin)
57 fveqeq2 6675 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑣 → ((1st𝑧) = (𝑃 − (2 · 𝑢)) ↔ (1st𝑣) = (𝑃 − (2 · 𝑢))))
5857elrab 3683 . . . . . . . . . . . . . . . . . . 19 (𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ↔ (𝑣𝑆 ∧ (1st𝑣) = (𝑃 − (2 · 𝑢))))
5958simprbi 497 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} → (1st𝑣) = (𝑃 − (2 · 𝑢)))
6059ad2antll 725 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → (1st𝑣) = (𝑃 − (2 · 𝑢)))
6160oveq2d 7167 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → (𝑃 − (1st𝑣)) = (𝑃 − (𝑃 − (2 · 𝑢))))
6210adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℕ)
6362nncnd 11646 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℂ)
6463adantrr 713 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → 𝑃 ∈ ℂ)
6517zcnd 12080 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) ∈ ℂ)
6665adantrr 713 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → (2 · 𝑢) ∈ ℂ)
6764, 66nncand 10994 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → (𝑃 − (𝑃 − (2 · 𝑢))) = (2 · 𝑢))
6861, 67eqtrd 2860 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → (𝑃 − (1st𝑣)) = (2 · 𝑢))
6968oveq1d 7166 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → ((𝑃 − (1st𝑣)) / 2) = ((2 · 𝑢) / 2))
7015zcnd 12080 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑢 ∈ ℂ)
7170adantrr 713 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → 𝑢 ∈ ℂ)
72 2cnd 11707 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → 2 ∈ ℂ)
73 2ne0 11733 . . . . . . . . . . . . . . . 16 2 ≠ 0
7473a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → 2 ≠ 0)
7571, 72, 74divcan3d 11413 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → ((2 · 𝑢) / 2) = 𝑢)
7669, 75eqtrd 2860 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → ((𝑃 − (1st𝑣)) / 2) = 𝑢)
7776ralrimivva 3195 . . . . . . . . . . . 12 (𝜑 → ∀𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)∀𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ((𝑃 − (1st𝑣)) / 2) = 𝑢)
78 invdisj 5046 . . . . . . . . . . . 12 (∀𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)∀𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ((𝑃 − (1st𝑣)) / 2) = 𝑢Disj 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀){𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})
7977, 78syl 17 . . . . . . . . . . 11 (𝜑Disj 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀){𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})
805, 56, 79hashiun 15169 . . . . . . . . . 10 (𝜑 → (♯‘ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀){𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))}) = Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(♯‘{𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))}))
81 iunrab 4972 . . . . . . . . . . . 12 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀){𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} = {𝑧𝑆 ∣ ∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st𝑧) = (𝑃 − (2 · 𝑢))}
82 eldifsni 4720 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
839, 82syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑃 ≠ 2)
8483necomd 3075 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 2 ≠ 𝑃)
8584neneqd 3025 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ¬ 2 = 𝑃)
8685ad2antrr 722 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ¬ 2 = 𝑃)
87 uzid 12250 . . . . . . . . . . . . . . . . . . . . 21 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
8813, 87ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 2 ∈ (ℤ‘2)
899eldifad 3951 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑃 ∈ ℙ)
9089ad2antrr 722 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℙ)
91 dvdsprm 16039 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (2 ∥ 𝑃 ↔ 2 = 𝑃))
9288, 90, 91sylancr 587 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 ∥ 𝑃 ↔ 2 = 𝑃))
9386, 92mtbird 326 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ¬ 2 ∥ 𝑃)
9410ad2antrr 722 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℕ)
9594nncnd 11646 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℂ)
9617adantlr 711 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) ∈ ℤ)
9796zcnd 12080 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) ∈ ℂ)
9895, 97npcand 10993 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − (2 · 𝑢)) + (2 · 𝑢)) = 𝑃)
9998breq2d 5074 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 ∥ ((𝑃 − (2 · 𝑢)) + (2 · 𝑢)) ↔ 2 ∥ 𝑃))
10093, 99mtbird 326 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ¬ 2 ∥ ((𝑃 − (2 · 𝑢)) + (2 · 𝑢)))
10114adantl 482 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑢 ∈ ℤ)
102 dvdsmul1 15623 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℤ ∧ 𝑢 ∈ ℤ) → 2 ∥ (2 · 𝑢))
10313, 101, 102sylancr 587 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 2 ∥ (2 · 𝑢))
10413a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 2 ∈ ℤ)
10594nnzd 12078 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℤ)
106105, 96zsubcld 12084 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − (2 · 𝑢)) ∈ ℤ)
107 dvds2add 15635 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℤ ∧ (𝑃 − (2 · 𝑢)) ∈ ℤ ∧ (2 · 𝑢) ∈ ℤ) → ((2 ∥ (𝑃 − (2 · 𝑢)) ∧ 2 ∥ (2 · 𝑢)) → 2 ∥ ((𝑃 − (2 · 𝑢)) + (2 · 𝑢))))
108104, 106, 96, 107syl3anc 1365 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 ∥ (𝑃 − (2 · 𝑢)) ∧ 2 ∥ (2 · 𝑢)) → 2 ∥ ((𝑃 − (2 · 𝑢)) + (2 · 𝑢))))
109103, 108mpan2d 690 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 ∥ (𝑃 − (2 · 𝑢)) → 2 ∥ ((𝑃 − (2 · 𝑢)) + (2 · 𝑢))))
110100, 109mtod 199 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ¬ 2 ∥ (𝑃 − (2 · 𝑢)))
111 breq2 5066 . . . . . . . . . . . . . . . . 17 ((1st𝑧) = (𝑃 − (2 · 𝑢)) → (2 ∥ (1st𝑧) ↔ 2 ∥ (𝑃 − (2 · 𝑢))))
112111notbid 319 . . . . . . . . . . . . . . . 16 ((1st𝑧) = (𝑃 − (2 · 𝑢)) → (¬ 2 ∥ (1st𝑧) ↔ ¬ 2 ∥ (𝑃 − (2 · 𝑢))))
113110, 112syl5ibrcom 248 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((1st𝑧) = (𝑃 − (2 · 𝑢)) → ¬ 2 ∥ (1st𝑧)))
114113rexlimdva 3288 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑆) → (∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st𝑧) = (𝑃 − (2 · 𝑢)) → ¬ 2 ∥ (1st𝑧)))
115 simpr 485 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑆) → 𝑧𝑆)
11629, 115sseldi 3968 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑆) → 𝑧 ∈ ((1...𝑀) × (1...𝑁)))
117 xp1st 7715 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ((1...𝑀) × (1...𝑁)) → (1st𝑧) ∈ (1...𝑀))
118116, 117syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑆) → (1st𝑧) ∈ (1...𝑀))
119 elfzelz 12901 . . . . . . . . . . . . . . . 16 ((1st𝑧) ∈ (1...𝑀) → (1st𝑧) ∈ ℤ)
120 odd2np1 15682 . . . . . . . . . . . . . . . 16 ((1st𝑧) ∈ ℤ → (¬ 2 ∥ (1st𝑧) ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (1st𝑧)))
