MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsquadlem1 Structured version   Visualization version   GIF version

Theorem lgsquadlem1 27318
Description: Lemma for lgsquad 27321. Count the members of 𝑆 with odd coordinates. (Contributed by Mario Carneiro, 19-Jun-2015.)
Hypotheses
Ref Expression
lgseisen.1 (𝜑𝑃 ∈ (ℙ ∖ {2}))
lgseisen.2 (𝜑𝑄 ∈ (ℙ ∖ {2}))
lgseisen.3 (𝜑𝑃𝑄)
lgsquad.4 𝑀 = ((𝑃 − 1) / 2)
lgsquad.5 𝑁 = ((𝑄 − 1) / 2)
lgsquad.6 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}
Assertion
Ref Expression
lgsquadlem1 (𝜑 → (-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})))
Distinct variable groups:   𝑥,𝑢,𝑦,𝑧,𝑃   𝜑,𝑢,𝑥,𝑦,𝑧   𝑢,𝑀,𝑦,𝑧   𝑢,𝑁,𝑥,𝑦,𝑧   𝑢,𝑄,𝑥,𝑦,𝑧   𝑢,𝑆,𝑥,𝑧   𝑥,𝑀   𝑦,𝑆

Proof of Theorem lgsquadlem1
Dummy variables 𝑛 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neg1cn 12110 . . . 4 -1 ∈ ℂ
21a1i 11 . . 3 (𝜑 → -1 ∈ ℂ)
3 neg1ne0 12112 . . . 4 -1 ≠ 0
43a1i 11 . . 3 (𝜑 → -1 ≠ 0)
5 fzfid 13880 . . . 4 (𝜑 → (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∈ Fin)
6 lgseisen.2 . . . . . . . . . 10 (𝜑𝑄 ∈ (ℙ ∖ {2}))
76gausslemma2dlem0a 27294 . . . . . . . . 9 (𝜑𝑄 ∈ ℕ)
87nnred 12140 . . . . . . . 8 (𝜑𝑄 ∈ ℝ)
9 lgseisen.1 . . . . . . . . 9 (𝜑𝑃 ∈ (ℙ ∖ {2}))
109gausslemma2dlem0a 27294 . . . . . . . 8 (𝜑𝑃 ∈ ℕ)
118, 10nndivred 12179 . . . . . . 7 (𝜑 → (𝑄 / 𝑃) ∈ ℝ)
1211adantr 480 . . . . . 6 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 / 𝑃) ∈ ℝ)
13 2z 12504 . . . . . . . 8 2 ∈ ℤ
14 elfzelz 13424 . . . . . . . . 9 (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) → 𝑢 ∈ ℤ)
1514adantl 481 . . . . . . . 8 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑢 ∈ ℤ)
16 zmulcl 12521 . . . . . . . 8 ((2 ∈ ℤ ∧ 𝑢 ∈ ℤ) → (2 · 𝑢) ∈ ℤ)
1713, 15, 16sylancr 587 . . . . . . 7 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) ∈ ℤ)
1817zred 12577 . . . . . 6 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) ∈ ℝ)
1912, 18remulcld 11142 . . . . 5 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℝ)
2019flcld 13702 . . . 4 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℤ)
215, 20fsumzcl 15642 . . 3 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℤ)
222, 4, 21expclzd 14058 . 2 (𝜑 → (-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℂ)
23 fzfid 13880 . . . . . . 7 (𝜑 → (1...𝑀) ∈ Fin)
24 fzfid 13880 . . . . . . 7 (𝜑 → (1...𝑁) ∈ Fin)
25 xpfi 9204 . . . . . . 7 (((1...𝑀) ∈ Fin ∧ (1...𝑁) ∈ Fin) → ((1...𝑀) × (1...𝑁)) ∈ Fin)
2623, 24, 25syl2anc 584 . . . . . 6 (𝜑 → ((1...𝑀) × (1...𝑁)) ∈ Fin)
27 lgsquad.6 . . . . . . 7 𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))}
28 opabssxp 5706 . . . . . . 7 {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ⊆ ((1...𝑀) × (1...𝑁))
2927, 28eqsstri 3976 . . . . . 6 𝑆 ⊆ ((1...𝑀) × (1...𝑁))
30 ssfi 9082 . . . . . 6 ((((1...𝑀) × (1...𝑁)) ∈ Fin ∧ 𝑆 ⊆ ((1...𝑀) × (1...𝑁))) → 𝑆 ∈ Fin)
3126, 29, 30sylancl 586 . . . . 5 (𝜑𝑆 ∈ Fin)
32 ssrab2 4027 . . . . 5 {𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)} ⊆ 𝑆
33 ssfi 9082 . . . . 5 ((𝑆 ∈ Fin ∧ {𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)} ⊆ 𝑆) → {𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)} ∈ Fin)
3431, 32, 33sylancl 586 . . . 4 (𝜑 → {𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)} ∈ Fin)
35 hashcl 14263 . . . 4 ({𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)} ∈ Fin → (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}) ∈ ℕ0)
3634, 35syl 17 . . 3 (𝜑 → (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}) ∈ ℕ0)
