MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsquadlem1 Structured version   Visualization version   GIF version

Theorem lgsquadlem1 25964
Description: Lemma for lgsquad 25967. Count the members of 𝑆 with odd coordinates. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
lgseisen.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgseisen.2 (𝜑𝑄 ∈ (ℙ ∖ {2}))
lgseisen.3 (𝜑𝑃𝑄)
lgsquad.4 𝑀 = ((𝑃 − 1) / 2)
lgsquad.5 𝑁 = ((𝑄 − 1) / 2)
lgsquad.6 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}
Assertion
Ref Expression
lgsquadlem1 (𝜑 → (-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})))
Distinct variable groups:   𝑥,𝑢,𝑦,𝑧,𝑃   𝜑,𝑢,𝑥,𝑦,𝑧   𝑢,𝑀,𝑦,𝑧   𝑢,𝑁,𝑥,𝑦,𝑧   𝑢,𝑄,𝑥,𝑦,𝑧   𝑢,𝑆,𝑥,𝑧   𝑥,𝑀   𝑦,𝑆

Proof of Theorem lgsquadlem1
Dummy variables 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neg1cn 11739 . . . 4 -1 ∈ ℂ
21a1i 11 . . 3 (𝜑 → -1 ∈ ℂ)
3 neg1ne0 11741 . . . 4 -1 ≠ 0
43a1i 11 . . 3 (𝜑 → -1 ≠ 0)
5 fzfid 13336 . . . 4 (𝜑 → (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∈ Fin)
6 lgseisen.2 . . . . . . . . . 10 (𝜑𝑄 ∈ (ℙ ∖ {2}))
76gausslemma2dlem0a 25940 . . . . . . . . 9 (𝜑𝑄 ∈ ℕ)
87nnred 11640 . . . . . . . 8 (𝜑𝑄 ∈ ℝ)
9 lgseisen.1 . . . . . . . . 9 (𝜑𝑃 ∈ (ℙ ∖ {2}))
109gausslemma2dlem0a 25940 . . . . . . . 8 (𝜑𝑃 ∈ ℕ)
118, 10nndivred 11679 . . . . . . 7 (𝜑 → (𝑄 / 𝑃) ∈ ℝ)
1211adantr 484 . . . . . 6 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 / 𝑃) ∈ ℝ)
13 2z 12002 . . . . . . . 8 2 ∈ ℤ
14 elfzelz 12902 . . . . . . . . 9 (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) → 𝑢 ∈ ℤ)
1514adantl 485 . . . . . . . 8 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑢 ∈ ℤ)
16 zmulcl 12019 . . . . . . . 8 ((2 ∈ ℤ ∧ 𝑢 ∈ ℤ) → (2 · 𝑢) ∈ ℤ)
1713, 15, 16sylancr 590 . . . . . . 7 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) ∈ ℤ)
1817zred 12075 . . . . . 6 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) ∈ ℝ)
1912, 18remulcld 10660 . . . . 5 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℝ)
2019flcld 13163 . . . 4 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℤ)
215, 20fsumzcl 15084 . . 3 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℤ)
222, 4, 21expclzd 13511 . 2 (𝜑 → (-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℂ)
23 fzfid 13336 . . . . . . 7 (𝜑 → (1...𝑀) ∈ Fin)
24 fzfid 13336 . . . . . . 7 (𝜑 → (1...𝑁) ∈ Fin)
25 xpfi 8773 . . . . . . 7 (((1...𝑀) ∈ Fin ∧ (1...𝑁) ∈ Fin) → ((1...𝑀) × (1...𝑁)) ∈ Fin)
2623, 24, 25syl2anc 587 . . . . . 6 (𝜑 → ((1...𝑀) × (1...𝑁)) ∈ Fin)
27 lgsquad.6 . . . . . . 7 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}
28 opabssxp 5607 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ⊆ ((1...𝑀) × (1...𝑁))
2927, 28eqsstri 3949 . . . . . 6 𝑆 ⊆ ((1...𝑀) × (1...𝑁))
30 ssfi 8722 . . . . . 6 ((((1...𝑀) × (1...𝑁)) ∈ Fin ∧ 𝑆 ⊆ ((1...𝑀) × (1...𝑁))) → 𝑆 ∈ Fin)
3126, 29, 30sylancl 589 . . . . 5 (𝜑𝑆 ∈ Fin)
32 ssrab2 4007 . . . . 5 {𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)} ⊆ 𝑆
33 ssfi 8722 . . . . 5 ((𝑆 ∈ Fin ∧ {𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)} ⊆ 𝑆) → {𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)} ∈ Fin)
3431, 32, 33sylancl 589 . . . 4 (𝜑 → {𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)} ∈ Fin)
35 hashcl 13713 . . . 4 ({𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)} ∈ Fin → (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}) ∈ ℕ0)
3634, 35syl 17 . . 3 (𝜑 → (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}) ∈ ℕ0)
37 expcl 13443 . . 3 ((-1 ∈ ℂ ∧ (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}) ∈ ℕ0) → (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) ∈ ℂ)
381, 36, 37sylancr 590 . 2 (𝜑 → (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) ∈ ℂ)
3936nn0zd 12073 . . 3 (𝜑 → (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}) ∈ ℤ)
402, 4, 39expne0d 13512 . 2 (𝜑 → (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) ≠ 0)
4138, 40recidd 11400 . . . 4 (𝜑 → ((-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) · (1 / (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})))) = 1)
42 1div1e1 11319 . . . . . . . . 9 (1 / 1) = 1
4342negeqi 10868 . . . . . . . 8 -(1 / 1) = -1
44 ax-1cn 10584 . . . . . . . . 9 1 ∈ ℂ
45 ax-1ne0 10595 . . . . . . . . 9 1 ≠ 0
46 divneg2 11353 . . . . . . . . 9 ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(1 / 1) = (1 / -1))
4744, 44, 45, 46mp3an 1458 . . . . . . . 8 -(1 / 1) = (1 / -1)
4843, 47eqtr3i 2823 . . . . . . 7 -1 = (1 / -1)
4948oveq1i 7145 . . . . . 6 (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) = ((1 / -1)↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))
502, 4, 39exprecd 13514 . . . . . 6 (𝜑 → ((1 / -1)↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) = (1 / (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))))
5149, 50syl5eq 2845 . . . . 5 (𝜑 → (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) = (1 / (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))))
5251oveq2d 7151 . . . 4 (𝜑 → ((-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) · (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))) = ((-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) · (1 / (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})))))
5331adantr 484 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑆 ∈ Fin)
54 ssrab2 4007 . . . . . . . . . . . 12 {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ⊆ 𝑆
55 ssfi 8722 . . . . . . . . . . . 12 ((𝑆 ∈ Fin ∧ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ⊆ 𝑆) → {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ∈ Fin)
5653, 54, 55sylancl 589 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ∈ Fin)
57 fveqeq2 6654 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑣 → ((1st𝑧) = (𝑃 − (2 · 𝑢)) ↔ (1st𝑣) = (𝑃 − (2 · 𝑢))))
5857elrab 3628 . . . . . . . . . . . . . . . . . . 19 (𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ↔ (𝑣𝑆 ∧ (1st𝑣) = (𝑃 − (2 · 𝑢))))
5958simprbi 500 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} → (1st𝑣) = (𝑃 − (2 · 𝑢)))
6059ad2antll 728 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → (1st𝑣) = (𝑃 − (2 · 𝑢)))
6160oveq2d 7151 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → (𝑃 − (1st𝑣)) = (𝑃 − (𝑃 − (2 · 𝑢))))
6210adantr 484 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℕ)
6362nncnd 11641 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℂ)
6463adantrr 716 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → 𝑃 ∈ ℂ)
6517zcnd 12076 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) ∈ ℂ)
6665adantrr 716 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → (2 · 𝑢) ∈ ℂ)
6764, 66nncand 10991 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → (𝑃 − (𝑃 − (2 · 𝑢))) = (2 · 𝑢))
6861, 67eqtrd 2833 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → (𝑃 − (1st𝑣)) = (2 · 𝑢))
6968oveq1d 7150 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → ((𝑃 − (1st𝑣)) / 2) = ((2 · 𝑢) / 2))
7015zcnd 12076 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑢 ∈ ℂ)
7170adantrr 716 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → 𝑢 ∈ ℂ)
72 2cnd 11703 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → 2 ∈ ℂ)
73 2ne0 11729 . . . . . . . . . . . . . . . 16 2 ≠ 0
7473a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → 2 ≠ 0)
7571, 72, 74divcan3d 11410 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → ((2 · 𝑢) / 2) = 𝑢)
7669, 75eqtrd 2833 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → ((𝑃 − (1st𝑣)) / 2) = 𝑢)