121118, 119, 1203syl 18 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑆) → (¬ 2 ∥ (1st𝑧) ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (1st𝑧)))
122 lgsquad.4 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑀 = ((𝑃 − 1) / 2)
1239, 122gausslemma2dlem0b 25847 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑀 ∈ ℕ)
124123nnred 11645 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑀 ∈ ℝ)
125124ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑀 ∈ ℝ)
126125rehalfcld 11876 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑀 / 2) ∈ ℝ)
127 reflcl 13159 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 / 2) ∈ ℝ → (⌊‘(𝑀 / 2)) ∈ ℝ)
128126, 127syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (⌊‘(𝑀 / 2)) ∈ ℝ)
129123ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑀 ∈ ℕ)
130129nnzd 12078 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑀 ∈ ℤ)
131 simprl 767 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑛 ∈ ℤ)
132130, 131zsubcld 12084 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑀𝑛) ∈ ℤ)
133132zred 12079 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑀𝑛) ∈ ℝ)
134 flle 13162 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 / 2) ∈ ℝ → (⌊‘(𝑀 / 2)) ≤ (𝑀 / 2))
135126, 134syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (⌊‘(𝑀 / 2)) ≤ (𝑀 / 2))
136 zre 11977 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℤ → 𝑛 ∈ ℝ)
137136ad2antrl 724 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑛 ∈ ℝ)
138 simprr 769 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((2 · 𝑛) + 1) = (1st𝑧))
139118adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (1st𝑧) ∈ (1...𝑀))
140138, 139eqeltrd 2917 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((2 · 𝑛) + 1) ∈ (1...𝑀))
141 elfzle2 12904 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((2 · 𝑛) + 1) ∈ (1...𝑀) → ((2 · 𝑛) + 1) ≤ 𝑀)
142140, 141syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((2 · 𝑛) + 1) ≤ 𝑀)
143 zmulcl 12023 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((2 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2 · 𝑛) ∈ ℤ)
14413, 131, 143sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (2 · 𝑛) ∈ ℤ)
145 zltp1le 12024 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((2 · 𝑛) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((2 · 𝑛) < 𝑀 ↔ ((2 · 𝑛) + 1) ≤ 𝑀))
146144, 130, 145syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((2 · 𝑛) < 𝑀 ↔ ((2 · 𝑛) + 1) ≤ 𝑀))
147142, 146mpbird 258 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (2 · 𝑛) < 𝑀)
148 2re 11703 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℝ
149148a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 2 ∈ ℝ)
150 2pos 11732 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 < 2
151150a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 0 < 2)
152 ltmuldiv2 11506 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑛) < 𝑀𝑛 < (𝑀 / 2)))
153137, 125, 149, 151, 152syl112anc 1368 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((2 · 𝑛) < 𝑀𝑛 < (𝑀 / 2)))
154147, 153mpbid 233 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑛 < (𝑀 / 2))
155126recnd 10661 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑀 / 2) ∈ ℂ)
156123nncnd 11646 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑀 ∈ ℂ)
157156ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑀 ∈ ℂ)
1581572halvesd 11875 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((𝑀 / 2) + (𝑀 / 2)) = 𝑀)
159155, 155, 158mvlraddd 11042 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑀 / 2) = (𝑀 − (𝑀 / 2)))
160154, 159breqtrd 5088 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑛 < (𝑀 − (𝑀 / 2)))
161137, 125, 126, 160ltsub13d 11238 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑀 / 2) < (𝑀𝑛))
162128, 126, 133, 135, 161lelttrd 10790 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (⌊‘(𝑀 / 2)) < (𝑀𝑛))
163126flcld 13161 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (⌊‘(𝑀 / 2)) ∈ ℤ)
164 zltp1le 12024 . . . . . . . . . . . . . . . . . . . 20 (((⌊‘(𝑀 / 2)) ∈ ℤ ∧ (𝑀𝑛) ∈ ℤ) → ((⌊‘(𝑀 / 2)) < (𝑀𝑛) ↔ ((⌊‘(𝑀 / 2)) + 1) ≤ (𝑀𝑛)))
165163, 132, 164syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((⌊‘(𝑀 / 2)) < (𝑀𝑛) ↔ ((⌊‘(𝑀 / 2)) + 1) ≤ (𝑀𝑛)))
166162, 165mpbid 233 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((⌊‘(𝑀 / 2)) + 1) ≤ (𝑀𝑛))
167 2t0e0 11798 . . . . . . . . . . . . . . . . . . . . 21 (2 · 0) = 0
168 2cn 11704 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℂ
169 zcn 11978 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
170169ad2antrl 724 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑛 ∈ ℂ)
171 mulcl 10613 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((2 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (2 · 𝑛) ∈ ℂ)
172168, 170, 171sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (2 · 𝑛) ∈ ℂ)
173 pncan 10884 . . . . . . . . . . . . . . . . . . . . . . . 24 (((2 · 𝑛) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
174172, 44, 173sylancl 586 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
175 elfznn 12929 . . . . . . . . . . . . . . . . . . . . . . . 24 (((2 · 𝑛) + 1) ∈ (1...𝑀) → ((2 · 𝑛) + 1) ∈ ℕ)
176 nnm1nn0 11930 . . . . . . . . . . . . . . . . . . . . . . . 24 (((2 · 𝑛) + 1) ∈ ℕ → (((2 · 𝑛) + 1) − 1) ∈ ℕ0)
177140, 175, 1763syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (((2 · 𝑛) + 1) − 1) ∈ ℕ0)
178174, 177eqeltrrd 2918 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (2 · 𝑛) ∈ ℕ0)
179178nn0ge0d 11950 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 0 ≤ (2 · 𝑛))
180167, 179eqbrtrid 5097 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (2 · 0) ≤ (2 · 𝑛))
181 0red 10636 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 0 ∈ ℝ)
182 lemul2 11485 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (0 ≤ 𝑛 ↔ (2 · 0) ≤ (2 · 𝑛)))
183181, 137, 149, 151, 182syl112anc 1368 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (0 ≤ 𝑛 ↔ (2 · 0) ≤ (2 · 𝑛)))
184180, 183mpbird 258 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 0 ≤ 𝑛)
185125, 137subge02d 11224 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (0 ≤ 𝑛 ↔ (𝑀𝑛) ≤ 𝑀))
186184, 185mpbid 233 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑀𝑛) ≤ 𝑀)
187163peano2zd 12082 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((⌊‘(𝑀 / 2)) + 1) ∈ ℤ)
188 elfz 12891 . . . . . . . . . . . . . . . . . . 19 (((𝑀𝑛) ∈ ℤ ∧ ((⌊‘(𝑀 / 2)) + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑀𝑛) ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ↔ (((⌊‘(𝑀 / 2)) + 1) ≤ (𝑀𝑛) ∧ (𝑀𝑛) ≤ 𝑀)))
189132, 187, 130, 188syl3anc 1365 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((𝑀𝑛) ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ↔ (((⌊‘(𝑀 / 2)) + 1) ≤ (𝑀𝑛) ∧ (𝑀𝑛) ≤ 𝑀)))