37 expcl 13986 . . 3 ((-1 ∈ ℂ ∧ (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}) ∈ ℕ0) → (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) ∈ ℂ)
381, 36, 37sylancr 587 . 2 (𝜑 → (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) ∈ ℂ)
3936nn0zd 12494 . . 3 (𝜑 → (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}) ∈ ℤ)
402, 4, 39expne0d 14059 . 2 (𝜑 → (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) ≠ 0)
4138, 40recidd 11892 . . . 4 (𝜑 → ((-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) · (1 / (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})))) = 1)
42 1div1e1 11812 . . . . . . . . 9 (1 / 1) = 1
4342negeqi 11353 . . . . . . . 8 -(1 / 1) = -1
44 ax-1cn 11064 . . . . . . . . 9 1 ∈ ℂ
45 ax-1ne0 11075 . . . . . . . . 9 1 ≠ 0
46 divneg2 11845 . . . . . . . . 9 ((1 ∈ ℂ ∧ 1 ∈ ℂ ∧ 1 ≠ 0) → -(1 / 1) = (1 / -1))
4744, 44, 45, 46mp3an 1463 . . . . . . . 8 -(1 / 1) = (1 / -1)
4843, 47eqtr3i 2756 . . . . . . 7 -1 = (1 / -1)
4948oveq1i 7356 . . . . . 6 (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) = ((1 / -1)↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))
502, 4, 39exprecd 14061 . . . . . 6 (𝜑 → ((1 / -1)↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) = (1 / (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))))
5149, 50eqtrid 2778 . . . . 5 (𝜑 → (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) = (1 / (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))))
5251oveq2d 7362 . . . 4 (𝜑 → ((-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) · (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))) = ((-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) · (1 / (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})))))
5331adantr 480 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑆 ∈ Fin)
54 ssrab2 4027 . . . . . . . . . . . 12 {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ⊆ 𝑆
55 ssfi 9082 . . . . . . . . . . . 12 ((𝑆 ∈ Fin ∧ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ⊆ 𝑆) → {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ∈ Fin)
5653, 54, 55sylancl 586 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ∈ Fin)
57 fveqeq2 6831 . . . . . . . . . . . . . . . . . . . 20 (𝑧 = 𝑣 → ((1st𝑧) = (𝑃 − (2 · 𝑢)) ↔ (1st𝑣) = (𝑃 − (2 · 𝑢))))
5857elrab 3642 . . . . . . . . . . . . . . . . . . 19 (𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ↔ (𝑣𝑆 ∧ (1st𝑣) = (𝑃 − (2 · 𝑢))))
5958simprbi 496 . . . . . . . . . . . . . . . . . 18 (𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} → (1st𝑣) = (𝑃 − (2 · 𝑢)))
6059ad2antll 729 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → (1st𝑣) = (𝑃 − (2 · 𝑢)))
6160oveq2d 7362 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → (𝑃 − (1st𝑣)) = (𝑃 − (𝑃 − (2 · 𝑢))))
6210adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℕ)
6362nncnd 12141 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℂ)
6463adantrr 717 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → 𝑃 ∈ ℂ)
6517zcnd 12578 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) ∈ ℂ)
6665adantrr 717 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → (2 · 𝑢) ∈ ℂ)
6764, 66nncand 11477 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → (𝑃 − (𝑃 − (2 · 𝑢))) = (2 · 𝑢))
6861, 67eqtrd 2766 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → (𝑃 − (1st𝑣)) = (2 · 𝑢))
6968oveq1d 7361 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → ((𝑃 − (1st𝑣)) / 2) = ((2 · 𝑢) / 2))