7776ralrimivva 3156 . . . . . . . . . . . 12 (𝜑 → ∀𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)∀𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ((𝑃 − (1st𝑣)) / 2) = 𝑢)
78 invdisj 5014 . . . . . . . . . . . 12 (∀𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)∀𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ((𝑃 − (1st𝑣)) / 2) = 𝑢Disj 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀){𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})
7977, 78syl 17 . . . . . . . . . . 11 (𝜑Disj 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀){𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})
805, 56, 79hashiun 15169 . . . . . . . . . 10 (𝜑 → (♯‘ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀){𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))}) = Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(♯‘{𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))}))
81 iunrab 4939 . . . . . . . . . . . 12 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀){𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} = {𝑧𝑆 ∣ ∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st𝑧) = (𝑃 − (2 · 𝑢))}
82 eldifsni 4683 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
839, 82syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑃 ≠ 2)
8483necomd 3042 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 2 ≠ 𝑃)
8584neneqd 2992 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ¬ 2 = 𝑃)
8685ad2antrr 725 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ¬ 2 = 𝑃)
87 uzid 12246 . . . . . . . . . . . . . . . . . . . . 21 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
8813, 87ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 2 ∈ (ℤ‘2)
899eldifad 3893 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑃 ∈ ℙ)
9089ad2antrr 725 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℙ)
91 dvdsprm 16037 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (2 ∥ 𝑃 ↔ 2 = 𝑃))
9288, 90, 91sylancr 590 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 ∥ 𝑃 ↔ 2 = 𝑃))
9386, 92mtbird 328 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ¬ 2 ∥ 𝑃)
9410ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℕ)
9594nncnd 11641 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℂ)
9617adantlr 714 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) ∈ ℤ)
9796zcnd 12076 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) ∈ ℂ)
9895, 97npcand 10990 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − (2 · 𝑢)) + (2 · 𝑢)) = 𝑃)
9998breq2d 5042 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 ∥ ((𝑃 − (2 · 𝑢)) + (2 · 𝑢)) ↔ 2 ∥ 𝑃))
10093, 99mtbird 328 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ¬ 2 ∥ ((𝑃 − (2 · 𝑢)) + (2 · 𝑢)))
10114adantl 485 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑢 ∈ ℤ)
102 dvdsmul1 15623 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℤ ∧ 𝑢 ∈ ℤ) → 2 ∥ (2 · 𝑢))
10313, 101, 102sylancr 590 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 2 ∥ (2 · 𝑢))
10413a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 2 ∈ ℤ)
10594nnzd 12074 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℤ)
106105, 96zsubcld 12080 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − (2 · 𝑢)) ∈ ℤ)
107 dvds2add 15635 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℤ ∧ (𝑃 − (2 · 𝑢)) ∈ ℤ ∧ (2 · 𝑢) ∈ ℤ) → ((2 ∥ (𝑃 − (2 · 𝑢)) ∧ 2 ∥ (2 · 𝑢)) → 2 ∥ ((𝑃 − (2 · 𝑢)) + (2 · 𝑢))))
108104, 106, 96, 107syl3anc 1368 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 ∥ (𝑃 − (2 · 𝑢)) ∧ 2 ∥ (2 · 𝑢)) → 2 ∥ ((𝑃 − (2 · 𝑢)) + (2 · 𝑢))))
109103, 108mpan2d 693 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 ∥ (𝑃 − (2 · 𝑢)) → 2 ∥ ((𝑃 − (2 · 𝑢)) + (2 · 𝑢))))
110100, 109mtod 201 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ¬ 2 ∥ (𝑃 − (2 · 𝑢)))
111 breq2 5034 . . . . . . . . . . . . . . . . 17 ((1st𝑧) = (𝑃 − (2 · 𝑢)) → (2 ∥ (1st𝑧) ↔ 2 ∥ (𝑃 − (2 · 𝑢))))
112111notbid 321 . . . . . . . . . . . . . . . 16 ((1st𝑧) = (𝑃 − (2 · 𝑢)) → (¬ 2 ∥ (1st𝑧) ↔ ¬ 2 ∥ (𝑃 − (2 · 𝑢))))
113110, 112syl5ibrcom 250 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((1st𝑧) = (𝑃 − (2 · 𝑢)) → ¬ 2 ∥ (1st𝑧)))
114113rexlimdva 3243 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑆) → (∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st𝑧) = (𝑃 − (2 · 𝑢)) → ¬ 2 ∥ (1st𝑧)))
115 simpr 488 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑆) → 𝑧𝑆)
11629, 115sseldi 3913 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑆) → 𝑧 ∈ ((1...𝑀) × (1...𝑁)))
117 xp1st 7703 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ((1...𝑀) × (1...𝑁)) → (1st𝑧) ∈ (1...𝑀))
118116, 117syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑆) → (1st𝑧) ∈ (1...𝑀))
119 elfzelz 12902 . . . . . . . . . . . . . . . 16 ((1st𝑧) ∈ (1...𝑀) → (1st𝑧) ∈ ℤ)
120 odd2np1 15682 . . . . . . . . . . . . . . . 16 ((1st𝑧) ∈ ℤ → (¬ 2 ∥ (1st𝑧) ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (1st𝑧)))
121118, 119, 1203syl 18 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑆) → (¬ 2 ∥ (1st𝑧) ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (1st𝑧)))
122 lgsquad.4 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑀 = ((𝑃 − 1) / 2)
1239, 122gausslemma2dlem0b 25941 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑𝑀 ∈ ℕ)
124123nnred 11640 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑀 ∈ ℝ)
125124ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑀 ∈ ℝ)
126125rehalfcld 11872 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑀 / 2) ∈ ℝ)
127 reflcl 13161 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 / 2) ∈ ℝ → (⌊‘(𝑀 / 2)) ∈ ℝ)
128126, 127syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (⌊‘(𝑀 / 2)) ∈ ℝ)
129123ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑀 ∈ ℕ)
130129nnzd 12074 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑀 ∈ ℤ)
131 simprl 770 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑛 ∈ ℤ)
132130, 131zsubcld 12080 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑀𝑛) ∈ ℤ)
133132zred 12075 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑀𝑛) ∈ ℝ)
134 flle 13164 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 / 2) ∈ ℝ → (⌊‘(𝑀 / 2)) ≤ (𝑀 / 2))
135126, 134syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (⌊‘(𝑀 / 2)) ≤ (𝑀 / 2))
136 zre 11973 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℤ → 𝑛 ∈ ℝ)
137136ad2antrl 727 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑛 ∈ ℝ)
138 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((2 · 𝑛) + 1) = (1st𝑧))
139118adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (1st𝑧) ∈ (1...𝑀))
140138, 139eqeltrd 2890 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((2 · 𝑛) + 1) ∈ (1...𝑀))
141 elfzle2 12906 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((2 · 𝑛) + 1) ∈ (1...𝑀) → ((2 · 𝑛) + 1) ≤ 𝑀)
142140, 141syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((2 · 𝑛) + 1) ≤ 𝑀)
143 zmulcl 12019 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((2 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2 · 𝑛) ∈ ℤ)
14413, 131, 143sylancr 590 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (2 · 𝑛) ∈ ℤ)
145 zltp1le 12020 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((2 · 𝑛) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((2 · 𝑛) < 𝑀 ↔ ((2 · 𝑛) + 1) ≤ 𝑀))
146144, 130, 145syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((2 · 𝑛) < 𝑀 ↔ ((2 · 𝑛) + 1) ≤ 𝑀))
147142, 146mpbird 260 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (2 · 𝑛) < 𝑀)