190166, 186, 189mpbir2and 709 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑀𝑛) ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀))
19189ad2antrr 722 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑃 ∈ ℙ)
192 prmnn 16010 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
193191, 192syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑃 ∈ ℕ)
194193nncnd 11646 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑃 ∈ ℂ)
195 peano2cn 10804 . . . . . . . . . . . . . . . . . . . 20 ((2 · 𝑛) ∈ ℂ → ((2 · 𝑛) + 1) ∈ ℂ)
196172, 195syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((2 · 𝑛) + 1) ∈ ℂ)
197194, 196nncand 10994 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑃 − (𝑃 − ((2 · 𝑛) + 1))) = ((2 · 𝑛) + 1))
198 1cnd 10628 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 1 ∈ ℂ)
199194, 172, 198sub32d 11021 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((𝑃 − (2 · 𝑛)) − 1) = ((𝑃 − 1) − (2 · 𝑛)))
200194, 172, 198subsub4d 11020 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((𝑃 − (2 · 𝑛)) − 1) = (𝑃 − ((2 · 𝑛) + 1)))
201 2cnd 11707 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 2 ∈ ℂ)
202201, 157, 170subdid 11088 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (2 · (𝑀𝑛)) = ((2 · 𝑀) − (2 · 𝑛)))
203122oveq2i 7162 . . . . . . . . . . . . . . . . . . . . . . 23 (2 · 𝑀) = (2 · ((𝑃 − 1) / 2))
20410nnzd 12078 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑃 ∈ ℤ)
205204ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑃 ∈ ℤ)
206 peano2zm 12017 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℤ → (𝑃 − 1) ∈ ℤ)
207205, 206syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑃 − 1) ∈ ℤ)
208207zcnd 12080 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑃 − 1) ∈ ℂ)
20973a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 2 ≠ 0)
210208, 201, 209divcan2d 11410 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (2 · ((𝑃 − 1) / 2)) = (𝑃 − 1))
211203, 210syl5eq 2872 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (2 · 𝑀) = (𝑃 − 1))
212211oveq1d 7166 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((2 · 𝑀) − (2 · 𝑛)) = ((𝑃 − 1) − (2 · 𝑛)))
213202, 212eqtr2d 2861 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((𝑃 − 1) − (2 · 𝑛)) = (2 · (𝑀𝑛)))
214199, 200, 2133eqtr3d 2868 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑃 − ((2 · 𝑛) + 1)) = (2 · (𝑀𝑛)))
215214oveq2d 7167 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑃 − (𝑃 − ((2 · 𝑛) + 1))) = (𝑃 − (2 · (𝑀𝑛))))
216197, 215, 1383eqtr3rd 2869 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (1st𝑧) = (𝑃 − (2 · (𝑀𝑛))))
217 oveq2 7159 . . . . . . . . . . . . . . . . . . 19 (𝑢 = (𝑀𝑛) → (2 · 𝑢) = (2 · (𝑀𝑛)))
218217oveq2d 7167 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝑀𝑛) → (𝑃 − (2 · 𝑢)) = (𝑃 − (2 · (𝑀𝑛))))
219218rspceeqv 3641 . . . . . . . . . . . . . . . . 17 (((𝑀𝑛) ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ (1st𝑧) = (𝑃 − (2 · (𝑀𝑛)))) → ∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st𝑧) = (𝑃 − (2 · 𝑢)))
220190, 216, 219syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st𝑧) = (𝑃 − (2 · 𝑢)))
221220rexlimdvaa 3289 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑆) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (1st𝑧) → ∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st𝑧) = (𝑃 − (2 · 𝑢))))
222121, 221sylbid 241 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑆) → (¬ 2 ∥ (1st𝑧) → ∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st𝑧) = (𝑃 − (2 · 𝑢))))
223114, 222impbid 213 . . . . . . . . . . . . 13 ((𝜑𝑧𝑆) → (∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st𝑧) = (𝑃 − (2 · 𝑢)) ↔ ¬ 2 ∥ (1st𝑧)))
224223rabbidva 3483 . . . . . . . . . . . 12 (𝜑 → {𝑧𝑆 ∣ ∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st𝑧) = (𝑃 − (2 · 𝑢))} = {𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})
22581, 224syl5eq 2872 . . . . . . . . . . 11 (𝜑 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀){𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} = {𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})
226225fveq2d 6670 . . . . . . . . . 10 (𝜑 → (♯‘ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀){𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))}) = (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))
22727relopabi 5692 . . . . . . . . . . . . . . 15 Rel 𝑆
228 relss 5654 . . . . . . . . . . . . . . 15 ({𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ⊆ 𝑆 → (Rel 𝑆 → Rel {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))}))
22954, 227, 228mp2 9 . . . . . . . . . . . . . 14 Rel {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))}
230 relxp 5571 . . . . . . . . . . . . . 14 Rel ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
23127eleq2i 2908 . . . . . . . . . . . . . . . . . 18 (⟨𝑥, 𝑦⟩ ∈ 𝑆 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))})
232 opabid 5409 . . . . . . . . . . . . . . . . . 18 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ↔ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))
233231, 232bitri 276 . . . . . . . . . . . . . . . . 17 (⟨𝑥, 𝑦⟩ ∈ 𝑆 ↔ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))
234 anass 469 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℕ ∧ 𝑦𝑁) ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄)) ↔ (𝑦 ∈ ℕ ∧ (𝑦𝑁 ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄))))
23520peano2zd 12082 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ∈ ℤ)
236235zred 12079 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ∈ ℝ)
237236adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ∈ ℝ)
2388ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → 𝑄 ∈ ℝ)
239 nnre 11637 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
240239adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℝ)
241 lesub 11111 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ∈ ℝ ∧ 𝑄 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ≤ (𝑄𝑦) ↔ 𝑦 ≤ (𝑄 − ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1))))
242237, 238, 240, 241syl3anc 1365 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ≤ (𝑄𝑦) ↔ 𝑦 ≤ (𝑄 − ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1))))
2438adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑄 ∈ ℝ)
244243recnd 10661 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑄 ∈ ℂ)
24563, 244mulcomd 10654 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 · 𝑄) = (𝑄 · 𝑃))
24665, 244mulcomd 10654 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑢) · 𝑄) = (𝑄 · (2 · 𝑢)))
24762nnne0d 11679 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ≠ 0)
248244, 63, 247divcan1d 11409 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 / 𝑃) · 𝑃) = 𝑄)
249248oveq1d 7166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (((𝑄 / 𝑃) · 𝑃) · (2 · 𝑢)) = (𝑄 · (2 · 𝑢)))
25012recnd 10661 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 / 𝑃) ∈ ℂ)