7015zcnd 12578 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑢 ∈ ℂ)
7170adantrr 717 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → 𝑢 ∈ ℂ)
72 2cnd 12203 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → 2 ∈ ℂ)
73 2ne0 12229 . . . . . . . . . . . . . . . 16 2 ≠ 0
7473a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → 2 ≠ 0)
7571, 72, 74divcan3d 11902 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → ((2 · 𝑢) / 2) = 𝑢)
7669, 75eqtrd 2766 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ 𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})) → ((𝑃 − (1st𝑣)) / 2) = 𝑢)
7776ralrimivva 3175 . . . . . . . . . . . 12 (𝜑 → ∀𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)∀𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ((𝑃 − (1st𝑣)) / 2) = 𝑢)
78 invdisj 5075 . . . . . . . . . . . 12 (∀𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)∀𝑣 ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ((𝑃 − (1st𝑣)) / 2) = 𝑢Disj 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀){𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})
7977, 78syl 17 . . . . . . . . . . 11 (𝜑Disj 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀){𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))})
805, 56, 79hashiun 15729 . . . . . . . . . 10 (𝜑 → (♯‘ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀){𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))}) = Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(♯‘{𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))}))
81 iunrab 4999 . . . . . . . . . . . 12 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀){𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} = {𝑧𝑆 ∣ ∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st𝑧) = (𝑃 − (2 · 𝑢))}
82 eldifsni 4739 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑃 ∈ (ℙ ∖ {2}) → 𝑃 ≠ 2)
839, 82syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑃 ≠ 2)
8483necomd 2983 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → 2 ≠ 𝑃)
8584neneqd 2933 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ¬ 2 = 𝑃)
8685ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ¬ 2 = 𝑃)
87 uzid 12747 . . . . . . . . . . . . . . . . . . . . 21 (2 ∈ ℤ → 2 ∈ (ℤ‘2))
8813, 87ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 2 ∈ (ℤ‘2)
899eldifad 3909 . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑃 ∈ ℙ)
9089ad2antrr 726 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℙ)
91 dvdsprm 16614 . . . . . . . . . . . . . . . . . . . 20 ((2 ∈ (ℤ‘2) ∧ 𝑃 ∈ ℙ) → (2 ∥ 𝑃 ↔ 2 = 𝑃))
9288, 90, 91sylancr 587 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 ∥ 𝑃 ↔ 2 = 𝑃))
9386, 92mtbird 325 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ¬ 2 ∥ 𝑃)
9410ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℕ)
9594nncnd 12141 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℂ)
9617adantlr 715 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) ∈ ℤ)
9796zcnd 12578 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) ∈ ℂ)
9895, 97npcand 11476 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − (2 · 𝑢)) + (2 · 𝑢)) = 𝑃)
9998breq2d 5101 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 ∥ ((𝑃 − (2 · 𝑢)) + (2 · 𝑢)) ↔ 2 ∥ 𝑃))
10093, 99mtbird 325 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ¬ 2 ∥ ((𝑃 − (2 · 𝑢)) + (2 · 𝑢)))
10114adantl 481 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑢 ∈ ℤ)