148 2re 11699 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℝ
149148a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 2 ∈ ℝ)
150 2pos 11728 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 < 2
151150a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 0 < 2)
152 ltmuldiv2 11503 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑛) < 𝑀𝑛 < (𝑀 / 2)))
153137, 125, 149, 151, 152syl112anc 1371 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((2 · 𝑛) < 𝑀𝑛 < (𝑀 / 2)))
154147, 153mpbid 235 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑛 < (𝑀 / 2))
155126recnd 10658 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑀 / 2) ∈ ℂ)
156123nncnd 11641 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑀 ∈ ℂ)
157156ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑀 ∈ ℂ)
1581572halvesd 11871 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((𝑀 / 2) + (𝑀 / 2)) = 𝑀)
159155, 155, 158mvlraddd 11039 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑀 / 2) = (𝑀 − (𝑀 / 2)))
160154, 159breqtrd 5056 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑛 < (𝑀 − (𝑀 / 2)))
161137, 125, 126, 160ltsub13d 11235 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑀 / 2) < (𝑀𝑛))
162128, 126, 133, 135, 161lelttrd 10787 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (⌊‘(𝑀 / 2)) < (𝑀𝑛))
163126flcld 13163 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (⌊‘(𝑀 / 2)) ∈ ℤ)
164 zltp1le 12020 . . . . . . . . . . . . . . . . . . . 20 (((⌊‘(𝑀 / 2)) ∈ ℤ ∧ (𝑀𝑛) ∈ ℤ) → ((⌊‘(𝑀 / 2)) < (𝑀𝑛) ↔ ((⌊‘(𝑀 / 2)) + 1) ≤ (𝑀𝑛)))
165163, 132, 164syl2anc 587 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((⌊‘(𝑀 / 2)) < (𝑀𝑛) ↔ ((⌊‘(𝑀 / 2)) + 1) ≤ (𝑀𝑛)))
166162, 165mpbid 235 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((⌊‘(𝑀 / 2)) + 1) ≤ (𝑀𝑛))
167 2t0e0 11794 . . . . . . . . . . . . . . . . . . . . 21 (2 · 0) = 0
168 2cn 11700 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℂ
169 zcn 11974 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
170169ad2antrl 727 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑛 ∈ ℂ)
171 mulcl 10610 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((2 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (2 · 𝑛) ∈ ℂ)
172168, 170, 171sylancr 590 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (2 · 𝑛) ∈ ℂ)
173 pncan 10881 . . . . . . . . . . . . . . . . . . . . . . . 24 (((2 · 𝑛) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
174172, 44, 173sylancl 589 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
175 elfznn 12931 . . . . . . . . . . . . . . . . . . . . . . . 24 (((2 · 𝑛) + 1) ∈ (1...𝑀) → ((2 · 𝑛) + 1) ∈ ℕ)
176 nnm1nn0 11926 . . . . . . . . . . . . . . . . . . . . . . . 24 (((2 · 𝑛) + 1) ∈ ℕ → (((2 · 𝑛) + 1) − 1) ∈ ℕ0)
177140, 175, 1763syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (((2 · 𝑛) + 1) − 1) ∈ ℕ0)
178174, 177eqeltrrd 2891 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (2 · 𝑛) ∈ ℕ0)
179178nn0ge0d 11946 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 0 ≤ (2 · 𝑛))
180167, 179eqbrtrid 5065 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (2 · 0) ≤ (2 · 𝑛))
181 0red 10633 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 0 ∈ ℝ)
182 lemul2 11482 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (0 ≤ 𝑛 ↔ (2 · 0) ≤ (2 · 𝑛)))
183181, 137, 149, 151, 182syl112anc 1371 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (0 ≤ 𝑛 ↔ (2 · 0) ≤ (2 · 𝑛)))
184180, 183mpbird 260 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 0 ≤ 𝑛)
185125, 137subge02d 11221 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (0 ≤ 𝑛 ↔ (𝑀𝑛) ≤ 𝑀))
186184, 185mpbid 235 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑀𝑛) ≤ 𝑀)
187163peano2zd 12078 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((⌊‘(𝑀 / 2)) + 1) ∈ ℤ)
188 elfz 12891 . . . . . . . . . . . . . . . . . . 19 (((𝑀𝑛) ∈ ℤ ∧ ((⌊‘(𝑀 / 2)) + 1) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑀𝑛) ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ↔ (((⌊‘(𝑀 / 2)) + 1) ≤ (𝑀𝑛) ∧ (𝑀𝑛) ≤ 𝑀)))
189132, 187, 130, 188syl3anc 1368 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((𝑀𝑛) ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ↔ (((⌊‘(𝑀 / 2)) + 1) ≤ (𝑀𝑛) ∧ (𝑀𝑛) ≤ 𝑀)))
190166, 186, 189mpbir2and 712 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑀𝑛) ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀))
19189ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑃 ∈ ℙ)
192 prmnn 16008 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
193191, 192syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑃 ∈ ℕ)
194193nncnd 11641 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑃 ∈ ℂ)
195 peano2cn 10801 . . . . . . . . . . . . . . . . . . . 20 ((2 · 𝑛) ∈ ℂ → ((2 · 𝑛) + 1) ∈ ℂ)
196172, 195syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((2 · 𝑛) + 1) ∈ ℂ)
197194, 196nncand 10991 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑃 − (𝑃 − ((2 · 𝑛) + 1))) = ((2 · 𝑛) + 1))
198 1cnd 10625 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 1 ∈ ℂ)
199194, 172, 198sub32d 11018 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((𝑃 − (2 · 𝑛)) − 1) = ((𝑃 − 1) − (2 · 𝑛)))
200194, 172, 198subsub4d 11017 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((𝑃 − (2 · 𝑛)) − 1) = (𝑃 − ((2 · 𝑛) + 1)))
201 2cnd 11703 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 2 ∈ ℂ)
202201, 157, 170subdid 11085 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (2 · (𝑀𝑛)) = ((2 · 𝑀) − (2 · 𝑛)))
203122oveq2i 7146 . . . . . . . . . . . . . . . . . . . . . . 23 (2 · 𝑀) = (2 · ((𝑃 − 1) / 2))
20410nnzd 12074 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑃 ∈ ℤ)
205204ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑃 ∈ ℤ)
206 peano2zm 12013 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℤ → (𝑃 − 1) ∈ ℤ)
207205, 206syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑃 − 1) ∈ ℤ)
208207zcnd 12076 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑃 − 1) ∈ ℂ)
20973a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 2 ≠ 0)
210208, 201, 209divcan2d 11407 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (2 · ((𝑃 − 1) / 2)) = (𝑃 − 1))
211203, 210syl5eq 2845 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (2 · 𝑀) = (𝑃 − 1))
212211oveq1d 7150 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((2 · 𝑀) − (2 · 𝑛)) = ((𝑃 − 1) − (2 · 𝑛)))
213202, 212eqtr2d 2834 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((𝑃 − 1) − (2 · 𝑛)) = (2 · (𝑀𝑛)))
214199, 200, 2133eqtr3d 2841 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑃 − ((2 · 𝑛) + 1)) = (2 · (𝑀𝑛)))
215214oveq2d 7151 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑃 − (𝑃 − ((2 · 𝑛) + 1))) = (𝑃 − (2 · (𝑀𝑛))))
216197, 215, 1383eqtr3rd 2842 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (1st𝑧) = (𝑃 − (2 · (𝑀𝑛))))
217 oveq2 7143 . . . . . . . . . . . . . . . . . . 19 (𝑢 = (𝑀𝑛) → (2 · 𝑢) = (2 · (𝑀𝑛)))
218217oveq2d 7151 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝑀𝑛) → (𝑃 − (2 · 𝑢)) = (𝑃 − (2 · (𝑀𝑛))))
219218rspceeqv 3586 . . . . . . . . . . . . . . . . 17 (((𝑀𝑛) ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ (1st𝑧) = (𝑃 − (2 · (𝑀𝑛)))) → ∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st𝑧) = (𝑃 − (2 · 𝑢)))
220190, 216, 219syl2anc 587 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st𝑧) = (𝑃 − (2 · 𝑢)))