251250, 63, 65mul32d 10842 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (((𝑄 / 𝑃) · 𝑃) · (2 · 𝑢)) = (((𝑄 / 𝑃) · (2 · 𝑢)) · 𝑃))
252246, 249, 2513eqtr2d 2866 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑢) · 𝑄) = (((𝑄 / 𝑃) · (2 · 𝑢)) · 𝑃))
253245, 252oveq12d 7169 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 · 𝑄) − ((2 · 𝑢) · 𝑄)) = ((𝑄 · 𝑃) − (((𝑄 / 𝑃) · (2 · 𝑢)) · 𝑃)))
25463, 65, 244subdird 11089 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − (2 · 𝑢)) · 𝑄) = ((𝑃 · 𝑄) − ((2 · 𝑢) · 𝑄)))
25519recnd 10661 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℂ)
256244, 255, 63subdird 11089 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) · 𝑃) = ((𝑄 · 𝑃) − (((𝑄 / 𝑃) · (2 · 𝑢)) · 𝑃)))
257253, 254, 2563eqtr4d 2870 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − (2 · 𝑢)) · 𝑄) = ((𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) · 𝑃))
258257adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑃 − (2 · 𝑢)) · 𝑄) = ((𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) · 𝑃))
259258breq2d 5074 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄) ↔ (𝑦 · 𝑃) < ((𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) · 𝑃)))
26019adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℝ)
261238, 260resubcld 11060 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℝ)
26262adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈ ℕ)
263262nnred 11645 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈ ℝ)
264262nngt0d 11678 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → 0 < 𝑃)
265 ltmul1 11482 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ ℝ ∧ (𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (𝑦 < (𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) ↔ (𝑦 · 𝑃) < ((𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) · 𝑃)))
266240, 261, 263, 264, 265syl112anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (𝑦 < (𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) ↔ (𝑦 · 𝑃) < ((𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) · 𝑃)))
267 ltsub13 11113 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ ℝ ∧ 𝑄 ∈ ℝ ∧ ((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℝ) → (𝑦 < (𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) ↔ ((𝑄 / 𝑃) · (2 · 𝑢)) < (𝑄𝑦)))
268240, 238, 260, 267syl3anc 1365 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (𝑦 < (𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) ↔ ((𝑄 / 𝑃) · (2 · 𝑢)) < (𝑄𝑦)))
269259, 266, 2683bitr2d 308 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄) ↔ ((𝑄 / 𝑃) · (2 · 𝑢)) < (𝑄𝑦)))
2707adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑄 ∈ ℕ)
271270nnzd 12078 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑄 ∈ ℤ)
272 nnz 11996 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
273 zsubcl 12016 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑄 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑄𝑦) ∈ ℤ)
274271, 272, 273syl2an 595 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (𝑄𝑦) ∈ ℤ)
275 fllt 13169 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℝ ∧ (𝑄𝑦) ∈ ℤ) → (((𝑄 / 𝑃) · (2 · 𝑢)) < (𝑄𝑦) ↔ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < (𝑄𝑦)))
276260, 274, 275syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (((𝑄 / 𝑃) · (2 · 𝑢)) < (𝑄𝑦) ↔ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < (𝑄𝑦)))
27720adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℤ)
278 zltp1le 12024 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℤ ∧ (𝑄𝑦) ∈ ℤ) → ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < (𝑄𝑦) ↔ ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ≤ (𝑄𝑦)))
279277, 274, 278syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < (𝑄𝑦) ↔ ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ≤ (𝑄𝑦)))
280269, 276, 2793bitrd 306 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄) ↔ ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ≤ (𝑄𝑦)))
281 lgsquad.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝑁 = ((𝑄 − 1) / 2)
282281oveq2i 7162 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (2 · 𝑁) = (2 · ((𝑄 − 1) / 2))
283 peano2rem 10945 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑄 ∈ ℝ → (𝑄 − 1) ∈ ℝ)
284243, 283syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 − 1) ∈ ℝ)
285284recnd 10661 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 − 1) ∈ ℂ)
286 2cnd 11707 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 2 ∈ ℂ)
28773a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 2 ≠ 0)
288285, 286, 287divcan2d 11410 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · ((𝑄 − 1) / 2)) = (𝑄 − 1))
289282, 288syl5eq 2872 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑁) = (𝑄 − 1))
290289oveq1d 7166 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = ((𝑄 − 1) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
291 1cnd 10628 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 1 ∈ ℂ)
29220zcnd 12080 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℂ)
293244, 291, 292sub32d 11021 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 − 1) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = ((𝑄 − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) − 1))
294244, 292, 291subsub4d 11020 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) − 1) = (𝑄 − ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1)))
295290, 293, 2943eqtrd 2864 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (𝑄 − ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1)))
296295adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (𝑄 − ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1)))
297296breq2d 5074 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ↔ 𝑦 ≤ (𝑄 − ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1))))
298242, 280, 2973bitr4d 312 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄) ↔ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
299298anbi2d 628 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑦𝑁 ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄)) ↔ (𝑦𝑁𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
300 2nn 11702 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 ∈ ℕ
3016, 281gausslemma2dlem0b 25847 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑁 ∈ ℕ)
302 nnmulcl 11653 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
303300, 301, 302sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (2 · 𝑁) ∈ ℕ)
304303adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑁) ∈ ℕ)
305304nnred 11645 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑁) ∈ ℝ)
306301adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 ∈ ℕ)
307306nnred 11645 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 ∈ ℝ)