102 dvdsmul1 16188 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℤ ∧ 𝑢 ∈ ℤ) → 2 ∥ (2 · 𝑢))
10313, 101, 102sylancr 587 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 2 ∥ (2 · 𝑢))
10413a1i 11 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 2 ∈ ℤ)
10594nnzd 12495 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℤ)
106105, 96zsubcld 12582 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − (2 · 𝑢)) ∈ ℤ)
107 dvds2add 16201 . . . . . . . . . . . . . . . . . . 19 ((2 ∈ ℤ ∧ (𝑃 − (2 · 𝑢)) ∈ ℤ ∧ (2 · 𝑢) ∈ ℤ) → ((2 ∥ (𝑃 − (2 · 𝑢)) ∧ 2 ∥ (2 · 𝑢)) → 2 ∥ ((𝑃 − (2 · 𝑢)) + (2 · 𝑢))))
108104, 106, 96, 107syl3anc 1373 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 ∥ (𝑃 − (2 · 𝑢)) ∧ 2 ∥ (2 · 𝑢)) → 2 ∥ ((𝑃 − (2 · 𝑢)) + (2 · 𝑢))))
109103, 108mpan2d 694 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 ∥ (𝑃 − (2 · 𝑢)) → 2 ∥ ((𝑃 − (2 · 𝑢)) + (2 · 𝑢))))
110100, 109mtod 198 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ¬ 2 ∥ (𝑃 − (2 · 𝑢)))
111 breq2 5093 . . . . . . . . . . . . . . . . 17 ((1st𝑧) = (𝑃 − (2 · 𝑢)) → (2 ∥ (1st𝑧) ↔ 2 ∥ (𝑃 − (2 · 𝑢))))
112111notbid 318 . . . . . . . . . . . . . . . 16 ((1st𝑧) = (𝑃 − (2 · 𝑢)) → (¬ 2 ∥ (1st𝑧) ↔ ¬ 2 ∥ (𝑃 − (2 · 𝑢))))
113110, 112syl5ibrcom 247 . . . . . . . . . . . . . . 15 (((𝜑𝑧𝑆) ∧ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((1st𝑧) = (𝑃 − (2 · 𝑢)) → ¬ 2 ∥ (1st𝑧)))
114113rexlimdva 3133 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑆) → (∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st𝑧) = (𝑃 − (2 · 𝑢)) → ¬ 2 ∥ (1st𝑧)))
115 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧𝑆) → 𝑧𝑆)
11629, 115sselid 3927 . . . . . . . . . . . . . . . . 17 ((𝜑𝑧𝑆) → 𝑧 ∈ ((1...𝑀) × (1...𝑁)))
117 xp1st 7953 . . . . . . . . . . . . . . . . 17 (𝑧 ∈ ((1...𝑀) × (1...𝑁)) → (1st𝑧) ∈ (1...𝑀))
118116, 117syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑧𝑆) → (1st𝑧) ∈ (1...𝑀))
119 elfzelz 13424 . . . . . . . . . . . . . . . 16 ((1st𝑧) ∈ (1...𝑀) → (1st𝑧) ∈ ℤ)
120 odd2np1 16252 . . . . . . . . . . . . . . . 16 ((1st𝑧) ∈ ℤ → (¬ 2 ∥ (1st𝑧) ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (1st𝑧)))
121118, 119, 1203syl 18 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑆) → (¬ 2 ∥ (1st𝑧) ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (1st𝑧)))
122 lgsquad.4 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑀 = ((𝑃 − 1) / 2)
1239, 122gausslemma2dlem0b 27295 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑𝑀 ∈ ℕ)
124123nnred 12140 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝑀 ∈ ℝ)
125124ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑀 ∈ ℝ)
126125rehalfcld 12368 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑀 / 2) ∈ ℝ)
127126flcld 13702 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (⌊‘(𝑀 / 2)) ∈ ℤ)
128127peano2zd 12580 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((⌊‘(𝑀 / 2)) + 1) ∈ ℤ)
129123ad2antrr 726 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑀 ∈ ℕ)
130129nnzd 12495 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑀 ∈ ℤ)
131 simprl 770 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑛 ∈ ℤ)
132130, 131zsubcld 12582 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑀𝑛) ∈ ℤ)
133 reflcl 13700 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 / 2) ∈ ℝ → (⌊‘(𝑀 / 2)) ∈ ℝ)
134126, 133syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (⌊‘(𝑀 / 2)) ∈ ℝ)
135132zred 12577 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑀𝑛) ∈ ℝ)