221220rexlimdvaa 3244 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑆) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (1st𝑧) → ∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st𝑧) = (𝑃 − (2 · 𝑢))))
222121, 221sylbid 243 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑆) → (¬ 2 ∥ (1st𝑧) → ∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st𝑧) = (𝑃 − (2 · 𝑢))))
223114, 222impbid 215 . . . . . . . . . . . . 13 ((𝜑𝑧𝑆) → (∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st𝑧) = (𝑃 − (2 · 𝑢)) ↔ ¬ 2 ∥ (1st𝑧)))
224223rabbidva 3425 . . . . . . . . . . . 12 (𝜑 → {𝑧𝑆 ∣ ∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st𝑧) = (𝑃 − (2 · 𝑢))} = {𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})
22581, 224syl5eq 2845 . . . . . . . . . . 11 (𝜑 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀){𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} = {𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})
226225fveq2d 6649 . . . . . . . . . 10 (𝜑 → (♯‘ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀){𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))}) = (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))
22727relopabi 5658 . . . . . . . . . . . . . . 15 Rel 𝑆
228 relss 5620 . . . . . . . . . . . . . . 15 ({𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ⊆ 𝑆 → (Rel 𝑆 → Rel {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))}))
22954, 227, 228mp2 9 . . . . . . . . . . . . . 14 Rel {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))}
230 relxp 5537 . . . . . . . . . . . . . 14 Rel ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
23127eleq2i 2881 . . . . . . . . . . . . . . . . . 18 (⟨𝑥, 𝑦⟩ ∈ 𝑆 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))})
232 opabidw 5377 . . . . . . . . . . . . . . . . . 18 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ↔ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))
233231, 232bitri 278 . . . . . . . . . . . . . . . . 17 (⟨𝑥, 𝑦⟩ ∈ 𝑆 ↔ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))
234 anass 472 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℕ ∧ 𝑦𝑁) ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄)) ↔ (𝑦 ∈ ℕ ∧ (𝑦𝑁 ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄))))
23520peano2zd 12078 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ∈ ℤ)
236235zred 12075 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ∈ ℝ)
237236adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ∈ ℝ)
2388ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → 𝑄 ∈ ℝ)
239 nnre 11632 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
240239adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℝ)
241 lesub 11108 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ∈ ℝ ∧ 𝑄 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ≤ (𝑄𝑦) ↔ 𝑦 ≤ (𝑄 − ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1))))
242237, 238, 240, 241syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ≤ (𝑄𝑦) ↔ 𝑦 ≤ (𝑄 − ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1))))
2438adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑄 ∈ ℝ)
244243recnd 10658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑄 ∈ ℂ)
24563, 244mulcomd 10651 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 · 𝑄) = (𝑄 · 𝑃))
24665, 244mulcomd 10651 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑢) · 𝑄) = (𝑄 · (2 · 𝑢)))
24762nnne0d 11675 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ≠ 0)
248244, 63, 247divcan1d 11406 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 / 𝑃) · 𝑃) = 𝑄)
249248oveq1d 7150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (((𝑄 / 𝑃) · 𝑃) · (2 · 𝑢)) = (𝑄 · (2 · 𝑢)))
25012recnd 10658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 / 𝑃) ∈ ℂ)
251250, 63, 65mul32d 10839 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (((𝑄 / 𝑃) · 𝑃) · (2 · 𝑢)) = (((𝑄 / 𝑃) · (2 · 𝑢)) · 𝑃))
252246, 249, 2513eqtr2d 2839 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑢) · 𝑄) = (((𝑄 / 𝑃) · (2 · 𝑢)) · 𝑃))
253245, 252oveq12d 7153 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 · 𝑄) − ((2 · 𝑢) · 𝑄)) = ((𝑄 · 𝑃) − (((𝑄 / 𝑃) · (2 · 𝑢)) · 𝑃)))
25463, 65, 244subdird 11086 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − (2 · 𝑢)) · 𝑄) = ((𝑃 · 𝑄) − ((2 · 𝑢) · 𝑄)))
25519recnd 10658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℂ)
256244, 255, 63subdird 11086 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) · 𝑃) = ((𝑄 · 𝑃) − (((𝑄 / 𝑃) · (2 · 𝑢)) · 𝑃)))
257253, 254, 2563eqtr4d 2843 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − (2 · 𝑢)) · 𝑄) = ((𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) · 𝑃))
258257adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑃 − (2 · 𝑢)) · 𝑄) = ((𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) · 𝑃))
259258breq2d 5042 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄) ↔ (𝑦 · 𝑃) < ((𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) · 𝑃)))
26019adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℝ)
261238, 260resubcld 11057 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℝ)
26262adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈ ℕ)
263262nnred 11640 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈ ℝ)
264262nngt0d 11674 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → 0 < 𝑃)
265 ltmul1 11479 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ ℝ ∧ (𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (𝑦 < (𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) ↔ (𝑦 · 𝑃) < ((𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) · 𝑃)))
266240, 261, 263, 264, 265syl112anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (𝑦 < (𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) ↔ (𝑦 · 𝑃) < ((𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) · 𝑃)))
267 ltsub13 11110 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ ℝ ∧ 𝑄 ∈ ℝ ∧ ((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℝ) → (𝑦 < (𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) ↔ ((𝑄 / 𝑃) · (2 · 𝑢)) < (𝑄𝑦)))
268240, 238, 260, 267syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (𝑦 < (𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) ↔ ((𝑄 / 𝑃) · (2 · 𝑢)) < (𝑄𝑦)))
269259, 266, 2683bitr2d 310 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄) ↔ ((𝑄 / 𝑃) · (2 · 𝑢)) < (𝑄𝑦)))
2707adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑄 ∈ ℕ)
271270nnzd 12074 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑄 ∈ ℤ)
272 nnz 11992 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
273 zsubcl 12012 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑄 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑄𝑦) ∈ ℤ)
274271, 272, 273syl2an 598 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (𝑄𝑦) ∈ ℤ)
275 fllt 13171 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℝ ∧ (𝑄𝑦) ∈ ℤ) → (((𝑄 / 𝑃) · (2 · 𝑢)) < (𝑄𝑦) ↔ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < (𝑄𝑦)))
276260, 274, 275syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (((𝑄 / 𝑃) · (2 · 𝑢)) < (𝑄𝑦) ↔ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < (𝑄𝑦)))
27720adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℤ)
278 zltp1le 12020 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℤ ∧ (𝑄𝑦) ∈ ℤ) → ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < (𝑄𝑦) ↔ ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ≤ (𝑄𝑦)))
279277, 274, 278syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < (𝑄𝑦) ↔ ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ≤ (𝑄𝑦)))