30820zred 12079 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℝ)
309301nncnd 11646 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑁 ∈ ℂ)
310309adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 ∈ ℂ)
3113102timesd 11872 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑁) = (𝑁 + 𝑁))
312310, 310, 311mvrladdd 11045 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑁) − 𝑁) = 𝑁)
313243rehalfcld 11876 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 / 2) ∈ ℝ)
314243ltm1d 11564 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 − 1) < 𝑄)
315148a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 2 ∈ ℝ)
316150a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 0 < 2)
317 ltdiv1 11496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑄 − 1) ∈ ℝ ∧ 𝑄 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑄 − 1) < 𝑄 ↔ ((𝑄 − 1) / 2) < (𝑄 / 2)))
318284, 243, 315, 316, 317syl112anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 − 1) < 𝑄 ↔ ((𝑄 − 1) / 2) < (𝑄 / 2)))
319314, 318mpbid 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 − 1) / 2) < (𝑄 / 2))
320281, 319eqbrtrid 5097 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 < (𝑄 / 2))
321307, 313, 320ltled 10780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 ≤ (𝑄 / 2))
322244, 286, 63, 287div32d 11431 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 / 2) · 𝑃) = (𝑄 · (𝑃 / 2)))
323124adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑀 ∈ ℝ)
324323rehalfcld 11876 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑀 / 2) ∈ ℝ)
325 peano2re 10805 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((⌊‘(𝑀 / 2)) ∈ ℝ → ((⌊‘(𝑀 / 2)) + 1) ∈ ℝ)
326324, 127, 3253syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((⌊‘(𝑀 / 2)) + 1) ∈ ℝ)
32715zred 12079 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑢 ∈ ℝ)
328 flltp1 13163 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑀 / 2) ∈ ℝ → (𝑀 / 2) < ((⌊‘(𝑀 / 2)) + 1))
329324, 328syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑀 / 2) < ((⌊‘(𝑀 / 2)) + 1))
330 elfzle1 12903 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) → ((⌊‘(𝑀 / 2)) + 1) ≤ 𝑢)
331330adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((⌊‘(𝑀 / 2)) + 1) ≤ 𝑢)
332324, 326, 327, 329, 331ltletrd 10792 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑀 / 2) < 𝑢)
333 ltdivmul 11507 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑀 ∈ ℝ ∧ 𝑢 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑀 / 2) < 𝑢𝑀 < (2 · 𝑢)))
334323, 327, 315, 316, 333syl112anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑀 / 2) < 𝑢𝑀 < (2 · 𝑢)))
335332, 334mpbid 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑀 < (2 · 𝑢))
336122, 335eqbrtrrid 5098 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − 1) / 2) < (2 · 𝑢))
33762nnred 11645 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℝ)
338 peano2rem 10945 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ)
339337, 338syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − 1) ∈ ℝ)
340 ltdivmul 11507 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑃 − 1) ∈ ℝ ∧ (2 · 𝑢) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝑃 − 1) / 2) < (2 · 𝑢) ↔ (𝑃 − 1) < (2 · (2 · 𝑢))))
341339, 18, 315, 316, 340syl112anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (((𝑃 − 1) / 2) < (2 · 𝑢) ↔ (𝑃 − 1) < (2 · (2 · 𝑢))))
342336, 341mpbid 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − 1) < (2 · (2 · 𝑢)))
343204adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℤ)
344 zmulcl 12023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((2 ∈ ℤ ∧ (2 · 𝑢) ∈ ℤ) → (2 · (2 · 𝑢)) ∈ ℤ)
34513, 17, 344sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · (2 · 𝑢)) ∈ ℤ)
346 zlem1lt 12026 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑃 ∈ ℤ ∧ (2 · (2 · 𝑢)) ∈ ℤ) → (𝑃 ≤ (2 · (2 · 𝑢)) ↔ (𝑃 − 1) < (2 · (2 · 𝑢))))
347343, 345, 346syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 ≤ (2 · (2 · 𝑢)) ↔ (𝑃 − 1) < (2 · (2 · 𝑢))))
348342, 347mpbird 258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ≤ (2 · (2 · 𝑢)))
349 ledivmul 11508 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑃 ∈ ℝ ∧ (2 · 𝑢) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑃 / 2) ≤ (2 · 𝑢) ↔ 𝑃 ≤ (2 · (2 · 𝑢))))
350337, 18, 315, 316, 349syl112anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 / 2) ≤ (2 · 𝑢) ↔ 𝑃 ≤ (2 · (2 · 𝑢))))
351348, 350mpbird 258 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 / 2) ≤ (2 · 𝑢))
352337rehalfcld 11876 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 / 2) ∈ ℝ)
353270nngt0d 11678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 0 < 𝑄)
354 lemul2 11485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑃 / 2) ∈ ℝ ∧ (2 · 𝑢) ∈ ℝ ∧ (𝑄 ∈ ℝ ∧ 0 < 𝑄)) → ((𝑃 / 2) ≤ (2 · 𝑢) ↔ (𝑄 · (𝑃 / 2)) ≤ (𝑄 · (2 · 𝑢))))
355352, 18, 243, 353, 354syl112anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 / 2) ≤ (2 · 𝑢) ↔ (𝑄 · (𝑃 / 2)) ≤ (𝑄 · (2 · 𝑢))))
356351, 355mpbid 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 · (𝑃 / 2)) ≤ (𝑄 · (2 · 𝑢)))
357322, 356eqbrtrd 5084 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 / 2) · 𝑃) ≤ (𝑄 · (2 · 𝑢)))
358243, 18remulcld 10663 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 · (2 · 𝑢)) ∈ ℝ)
35962nngt0d 11678 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 0 < 𝑃)
360 lemuldiv 11512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑄 / 2) ∈ ℝ ∧ (𝑄 · (2 · 𝑢)) ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (((𝑄 / 2) · 𝑃) ≤ (𝑄 · (2 · 𝑢)) ↔ (𝑄 / 2) ≤ ((𝑄 · (2 · 𝑢)) / 𝑃)))
361313, 358, 337, 359, 360syl112anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (((𝑄 / 2) · 𝑃) ≤ (𝑄 · (2 · 𝑢)) ↔ (𝑄 / 2) ≤ ((𝑄 · (2 · 𝑢)) / 𝑃)))
362357, 361mpbid 233 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 / 2) ≤ ((𝑄 · (2 · 𝑢)) / 𝑃))
363244, 65, 63, 247div23d 11445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 · (2 · 𝑢)) / 𝑃) = ((𝑄 / 𝑃) · (2 · 𝑢)))
364362, 363breqtrd 5088 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 / 2) ≤ ((𝑄 / 𝑃) · (2 · 𝑢)))
365307, 313, 19, 321, 364letrd 10789 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 ≤ ((𝑄 / 𝑃) · (2 · 𝑢)))
366301nnzd 12078 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝑁 ∈ ℤ)
367366adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 ∈ ℤ)
368 flge 13168 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℝ ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ ((𝑄 / 𝑃) · (2 · 𝑢)) ↔ 𝑁 ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
36919, 367, 368syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑁 ≤ ((𝑄 / 𝑃) · (2 · 𝑢)) ↔ 𝑁 ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
370365, 369mpbid 233 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))