136 flle 13703 . . . . . . . . . . . . . . . . . . . . 21 ((𝑀 / 2) ∈ ℝ → (⌊‘(𝑀 / 2)) ≤ (𝑀 / 2))
137126, 136syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (⌊‘(𝑀 / 2)) ≤ (𝑀 / 2))
138 zre 12472 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛 ∈ ℤ → 𝑛 ∈ ℝ)
139138ad2antrl 728 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑛 ∈ ℝ)
140 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((2 · 𝑛) + 1) = (1st𝑧))
141118adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (1st𝑧) ∈ (1...𝑀))
142140, 141eqeltrd 2831 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((2 · 𝑛) + 1) ∈ (1...𝑀))
143 elfzle2 13428 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((2 · 𝑛) + 1) ∈ (1...𝑀) → ((2 · 𝑛) + 1) ≤ 𝑀)
144142, 143syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((2 · 𝑛) + 1) ≤ 𝑀)
145 zmulcl 12521 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((2 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (2 · 𝑛) ∈ ℤ)
14613, 131, 145sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (2 · 𝑛) ∈ ℤ)
147 zltp1le 12522 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((2 · 𝑛) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((2 · 𝑛) < 𝑀 ↔ ((2 · 𝑛) + 1) ≤ 𝑀))
148146, 130, 147syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((2 · 𝑛) < 𝑀 ↔ ((2 · 𝑛) + 1) ≤ 𝑀))
149144, 148mpbird 257 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (2 · 𝑛) < 𝑀)
150 2re 12199 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℝ
151150a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 2 ∈ ℝ)
152 2pos 12228 . . . . . . . . . . . . . . . . . . . . . . . . 25 0 < 2
153152a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 0 < 2)
154 ltmuldiv2 11996 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑛 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑛) < 𝑀𝑛 < (𝑀 / 2)))
155139, 125, 151, 153, 154syl112anc 1376 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((2 · 𝑛) < 𝑀𝑛 < (𝑀 / 2)))
156149, 155mpbid 232 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑛 < (𝑀 / 2))
157126recnd 11140 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑀 / 2) ∈ ℂ)
158123nncnd 12141 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝜑𝑀 ∈ ℂ)
159158ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑀 ∈ ℂ)
1601592halvesd 12367 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((𝑀 / 2) + (𝑀 / 2)) = 𝑀)
161157, 157, 160mvlraddd 11527 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑀 / 2) = (𝑀 − (𝑀 / 2)))
162156, 161breqtrd 5115 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑛 < (𝑀 − (𝑀 / 2)))
163139, 125, 126, 162ltsub13d 11723 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑀 / 2) < (𝑀𝑛))
164134, 126, 135, 137, 163lelttrd 11271 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (⌊‘(𝑀 / 2)) < (𝑀𝑛))
165 zltp1le 12522 . . . . . . . . . . . . . . . . . . . 20 (((⌊‘(𝑀 / 2)) ∈ ℤ ∧ (𝑀𝑛) ∈ ℤ) → ((⌊‘(𝑀 / 2)) < (𝑀𝑛) ↔ ((⌊‘(𝑀 / 2)) + 1) ≤ (𝑀𝑛)))
166127, 132, 165syl2anc 584 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((⌊‘(𝑀 / 2)) < (𝑀𝑛) ↔ ((⌊‘(𝑀 / 2)) + 1) ≤ (𝑀𝑛)))
167164, 166mpbid 232 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((⌊‘(𝑀 / 2)) + 1) ≤ (𝑀𝑛))
168 2t0e0 12289 . . . . . . . . . . . . . . . . . . . . 21 (2 · 0) = 0
169 2cn 12200 . . . . . . . . . . . . . . . . . . . . . . . . 25 2 ∈ ℂ
170 zcn 12473 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
171170ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑛 ∈ ℂ)