280269, 276, 2793bitrd 308 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄) ↔ ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ≤ (𝑄𝑦)))
281 lgsquad.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝑁 = ((𝑄 − 1) / 2)
282281oveq2i 7146 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (2 · 𝑁) = (2 · ((𝑄 − 1) / 2))
283 peano2rem 10942 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑄 ∈ ℝ → (𝑄 − 1) ∈ ℝ)
284243, 283syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 − 1) ∈ ℝ)
285284recnd 10658 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 − 1) ∈ ℂ)
286 2cnd 11703 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 2 ∈ ℂ)
28773a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 2 ≠ 0)
288285, 286, 287divcan2d 11407 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · ((𝑄 − 1) / 2)) = (𝑄 − 1))
289282, 288syl5eq 2845 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑁) = (𝑄 − 1))
290289oveq1d 7150 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = ((𝑄 − 1) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
291 1cnd 10625 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 1 ∈ ℂ)
29220zcnd 12076 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℂ)
293244, 291, 292sub32d 11018 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 − 1) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = ((𝑄 − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) − 1))
294244, 292, 291subsub4d 11017 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) − 1) = (𝑄 − ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1)))
295290, 293, 2943eqtrd 2837 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (𝑄 − ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1)))
296295adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (𝑄 − ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1)))
297296breq2d 5042 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ↔ 𝑦 ≤ (𝑄 − ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1))))
298242, 280, 2973bitr4d 314 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄) ↔ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
299298anbi2d 631 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑦𝑁 ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄)) ↔ (𝑦𝑁𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
300 2nn 11698 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 ∈ ℕ
3016, 281gausslemma2dlem0b 25941 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑁 ∈ ℕ)
302 nnmulcl 11649 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
303300, 301, 302sylancr 590 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (2 · 𝑁) ∈ ℕ)
304303adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑁) ∈ ℕ)
305304nnred 11640 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑁) ∈ ℝ)
306301adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 ∈ ℕ)
307306nnred 11640 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 ∈ ℝ)
30820zred 12075 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℝ)
309301nncnd 11641 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑁 ∈ ℂ)
310309adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 ∈ ℂ)
3113102timesd 11868 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑁) = (𝑁 + 𝑁))
312310, 310, 311mvrladdd 11042 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑁) − 𝑁) = 𝑁)
313243rehalfcld 11872 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 / 2) ∈ ℝ)
314243ltm1d 11561 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 − 1) < 𝑄)
315148a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 2 ∈ ℝ)
316150a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 0 < 2)
317 ltdiv1 11493 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑄 − 1) ∈ ℝ ∧ 𝑄 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑄 − 1) < 𝑄 ↔ ((𝑄 − 1) / 2) < (𝑄 / 2)))
318284, 243, 315, 316, 317syl112anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 − 1) < 𝑄 ↔ ((𝑄 − 1) / 2) < (𝑄 / 2)))
319314, 318mpbid 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 − 1) / 2) < (𝑄 / 2))
320281, 319eqbrtrid 5065 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 < (𝑄 / 2))
321307, 313, 320ltled 10777 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 ≤ (𝑄 / 2))
322244, 286, 63, 287div32d 11428 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 / 2) · 𝑃) = (𝑄 · (𝑃 / 2)))
323124adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑀 ∈ ℝ)
324323rehalfcld 11872 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑀 / 2) ∈ ℝ)
325 peano2re 10802 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((⌊‘(𝑀 / 2)) ∈ ℝ → ((⌊‘(𝑀 / 2)) + 1) ∈ ℝ)
326324, 127, 3253syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((⌊‘(𝑀 / 2)) + 1) ∈ ℝ)
32715zred 12075 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑢 ∈ ℝ)
328 flltp1 13165 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑀 / 2) ∈ ℝ → (𝑀 / 2) < ((⌊‘(𝑀 / 2)) + 1))
329324, 328syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑀 / 2) < ((⌊‘(𝑀 / 2)) + 1))
330 elfzle1 12905 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) → ((⌊‘(𝑀 / 2)) + 1) ≤ 𝑢)
331330adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((⌊‘(𝑀 / 2)) + 1) ≤ 𝑢)
332324, 326, 327, 329, 331ltletrd 10789 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑀 / 2) < 𝑢)
333 ltdivmul 11504 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑀 ∈ ℝ ∧ 𝑢 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑀 / 2) < 𝑢𝑀 < (2 · 𝑢)))
334323, 327, 315, 316, 333syl112anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑀 / 2) < 𝑢𝑀 < (2 · 𝑢)))
335332, 334mpbid 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑀 < (2 · 𝑢))
336122, 335eqbrtrrid 5066 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − 1) / 2) < (2 · 𝑢))
33762nnred 11640 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℝ)
338 peano2rem 10942 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ)
339337, 338syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − 1) ∈ ℝ)
340 ltdivmul 11504 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑃 − 1) ∈ ℝ ∧ (2 · 𝑢) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝑃 − 1) / 2) < (2 · 𝑢) ↔ (𝑃 − 1) < (2 · (2 · 𝑢))))
341339, 18, 315, 316, 340syl112anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (((𝑃 − 1) / 2) < (2 · 𝑢) ↔ (𝑃 − 1) < (2 · (2 · 𝑢))))
342336, 341mpbid 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − 1) < (2 · (2 · 𝑢)))
343204adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℤ)
344 zmulcl 12019 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((2 ∈ ℤ ∧ (2 · 𝑢) ∈ ℤ) → (2 · (2 · 𝑢)) ∈ ℤ)
34513, 17, 344sylancr 590 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · (2 · 𝑢)) ∈ ℤ)
346 zlem1lt 12022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑃 ∈ ℤ ∧ (2 · (2 · 𝑢)) ∈ ℤ) → (𝑃 ≤ (2 · (2 · 𝑢)) ↔ (𝑃 − 1) < (2 · (2 · 𝑢))))
347343, 345, 346syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 ≤ (2 · (2 · 𝑢)) ↔ (𝑃 − 1) < (2 · (2 · 𝑢))))
348342, 347mpbird 260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ≤ (2 · (2 · 𝑢)))
349 ledivmul 11505 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑃 ∈ ℝ ∧ (2 · 𝑢) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑃 / 2) ≤ (2 · 𝑢) ↔ 𝑃 ≤ (2 · (2 · 𝑢))))
350337, 18, 315, 316, 349syl112anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 / 2) ≤ (2 · 𝑢) ↔ 𝑃 ≤ (2 · (2 · 𝑢))))
351348, 350mpbird 260 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 / 2) ≤ (2 · 𝑢))
352337rehalfcld 11872 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 / 2) ∈ ℝ)