371312, 370eqbrtrd 5084 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑁) − 𝑁) ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))
372305, 307, 308, 371subled 11235 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ≤ 𝑁)
373372adantr 481 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ≤ 𝑁)
374304nnzd 12078 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑁) ∈ ℤ)
375374, 20zsubcld 12084 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℤ)
376375adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℤ)
377376zred 12079 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℝ)
378301ad2antrr 722 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → 𝑁 ∈ ℕ)
379378nnred 11645 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → 𝑁 ∈ ℝ)
380 letr 10726 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ ℝ ∧ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∧ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ≤ 𝑁) → 𝑦𝑁))
381240, 377, 379, 380syl3anc 1365 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∧ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ≤ 𝑁) → 𝑦𝑁))
382373, 381mpan2d 690 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) → 𝑦𝑁))
383382pm4.71rd 563 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ↔ (𝑦𝑁𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
384299, 383bitr4d 283 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑦𝑁 ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄)) ↔ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
385384pm5.32da 579 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑦 ∈ ℕ ∧ (𝑦𝑁 ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄))) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
386385adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → ((𝑦 ∈ ℕ ∧ (𝑦𝑁 ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄))) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
387234, 386syl5bb 284 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (((𝑦 ∈ ℕ ∧ 𝑦𝑁) ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄)) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
388 simpr 485 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → 𝑥 = (𝑃 − (2 · 𝑢)))
389343, 17zsubcld 12084 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − (2 · 𝑢)) ∈ ℤ)
390 elfzle2 12904 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) → 𝑢𝑀)
391390adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑢𝑀)
392391, 122breqtrdi 5103 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑢 ≤ ((𝑃 − 1) / 2))
393 lemuldiv2 11513 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑢 ∈ ℝ ∧ (𝑃 − 1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑢) ≤ (𝑃 − 1) ↔ 𝑢 ≤ ((𝑃 − 1) / 2)))
394327, 339, 315, 316, 393syl112anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑢) ≤ (𝑃 − 1) ↔ 𝑢 ≤ ((𝑃 − 1) / 2)))
395392, 394mpbird 258 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) ≤ (𝑃 − 1))
396337ltm1d 11564 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − 1) < 𝑃)
39718, 339, 337, 395, 396lelttrd 10790 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) < 𝑃)
39818, 337posdifd 11219 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑢) < 𝑃 ↔ 0 < (𝑃 − (2 · 𝑢))))
399397, 398mpbid 233 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 0 < (𝑃 − (2 · 𝑢)))
400 elnnz 11983 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃 − (2 · 𝑢)) ∈ ℕ ↔ ((𝑃 − (2 · 𝑢)) ∈ ℤ ∧ 0 < (𝑃 − (2 · 𝑢))))
401389, 399, 400sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − (2 · 𝑢)) ∈ ℕ)
40263, 65, 291sub32d 11021 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − (2 · 𝑢)) − 1) = ((𝑃 − 1) − (2 · 𝑢)))
403122, 122oveq12i 7163 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑀 + 𝑀) = (((𝑃 − 1) / 2) + ((𝑃 − 1) / 2))
40462nnzd 12078 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℤ)
405404, 206syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − 1) ∈ ℤ)
406405zcnd 12080 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − 1) ∈ ℂ)
4074062halvesd 11875 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (((𝑃 − 1) / 2) + ((𝑃 − 1) / 2)) = (𝑃 − 1))
408403, 407syl5eq 2872 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑀 + 𝑀) = (𝑃 − 1))
409408oveq1d 7166 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑀 + 𝑀) − 𝑀) = ((𝑃 − 1) − 𝑀))
410156adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑀 ∈ ℂ)
411410, 410pncan2d 10991 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑀 + 𝑀) − 𝑀) = 𝑀)
412409, 411eqtr3d 2862 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − 1) − 𝑀) = 𝑀)
413412, 335eqbrtrd 5084 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − 1) − 𝑀) < (2 · 𝑢))
414339, 323, 18, 413ltsub23d 11237 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − 1) − (2 · 𝑢)) < 𝑀)
415402, 414eqbrtrd 5084 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − (2 · 𝑢)) − 1) < 𝑀)
416123adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑀 ∈ ℕ)
417416nnzd 12078 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑀 ∈ ℤ)
418 zlem1lt 12026 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃 − (2 · 𝑢)) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑃 − (2 · 𝑢)) ≤ 𝑀 ↔ ((𝑃 − (2 · 𝑢)) − 1) < 𝑀))
419389, 417, 418syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − (2 · 𝑢)) ≤ 𝑀 ↔ ((𝑃 − (2 · 𝑢)) − 1) < 𝑀))
420415, 419mpbird 258 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − (2 · 𝑢)) ≤ 𝑀)
421 fznn 12968 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀 ∈ ℤ → ((𝑃 − (2 · 𝑢)) ∈ (1...𝑀) ↔ ((𝑃 − (2 · 𝑢)) ∈ ℕ ∧ (𝑃 − (2 · 𝑢)) ≤ 𝑀)))
422417, 421syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − (2 · 𝑢)) ∈ (1...𝑀) ↔ ((𝑃 − (2 · 𝑢)) ∈ ℕ ∧ (𝑃 − (2 · 𝑢)) ≤ 𝑀)))
423401, 420, 422mpbir2and 709 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − (2 · 𝑢)) ∈ (1...𝑀))
424423adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (𝑃 − (2 · 𝑢)) ∈ (1...𝑀))
425388, 424eqeltrd 2917 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → 𝑥 ∈ (1...𝑀))
426425biantrurd 533 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (𝑦 ∈ (1...𝑁) ↔ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))))
427366ad2antrr 722 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → 𝑁 ∈ ℤ)
428 fznn 12968 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → (𝑦 ∈ (1...𝑁) ↔ (𝑦 ∈ ℕ ∧ 𝑦𝑁)))
429427, 428syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (𝑦 ∈ (1...𝑁) ↔ (𝑦 ∈ ℕ ∧ 𝑦𝑁)))
430426, 429bitr3d 282 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ↔ (𝑦 ∈ ℕ ∧ 𝑦𝑁)))
431388oveq1d 7166 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (𝑥 · 𝑄) = ((𝑃 − (2 · 𝑢)) · 𝑄))
432431breq2d 5074 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → ((𝑦 · 𝑃) < (𝑥 · 𝑄) ↔ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄)))
433430, 432anbi12d 630 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)) ↔ ((𝑦 ∈ ℕ ∧ 𝑦𝑁) ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄))))