172 mulcl 11090 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((2 ∈ ℂ ∧ 𝑛 ∈ ℂ) → (2 · 𝑛) ∈ ℂ)
173169, 171, 172sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (2 · 𝑛) ∈ ℂ)
174 pncan 11366 . . . . . . . . . . . . . . . . . . . . . . . 24 (((2 · 𝑛) ∈ ℂ ∧ 1 ∈ ℂ) → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
175173, 44, 174sylancl 586 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (((2 · 𝑛) + 1) − 1) = (2 · 𝑛))
176 elfznn 13453 . . . . . . . . . . . . . . . . . . . . . . . 24 (((2 · 𝑛) + 1) ∈ (1...𝑀) → ((2 · 𝑛) + 1) ∈ ℕ)
177 nnm1nn0 12422 . . . . . . . . . . . . . . . . . . . . . . . 24 (((2 · 𝑛) + 1) ∈ ℕ → (((2 · 𝑛) + 1) − 1) ∈ ℕ0)
178142, 176, 1773syl 18 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (((2 · 𝑛) + 1) − 1) ∈ ℕ0)
179175, 178eqeltrrd 2832 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (2 · 𝑛) ∈ ℕ0)
180179nn0ge0d 12445 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 0 ≤ (2 · 𝑛))
181168, 180eqbrtrid 5124 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (2 · 0) ≤ (2 · 𝑛))
182 0red 11115 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 0 ∈ ℝ)
183 lemul2 11974 . . . . . . . . . . . . . . . . . . . . 21 ((0 ∈ ℝ ∧ 𝑛 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (0 ≤ 𝑛 ↔ (2 · 0) ≤ (2 · 𝑛)))
184182, 139, 151, 153, 183syl112anc 1376 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (0 ≤ 𝑛 ↔ (2 · 0) ≤ (2 · 𝑛)))
185181, 184mpbird 257 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 0 ≤ 𝑛)
186125, 139subge02d 11709 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (0 ≤ 𝑛 ↔ (𝑀𝑛) ≤ 𝑀))
187185, 186mpbid 232 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑀𝑛) ≤ 𝑀)
188128, 130, 132, 167, 187elfzd 13415 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑀𝑛) ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀))
18989ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑃 ∈ ℙ)
190 prmnn 16585 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ ℙ → 𝑃 ∈ ℕ)
191189, 190syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑃 ∈ ℕ)
192191nncnd 12141 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑃 ∈ ℂ)
193 peano2cn 11285 . . . . . . . . . . . . . . . . . . . 20 ((2 · 𝑛) ∈ ℂ → ((2 · 𝑛) + 1) ∈ ℂ)
194173, 193syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((2 · 𝑛) + 1) ∈ ℂ)
195192, 194nncand 11477 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑃 − (𝑃 − ((2 · 𝑛) + 1))) = ((2 · 𝑛) + 1))
196 1cnd 11107 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 1 ∈ ℂ)
197192, 173, 196sub32d 11504 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((𝑃 − (2 · 𝑛)) − 1) = ((𝑃 − 1) − (2 · 𝑛)))
198192, 173, 196subsub4d 11503 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((𝑃 − (2 · 𝑛)) − 1) = (𝑃 − ((2 · 𝑛) + 1)))
199 2cnd 12203 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 2 ∈ ℂ)
200199, 159, 171subdid 11573 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (2 · (𝑀𝑛)) = ((2 · 𝑀) − (2 · 𝑛)))
201122oveq2i 7357 . . . . . . . . . . . . . . . . . . . . . . 23 (2 · 𝑀) = (2 · ((𝑃 − 1) / 2))
20210nnzd 12495 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝑃 ∈ ℤ)
203202ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 𝑃 ∈ ℤ)
204 peano2zm 12515 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑃 ∈ ℤ → (𝑃 − 1) ∈ ℤ)
205203, 204syl 17 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑃 − 1) ∈ ℤ)
206205zcnd 12578 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑃 − 1) ∈ ℂ)