353270nngt0d 11674 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 0 < 𝑄)
354 lemul2 11482 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑃 / 2) ∈ ℝ ∧ (2 · 𝑢) ∈ ℝ ∧ (𝑄 ∈ ℝ ∧ 0 < 𝑄)) → ((𝑃 / 2) ≤ (2 · 𝑢) ↔ (𝑄 · (𝑃 / 2)) ≤ (𝑄 · (2 · 𝑢))))
355352, 18, 243, 353, 354syl112anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 / 2) ≤ (2 · 𝑢) ↔ (𝑄 · (𝑃 / 2)) ≤ (𝑄 · (2 · 𝑢))))
356351, 355mpbid 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 · (𝑃 / 2)) ≤ (𝑄 · (2 · 𝑢)))
357322, 356eqbrtrd 5052 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 / 2) · 𝑃) ≤ (𝑄 · (2 · 𝑢)))
358243, 18remulcld 10660 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 · (2 · 𝑢)) ∈ ℝ)
35962nngt0d 11674 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 0 < 𝑃)
360 lemuldiv 11509 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑄 / 2) ∈ ℝ ∧ (𝑄 · (2 · 𝑢)) ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (((𝑄 / 2) · 𝑃) ≤ (𝑄 · (2 · 𝑢)) ↔ (𝑄 / 2) ≤ ((𝑄 · (2 · 𝑢)) / 𝑃)))
361313, 358, 337, 359, 360syl112anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (((𝑄 / 2) · 𝑃) ≤ (𝑄 · (2 · 𝑢)) ↔ (𝑄 / 2) ≤ ((𝑄 · (2 · 𝑢)) / 𝑃)))
362357, 361mpbid 235 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 / 2) ≤ ((𝑄 · (2 · 𝑢)) / 𝑃))
363244, 65, 63, 247div23d 11442 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 · (2 · 𝑢)) / 𝑃) = ((𝑄 / 𝑃) · (2 · 𝑢)))
364362, 363breqtrd 5056 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 / 2) ≤ ((𝑄 / 𝑃) · (2 · 𝑢)))
365307, 313, 19, 321, 364letrd 10786 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 ≤ ((𝑄 / 𝑃) · (2 · 𝑢)))
366301nnzd 12074 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝑁 ∈ ℤ)
367366adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 ∈ ℤ)
368 flge 13170 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℝ ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ ((𝑄 / 𝑃) · (2 · 𝑢)) ↔ 𝑁 ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
36919, 367, 368syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑁 ≤ ((𝑄 / 𝑃) · (2 · 𝑢)) ↔ 𝑁 ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
370365, 369mpbid 235 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))
371312, 370eqbrtrd 5052 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑁) − 𝑁) ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))
372305, 307, 308, 371subled 11232 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ≤ 𝑁)
373372adantr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ≤ 𝑁)
374304nnzd 12074 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑁) ∈ ℤ)
375374, 20zsubcld 12080 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℤ)
376375adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℤ)
377376zred 12075 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℝ)
378301ad2antrr 725 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → 𝑁 ∈ ℕ)
379378nnred 11640 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → 𝑁 ∈ ℝ)
380 letr 10723 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ ℝ ∧ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∧ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ≤ 𝑁) → 𝑦𝑁))
381240, 377, 379, 380syl3anc 1368 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∧ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ≤ 𝑁) → 𝑦𝑁))
382373, 381mpan2d 693 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) → 𝑦𝑁))
383382pm4.71rd 566 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ↔ (𝑦𝑁𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
384299, 383bitr4d 285 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑦𝑁 ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄)) ↔ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
385384pm5.32da 582 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑦 ∈ ℕ ∧ (𝑦𝑁 ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄))) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
386385adantr 484 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → ((𝑦 ∈ ℕ ∧ (𝑦𝑁 ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄))) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
387234, 386syl5bb 286 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (((𝑦 ∈ ℕ ∧ 𝑦𝑁) ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄)) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
388 simpr 488 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → 𝑥 = (𝑃 − (2 · 𝑢)))
389343, 17zsubcld 12080 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − (2 · 𝑢)) ∈ ℤ)
390 elfzle2 12906 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) → 𝑢𝑀)
391390adantl 485 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑢𝑀)
392391, 122breqtrdi 5071 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑢 ≤ ((𝑃 − 1) / 2))
393 lemuldiv2 11510 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑢 ∈ ℝ ∧ (𝑃 − 1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑢) ≤ (𝑃 − 1) ↔ 𝑢 ≤ ((𝑃 − 1) / 2)))
394327, 339, 315, 316, 393syl112anc 1371 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑢) ≤ (𝑃 − 1) ↔ 𝑢 ≤ ((𝑃 − 1) / 2)))
395392, 394mpbird 260 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) ≤ (𝑃 − 1))
396337ltm1d 11561 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − 1) < 𝑃)
39718, 339, 337, 395, 396lelttrd 10787 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) < 𝑃)
39818, 337posdifd 11216 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑢) < 𝑃 ↔ 0 < (𝑃 − (2 · 𝑢))))
399397, 398mpbid 235 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 0 < (𝑃 − (2 · 𝑢)))
400 elnnz 11979 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃 − (2 · 𝑢)) ∈ ℕ ↔ ((𝑃 − (2 · 𝑢)) ∈ ℤ ∧ 0 < (𝑃 − (2 · 𝑢))))
401389, 399, 400sylanbrc 586 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − (2 · 𝑢)) ∈ ℕ)
40263, 65, 291sub32d 11018 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − (2 · 𝑢)) − 1) = ((𝑃 − 1) − (2 · 𝑢)))
403122, 122oveq12i 7147 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑀 + 𝑀) = (((𝑃 − 1) / 2) + ((𝑃 − 1) / 2))
40462nnzd 12074 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℤ)
405404, 206syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − 1) ∈ ℤ)
406405zcnd 12076 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − 1) ∈ ℂ)
4074062halvesd 11871 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (((𝑃 − 1) / 2) + ((𝑃 − 1) / 2)) = (𝑃 − 1))
408403, 407syl5eq 2845 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑀 + 𝑀) = (𝑃 − 1))
409408oveq1d 7150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑀 + 𝑀) − 𝑀) = ((𝑃 − 1) − 𝑀))
410156adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑀 ∈ ℂ)
411410, 410pncan2d 10988 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑀 + 𝑀) − 𝑀) = 𝑀)
412409, 411eqtr3d 2835 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − 1) − 𝑀) = 𝑀)
413412, 335eqbrtrd 5052 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − 1) − 𝑀) < (2 · 𝑢))
414339, 323, 18, 413ltsub23d 11234 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − 1) − (2 · 𝑢)) < 𝑀)
415402, 414eqbrtrd 5052 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − (2 · 𝑢)) − 1) < 𝑀)
416123adantr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑀 ∈ ℕ)
417416nnzd 12074 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑀 ∈ ℤ)
418 zlem1lt 12022 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃 − (2 · 𝑢)) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑃 − (2 · 𝑢)) ≤ 𝑀 ↔ ((𝑃 − (2 · 𝑢)) − 1) < 𝑀))