434375adantr 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℤ)
435 fznn 12968 . . . . . . . . . . . . . . . . . . 19 (((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℤ → (𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
436434, 435syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
437387, 433, 4363bitr4d 312 . . . . . . . . . . . . . . . . 17 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)) ↔ 𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
438233, 437syl5bb 284 . . . . . . . . . . . . . . . 16 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (⟨𝑥, 𝑦⟩ ∈ 𝑆𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
439438pm5.32da 579 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑥 = (𝑃 − (2 · 𝑢)) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑆) ↔ (𝑥 = (𝑃 − (2 · 𝑢)) ∧ 𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))))
440 vex 3502 . . . . . . . . . . . . . . . . . . 19 𝑥 ∈ V
441 vex 3502 . . . . . . . . . . . . . . . . . . 19 𝑦 ∈ V
442440, 441op1std 7693 . . . . . . . . . . . . . . . . . 18 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
443442eqeq1d 2827 . . . . . . . . . . . . . . . . 17 (𝑧 = ⟨𝑥, 𝑦⟩ → ((1st𝑧) = (𝑃 − (2 · 𝑢)) ↔ 𝑥 = (𝑃 − (2 · 𝑢))))
444443elrab 3683 . . . . . . . . . . . . . . . 16 (⟨𝑥, 𝑦⟩ ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑆𝑥 = (𝑃 − (2 · 𝑢))))
445444biancomi 463 . . . . . . . . . . . . . . 15 (⟨𝑥, 𝑦⟩ ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ↔ (𝑥 = (𝑃 − (2 · 𝑢)) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑆))
446 opelxp 5589 . . . . . . . . . . . . . . . 16 (⟨𝑥, 𝑦⟩ ∈ ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ↔ (𝑥 ∈ {(𝑃 − (2 · 𝑢))} ∧ 𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
447 velsn 4579 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ {(𝑃 − (2 · 𝑢))} ↔ 𝑥 = (𝑃 − (2 · 𝑢)))
448447anbi1i 623 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ {(𝑃 − (2 · 𝑢))} ∧ 𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ↔ (𝑥 = (𝑃 − (2 · 𝑢)) ∧ 𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
449446, 448bitri 276 . . . . . . . . . . . . . . 15 (⟨𝑥, 𝑦⟩ ∈ ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ↔ (𝑥 = (𝑃 − (2 · 𝑢)) ∧ 𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
450439, 445, 4493bitr4g 315 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⟨𝑥, 𝑦⟩ ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ↔ ⟨𝑥, 𝑦⟩ ∈ ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))))
451229, 230, 450eqrelrdv 5663 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} = ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
452451fveq2d 6670 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (♯‘{𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))}) = (♯‘({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))))
453 fzfid 13334 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ∈ Fin)
454 xpsnen2g 8602 . . . . . . . . . . . . . 14 (((𝑃 − (2 · 𝑢)) ∈ ℤ ∧ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ∈ Fin) → ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ≈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
455389, 453, 454syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ≈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
456 hasheni 13701 . . . . . . . . . . . . 13 (({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ≈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) → (♯‘({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))) = (♯‘(1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
457455, 456syl 17 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (♯‘({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))) = (♯‘(1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
458 ltmul2 11483 . . . . . . . . . . . . . . . . . . . . 21 (((2 · 𝑢) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (𝑄 ∈ ℝ ∧ 0 < 𝑄)) → ((2 · 𝑢) < 𝑃 ↔ (𝑄 · (2 · 𝑢)) < (𝑄 · 𝑃)))
45918, 337, 243, 353, 458syl112anc 1368 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑢) < 𝑃 ↔ (𝑄 · (2 · 𝑢)) < (𝑄 · 𝑃)))
460397, 459mpbid 233 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 · (2 · 𝑢)) < (𝑄 · 𝑃))
461 ltdivmul2 11509 . . . . . . . . . . . . . . . . . . . 20 (((𝑄 · (2 · 𝑢)) ∈ ℝ ∧ 𝑄 ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (((𝑄 · (2 · 𝑢)) / 𝑃) < 𝑄 ↔ (𝑄 · (2 · 𝑢)) < (𝑄 · 𝑃)))
462358, 243, 337, 359, 461syl112anc 1368 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (((𝑄 · (2 · 𝑢)) / 𝑃) < 𝑄 ↔ (𝑄 · (2 · 𝑢)) < (𝑄 · 𝑃)))
463460, 462mpbird 258 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 · (2 · 𝑢)) / 𝑃) < 𝑄)
464363, 463eqbrtrrd 5086 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 / 𝑃) · (2 · 𝑢)) < 𝑄)
465 fllt 13169 . . . . . . . . . . . . . . . . . 18 ((((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℝ ∧ 𝑄 ∈ ℤ) → (((𝑄 / 𝑃) · (2 · 𝑢)) < 𝑄 ↔ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < 𝑄))
46619, 271, 465syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (((𝑄 / 𝑃) · (2 · 𝑢)) < 𝑄 ↔ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < 𝑄))
467464, 466mpbid 233 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < 𝑄)
468 zltlem1 12027 . . . . . . . . . . . . . . . . 17 (((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℤ ∧ 𝑄 ∈ ℤ) → ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < 𝑄 ↔ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ≤ (𝑄 − 1)))
46920, 271, 468syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < 𝑄 ↔ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ≤ (𝑄 − 1)))
470467, 469mpbid 233 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ≤ (𝑄 − 1))
471470, 289breqtrrd 5090 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ≤ (2 · 𝑁))
472 eluz2 12241 . . . . . . . . . . . . . 14 ((2 · 𝑁) ∈ (ℤ‘(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ↔ ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℤ ∧ (2 · 𝑁) ∈ ℤ ∧ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ≤ (2 · 𝑁)))
47320, 374, 471, 472syl3anbrc 1337 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑁) ∈ (ℤ‘(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
474 uznn0sub 12269 . . . . . . . . . . . . 13 ((2 · 𝑁) ∈ (ℤ‘(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℕ0)
475 hashfz1 13699 . . . . . . . . . . . . 13 (((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℕ0 → (♯‘(1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) = ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
476473, 474, 4753syl 18 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (♯‘(1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) = ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
477452, 457, 4763eqtrd 2864 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (♯‘{𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))}) = ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