20773a1i 11 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → 2 ≠ 0)
208206, 199, 207divcan2d 11899 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (2 · ((𝑃 − 1) / 2)) = (𝑃 − 1))
209201, 208eqtrid 2778 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (2 · 𝑀) = (𝑃 − 1))
210209oveq1d 7361 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((2 · 𝑀) − (2 · 𝑛)) = ((𝑃 − 1) − (2 · 𝑛)))
211200, 210eqtr2d 2767 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ((𝑃 − 1) − (2 · 𝑛)) = (2 · (𝑀𝑛)))
212197, 198, 2113eqtr3d 2774 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑃 − ((2 · 𝑛) + 1)) = (2 · (𝑀𝑛)))
213212oveq2d 7362 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (𝑃 − (𝑃 − ((2 · 𝑛) + 1))) = (𝑃 − (2 · (𝑀𝑛))))
214195, 213, 1403eqtr3rd 2775 . . . . . . . . . . . . . . . . 17 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → (1st𝑧) = (𝑃 − (2 · (𝑀𝑛))))
215 oveq2 7354 . . . . . . . . . . . . . . . . . . 19 (𝑢 = (𝑀𝑛) → (2 · 𝑢) = (2 · (𝑀𝑛)))
216215oveq2d 7362 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝑀𝑛) → (𝑃 − (2 · 𝑢)) = (𝑃 − (2 · (𝑀𝑛))))
217216rspceeqv 3595 . . . . . . . . . . . . . . . . 17 (((𝑀𝑛) ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) ∧ (1st𝑧) = (𝑃 − (2 · (𝑀𝑛)))) → ∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st𝑧) = (𝑃 − (2 · 𝑢)))
218188, 214, 217syl2anc 584 . . . . . . . . . . . . . . . 16 (((𝜑𝑧𝑆) ∧ (𝑛 ∈ ℤ ∧ ((2 · 𝑛) + 1) = (1st𝑧))) → ∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st𝑧) = (𝑃 − (2 · 𝑢)))
219218rexlimdvaa 3134 . . . . . . . . . . . . . . 15 ((𝜑𝑧𝑆) → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = (1st𝑧) → ∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st𝑧) = (𝑃 − (2 · 𝑢))))
220121, 219sylbid 240 . . . . . . . . . . . . . 14 ((𝜑𝑧𝑆) → (¬ 2 ∥ (1st𝑧) → ∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st𝑧) = (𝑃 − (2 · 𝑢))))
221114, 220impbid 212 . . . . . . . . . . . . 13 ((𝜑𝑧𝑆) → (∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st𝑧) = (𝑃 − (2 · 𝑢)) ↔ ¬ 2 ∥ (1st𝑧)))
222221rabbidva 3401 . . . . . . . . . . . 12 (𝜑 → {𝑧𝑆 ∣ ∃𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(1st𝑧) = (𝑃 − (2 · 𝑢))} = {𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})
22381, 222eqtrid 2778 . . . . . . . . . . 11 (𝜑 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀){𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} = {𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})
224223fveq2d 6826 . . . . . . . . . 10 (𝜑 → (♯‘ 𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀){𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))}) = (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))
22527relopabiv 5759 . . . . . . . . . . . . . . 15 Rel 𝑆
226 relss 5721 . . . . . . . . . . . . . . 15 ({𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ⊆ 𝑆 → (Rel 𝑆 → Rel {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))}))
22754, 225, 226mp2 9 . . . . . . . . . . . . . 14 Rel {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))}
228 relxp 5632 . . . . . . . . . . . . . 14 Rel ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
22927eleq2i 2823 . . . . . . . . . . . . . . . . . 18 (⟨𝑥, 𝑦⟩ ∈ 𝑆 ↔ ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))})
230 opabidw 5462 . . . . . . . . . . . . . . . . . 18 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄))} ↔ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))