419389, 417, 418syl2anc 587 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − (2 · 𝑢)) ≤ 𝑀 ↔ ((𝑃 − (2 · 𝑢)) − 1) < 𝑀))
420415, 419mpbird 260 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − (2 · 𝑢)) ≤ 𝑀)
421 fznn 12970 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀 ∈ ℤ → ((𝑃 − (2 · 𝑢)) ∈ (1...𝑀) ↔ ((𝑃 − (2 · 𝑢)) ∈ ℕ ∧ (𝑃 − (2 · 𝑢)) ≤ 𝑀)))
422417, 421syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − (2 · 𝑢)) ∈ (1...𝑀) ↔ ((𝑃 − (2 · 𝑢)) ∈ ℕ ∧ (𝑃 − (2 · 𝑢)) ≤ 𝑀)))
423401, 420, 422mpbir2and 712 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − (2 · 𝑢)) ∈ (1...𝑀))
424423adantr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (𝑃 − (2 · 𝑢)) ∈ (1...𝑀))
425388, 424eqeltrd 2890 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → 𝑥 ∈ (1...𝑀))
426425biantrurd 536 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (𝑦 ∈ (1...𝑁) ↔ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))))
427366ad2antrr 725 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → 𝑁 ∈ ℤ)
428 fznn 12970 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → (𝑦 ∈ (1...𝑁) ↔ (𝑦 ∈ ℕ ∧ 𝑦𝑁)))
429427, 428syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (𝑦 ∈ (1...𝑁) ↔ (𝑦 ∈ ℕ ∧ 𝑦𝑁)))
430426, 429bitr3d 284 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ↔ (𝑦 ∈ ℕ ∧ 𝑦𝑁)))
431388oveq1d 7150 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (𝑥 · 𝑄) = ((𝑃 − (2 · 𝑢)) · 𝑄))
432431breq2d 5042 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → ((𝑦 · 𝑃) < (𝑥 · 𝑄) ↔ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄)))
433430, 432anbi12d 633 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)) ↔ ((𝑦 ∈ ℕ ∧ 𝑦𝑁) ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄))))
434375adantr 484 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℤ)
435 fznn 12970 . . . . . . . . . . . . . . . . . . 19 (((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℤ → (𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
436434, 435syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
437387, 433, 4363bitr4d 314 . . . . . . . . . . . . . . . . 17 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)) ↔ 𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
438233, 437syl5bb 286 . . . . . . . . . . . . . . . 16 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (⟨𝑥, 𝑦⟩ ∈ 𝑆𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
439438pm5.32da 582 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑥 = (𝑃 − (2 · 𝑢)) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑆) ↔ (𝑥 = (𝑃 − (2 · 𝑢)) ∧ 𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))))
440 vex 3444 . . . . . . . . . . . . . . . . . . 19 𝑥 ∈ V
441 vex 3444 . . . . . . . . . . . . . . . . . . 19 𝑦 ∈ V
442440, 441op1std 7681 . . . . . . . . . . . . . . . . . 18 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
443442eqeq1d 2800 . . . . . . . . . . . . . . . . 17 (𝑧 = ⟨𝑥, 𝑦⟩ → ((1st𝑧) = (𝑃 − (2 · 𝑢)) ↔ 𝑥 = (𝑃 − (2 · 𝑢))))
444443elrab 3628 . . . . . . . . . . . . . . . 16 (⟨𝑥, 𝑦⟩ ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑆𝑥 = (𝑃 − (2 · 𝑢))))
445444biancomi 466 . . . . . . . . . . . . . . 15 (⟨𝑥, 𝑦⟩ ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ↔ (𝑥 = (𝑃 − (2 · 𝑢)) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑆))
446 opelxp 5555 . . . . . . . . . . . . . . . 16 (⟨𝑥, 𝑦⟩ ∈ ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ↔ (𝑥 ∈ {(𝑃 − (2 · 𝑢))} ∧ 𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
447 velsn 4541 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ {(𝑃 − (2 · 𝑢))} ↔ 𝑥 = (𝑃 − (2 · 𝑢)))
448447anbi1i 626 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ {(𝑃 − (2 · 𝑢))} ∧ 𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ↔ (𝑥 = (𝑃 − (2 · 𝑢)) ∧ 𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
449446, 448bitri 278 . . . . . . . . . . . . . . 15 (⟨𝑥, 𝑦⟩ ∈ ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ↔ (𝑥 = (𝑃 − (2 · 𝑢)) ∧ 𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
450439, 445, 4493bitr4g 317 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⟨𝑥, 𝑦⟩ ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ↔ ⟨𝑥, 𝑦⟩ ∈ ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))))
451229, 230, 450eqrelrdv 5629 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} = ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
452451fveq2d 6649 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (♯‘{𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))}) = (♯‘({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))))
453 fzfid 13336 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ∈ Fin)
454 xpsnen2g 8593 . . . . . . . . . . . . . 14 (((𝑃 − (2 · 𝑢)) ∈ ℤ ∧ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ∈ Fin) → ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ≈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
455389, 453, 454syl2anc 587 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ≈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
456 hasheni 13704 . . . . . . . . . . . . 13 (({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ≈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) → (♯‘({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))) = (♯‘(1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
457455, 456syl 17 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (♯‘({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))) = (♯‘(1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
458 ltmul2 11480 . . . . . . . . . . . . . . . . . . . . 21 (((2 · 𝑢) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (𝑄 ∈ ℝ ∧ 0 < 𝑄)) → ((2 · 𝑢) < 𝑃 ↔ (𝑄 · (2 · 𝑢)) < (𝑄 · 𝑃)))
45918, 337, 243, 353, 458syl112anc 1371 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑢) < 𝑃 ↔ (𝑄 · (2 · 𝑢)) < (𝑄 · 𝑃)))
460397, 459mpbid 235 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 · (2 · 𝑢)) < (𝑄 · 𝑃))
461 ltdivmul2 11506 . . . . . . . . . . . . . . . . . . . 20 (((𝑄 · (2 · 𝑢)) ∈ ℝ ∧ 𝑄 ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (((𝑄 · (2 · 𝑢)) / 𝑃) < 𝑄 ↔ (𝑄 · (2 · 𝑢)) < (𝑄 · 𝑃)))
462358, 243, 337, 359, 461syl112anc 1371 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (((𝑄 · (2 · 𝑢)) / 𝑃) < 𝑄 ↔ (𝑄 · (2 · 𝑢)) < (𝑄 · 𝑃)))
463460, 462mpbird 260 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 · (2 · 𝑢)) / 𝑃) < 𝑄)
464363, 463eqbrtrrd 5054 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 / 𝑃) · (2 · 𝑢)) < 𝑄)
465 fllt 13171 . . . . . . . . . . . . . . . . . 18 ((((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℝ ∧ 𝑄 ∈ ℤ) → (((𝑄 / 𝑃) · (2 · 𝑢)) < 𝑄 ↔ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < 𝑄))
46619, 271, 465syl2anc 587 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (((𝑄 / 𝑃) · (2 · 𝑢)) < 𝑄 ↔ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < 𝑄))
467464, 466mpbid 235 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < 𝑄)
468 zltlem1 12023 . . . . . . . . . . . . . . . . 17 (((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℤ ∧ 𝑄 ∈ ℤ) → ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < 𝑄 ↔ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ≤ (𝑄 − 1)))
46920, 271, 468syl2anc 587 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < 𝑄 ↔ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ≤ (𝑄 − 1)))
470467, 469mpbid 235 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ≤ (𝑄 − 1))
471470, 289breqtrrd 5058 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ≤ (2 · 𝑁))