478477sumeq2dv 15052 . . . . . . . . . 10 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(♯‘{𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))}) = Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
47980, 226, 4783eqtr3rd 2869 . . . . . . . . 9 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))
480303nncnd 11646 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) ∈ ℂ)
481480adantr 481 . . . . . . . . . 10 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑁) ∈ ℂ)
4825, 481, 292fsumsub 15135 . . . . . . . . 9 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) − Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
483479, 482eqtr3d 2862 . . . . . . . 8 (𝜑 → (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}) = (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) − Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
484483oveq2d 7167 . . . . . . 7 (𝜑 → (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) = (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) − Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
48521zcnd 12080 . . . . . . . 8 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℂ)
4865, 374fsumzcl 15084 . . . . . . . . 9 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) ∈ ℤ)
487486zcnd 12080 . . . . . . . 8 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) ∈ ℂ)
488485, 487pncan3d 10992 . . . . . . 7 (𝜑 → (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) − Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) = Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁))
489 fsumconst 15137 . . . . . . . . 9 (((((⌊‘(𝑀 / 2)) + 1)...𝑀) ∈ Fin ∧ (2 · 𝑁) ∈ ℂ) → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) = ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · (2 · 𝑁)))
4905, 480, 489syl2anc 584 . . . . . . . 8 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) = ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · (2 · 𝑁)))
491 hashcl 13710 . . . . . . . . . . 11 ((((⌊‘(𝑀 / 2)) + 1)...𝑀) ∈ Fin → (♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∈ ℕ0)
4925, 491syl 17 . . . . . . . . . 10 (𝜑 → (♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∈ ℕ0)
493492nn0cnd 11949 . . . . . . . . 9 (𝜑 → (♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∈ ℂ)
494 2cnd 11707 . . . . . . . . 9 (𝜑 → 2 ∈ ℂ)
495493, 494, 309mul12d 10841 . . . . . . . 8 (𝜑 → ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · (2 · 𝑁)) = (2 · ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)))
496490, 495eqtrd 2860 . . . . . . 7 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) = (2 · ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)))
497484, 488, 4963eqtrd 2864 . . . . . 6 (𝜑 → (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) = (2 · ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)))
498497oveq2d 7167 . . . . 5 (𝜑 → (-1↑(Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))) = (-1↑(2 · ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁))))
49913a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℤ)
500492nn0zd 12077 . . . . . . 7 (𝜑 → (♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∈ ℤ)
501500, 366zmulcld 12085 . . . . . 6 (𝜑 → ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁) ∈ ℤ)
502 expmulz 13468 . . . . . 6 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (2 ∈ ℤ ∧ ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁) ∈ ℤ)) → (-1↑(2 · ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁))) = ((-1↑2)↑((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)))
5032, 4, 499, 501, 502syl22anc 836 . . . . 5 (𝜑 → (-1↑(2 · ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁))) = ((-1↑2)↑((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)))
504 neg1sqe1 13552 . . . . . . 7 (-1↑2) = 1
505504oveq1i 7161 . . . . . 6 ((-1↑2)↑((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)) = (1↑((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁))
506 1exp 13451 . . . . . . 7 (((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁) ∈ ℤ → (1↑((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)) = 1)
507501, 506syl 17 . . . . . 6 (𝜑 → (1↑((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)) = 1)
508505, 507syl5eq 2872 . . . . 5 (𝜑 → ((-1↑2)↑((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)) = 1)
509498, 503, 5083eqtrd 2864 . . . 4 (𝜑 → (-1↑(Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))) = 1)
51041, 52, 5093eqtr4d 2870 . . 3 (𝜑 → ((-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) · (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))) = (-1↑(Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))))
511 expaddz 13466 . . . 4 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℤ ∧ (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}) ∈ ℤ)) → (-1↑(Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))) = ((-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) · (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))))
5122, 4, 21, 39, 511syl22anc 836 . . 3 (𝜑 → (-1↑(Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))) = ((-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) · (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))))
513510, 512eqtr2d 2861 . 2 (𝜑 → ((-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) · (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))) = ((-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) · (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))))
51422, 38, 38, 40, 513mulcan2ad 11268 1 (𝜑 → (-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1530  wcel 2107  wne 3020  wral 3142  wrex 3143  {crab 3146  cdif 3936  wss 3939  {csn 4563  cop 4569   ciun 4916  Disj wdisj 5027   class class class wbr 5062  {copab 5124   × cxp 5551  Rel wrel 5558  cfv 6351  (class class class)co 7151  1st c1st 7681  cen 8498  Fincfn 8501  cc 10527  cr 10528  0cc0 10529  1c1 10530   + caddc 10532   · cmul 10534   < clt 10667  cle 10668  cmin 10862  -cneg 10863   / cdiv 11289  cn 11630  2c2 11684  0cn0 11889  cz 11973  cuz 12235  ...cfz 12885  cfl 13153  cexp 13422  chash 13683  Σcsu 15035  cdvds 15599  cprime 16007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2797  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-fal 1543  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-disj 5028  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12383  df-fz 12886  df-fzo 13027  df-fl 13155  df-seq 13363  df-exp 13423  df-hash 13684  df-cj 14451  df-re 14452  df-im 14453  df-sqrt 14587  df-abs 14588  df-clim 14838  df-sum 15036  df-dvds 15600  df-prm 16008
This theorem is referenced by:  lgsquadlem2  25871
  Copyright terms: Public domain W3C validator