472 eluz2 12237 . . . . . . . . . . . . . 14 ((2 · 𝑁) ∈ (ℤ‘(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ↔ ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℤ ∧ (2 · 𝑁) ∈ ℤ ∧ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ≤ (2 · 𝑁)))
47320, 374, 471, 472syl3anbrc 1340 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑁) ∈ (ℤ‘(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
474 uznn0sub 12265 . . . . . . . . . . . . 13 ((2 · 𝑁) ∈ (ℤ‘(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℕ0)
475 hashfz1 13702 . . . . . . . . . . . . 13 (((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℕ0 → (♯‘(1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) = ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
476473, 474, 4753syl 18 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (♯‘(1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) = ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
477452, 457, 4763eqtrd 2837 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (♯‘{𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))}) = ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
478477sumeq2dv 15052 . . . . . . . . . 10 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(♯‘{𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))}) = Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
47980, 226, 4783eqtr3rd 2842 . . . . . . . . 9 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))
480303nncnd 11641 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) ∈ ℂ)
481480adantr 484 . . . . . . . . . 10 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑁) ∈ ℂ)
4825, 481, 292fsumsub 15135 . . . . . . . . 9 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) − Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
483479, 482eqtr3d 2835 . . . . . . . 8 (𝜑 → (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}) = (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) − Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
484483oveq2d 7151 . . . . . . 7 (𝜑 → (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) = (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) − Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
48521zcnd 12076 . . . . . . . 8 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℂ)
4865, 374fsumzcl 15084 . . . . . . . . 9 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) ∈ ℤ)
487486zcnd 12076 . . . . . . . 8 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) ∈ ℂ)
488485, 487pncan3d 10989 . . . . . . 7 (𝜑 → (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) − Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) = Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁))
489 fsumconst 15137 . . . . . . . . 9 (((((⌊‘(𝑀 / 2)) + 1)...𝑀) ∈ Fin ∧ (2 · 𝑁) ∈ ℂ) → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) = ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · (2 · 𝑁)))
4905, 480, 489syl2anc 587 . . . . . . . 8 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) = ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · (2 · 𝑁)))
491 hashcl 13713 . . . . . . . . . . 11 ((((⌊‘(𝑀 / 2)) + 1)...𝑀) ∈ Fin → (♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∈ ℕ0)
4925, 491syl 17 . . . . . . . . . 10 (𝜑 → (♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∈ ℕ0)
493492nn0cnd 11945 . . . . . . . . 9 (𝜑 → (♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∈ ℂ)
494 2cnd 11703 . . . . . . . . 9 (𝜑 → 2 ∈ ℂ)
495493, 494, 309mul12d 10838 . . . . . . . 8 (𝜑 → ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · (2 · 𝑁)) = (2 · ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)))
496490, 495eqtrd 2833 . . . . . . 7 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) = (2 · ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)))
497484, 488, 4963eqtrd 2837 . . . . . 6 (𝜑 → (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) = (2 · ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)))
498497oveq2d 7151 . . . . 5 (𝜑 → (-1↑(Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))) = (-1↑(2 · ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁))))
49913a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℤ)
500492nn0zd 12073 . . . . . . 7 (𝜑 → (♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∈ ℤ)
501500, 366zmulcld 12081 . . . . . 6 (𝜑 → ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁) ∈ ℤ)
502 expmulz 13471 . . . . . 6 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (2 ∈ ℤ ∧ ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁) ∈ ℤ)) → (-1↑(2 · ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁))) = ((-1↑2)↑((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)))
5032, 4, 499, 501, 502syl22anc 837 . . . . 5 (𝜑 → (-1↑(2 · ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁))) = ((-1↑2)↑((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)))
504 neg1sqe1 13555 . . . . . . 7 (-1↑2) = 1
505504oveq1i 7145 . . . . . 6 ((-1↑2)↑((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)) = (1↑((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁))
506 1exp 13454 . . . . . . 7 (((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁) ∈ ℤ → (1↑((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)) = 1)
507501, 506syl 17 . . . . . 6 (𝜑 → (1↑((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)) = 1)
508505, 507syl5eq 2845 . . . . 5 (𝜑 → ((-1↑2)↑((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)) = 1)
509498, 503, 5083eqtrd 2837 . . . 4 (𝜑 → (-1↑(Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))) = 1)
51041, 52, 5093eqtr4d 2843 . . 3 (𝜑 → ((-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) · (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))) = (-1↑(Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))))
511 expaddz 13469 . . . 4 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℤ ∧ (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}) ∈ ℤ)) → (-1↑(Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))) = ((-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) · (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))))
5122, 4, 21, 39, 511syl22anc 837 . . 3 (𝜑 → (-1↑(Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))) = ((-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) · (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))))
513510, 512eqtr2d 2834 . 2 (𝜑 → ((-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) · (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))) = ((-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) · (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))))
51422, 38, 38, 40, 513mulcan2ad 11265 1 (𝜑 → (-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  {crab 3110  cdif 3878  wss 3881  {csn 4525  cop 4531   ciun 4881  Disj wdisj 4995   class class class wbr 5030  {copab 5092   × cxp 5517  Rel wrel 5524  cfv 6324  (class class class)co 7135  1st c1st 7669  cen 8489  Fincfn 8492  cc 10524  cr 10525  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531   < clt 10664  cle 10665  cmin 10859  -cneg 10860   / cdiv 11286  cn 11625  2c2 11680  0cn0 11885  cz 11969  cuz 12231  ...cfz 12885  cfl 13155  cexp 13425  chash 13686  Σcsu 15034  cdvds 15599  cprime 16005
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-seq 13365  df-exp 13426  df-hash 13687  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587  df-clim 14837  df-sum 15035  df-dvds 15600  df-prm 16006
This theorem is referenced by:  lgsquadlem2  25965
  Copyright terms: Public domain W3C validator