231229, 230bitri 275 . . . . . . . . . . . . . . . . 17 (⟨𝑥, 𝑦⟩ ∈ 𝑆 ↔ ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)))
232 anass 468 . . . . . . . . . . . . . . . . . . 19 (((𝑦 ∈ ℕ ∧ 𝑦𝑁) ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄)) ↔ (𝑦 ∈ ℕ ∧ (𝑦𝑁 ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄))))
23320peano2zd 12580 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ∈ ℤ)
234233zred 12577 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ∈ ℝ)
235234adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ∈ ℝ)
2368ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → 𝑄 ∈ ℝ)
237 nnre 12132 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ ℕ → 𝑦 ∈ ℝ)
238237adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → 𝑦 ∈ ℝ)
239 lesub 11596 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ∈ ℝ ∧ 𝑄 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ≤ (𝑄𝑦) ↔ 𝑦 ≤ (𝑄 − ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1))))
240235, 236, 238, 239syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ≤ (𝑄𝑦) ↔ 𝑦 ≤ (𝑄 − ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1))))
2418adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑄 ∈ ℝ)
242241recnd 11140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑄 ∈ ℂ)
24363, 242mulcomd 11133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 · 𝑄) = (𝑄 · 𝑃))
24465, 242mulcomd 11133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑢) · 𝑄) = (𝑄 · (2 · 𝑢)))
24562nnne0d 12175 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ≠ 0)
246242, 63, 245divcan1d 11898 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 / 𝑃) · 𝑃) = 𝑄)
247246oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (((𝑄 / 𝑃) · 𝑃) · (2 · 𝑢)) = (𝑄 · (2 · 𝑢)))
24812recnd 11140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 / 𝑃) ∈ ℂ)
249248, 63, 65mul32d 11323 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (((𝑄 / 𝑃) · 𝑃) · (2 · 𝑢)) = (((𝑄 / 𝑃) · (2 · 𝑢)) · 𝑃))
250244, 247, 2493eqtr2d 2772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑢) · 𝑄) = (((𝑄 / 𝑃) · (2 · 𝑢)) · 𝑃))
251243, 250oveq12d 7364 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 · 𝑄) − ((2 · 𝑢) · 𝑄)) = ((𝑄 · 𝑃) − (((𝑄 / 𝑃) · (2 · 𝑢)) · 𝑃)))
25263, 65, 242subdird 11574 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − (2 · 𝑢)) · 𝑄) = ((𝑃 · 𝑄) − ((2 · 𝑢) · 𝑄)))
25319recnd 11140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℂ)
254242, 253, 63subdird 11574 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) · 𝑃) = ((𝑄 · 𝑃) − (((𝑄 / 𝑃) · (2 · 𝑢)) · 𝑃)))
255251, 252, 2543eqtr4d 2776 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − (2 · 𝑢)) · 𝑄) = ((𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) · 𝑃))
256255adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑃 − (2 · 𝑢)) · 𝑄) = ((𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) · 𝑃))
257256breq2d 5101 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄) ↔ (𝑦 · 𝑃) < ((𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) · 𝑃)))
25819adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℝ)
259236, 258resubcld 11545 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℝ)
26062adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈ ℕ)
261260nnred 12140 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → 𝑃 ∈ ℝ)
262260nngt0d 12174 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → 0 < 𝑃)
263 ltmul1 11971 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ ℝ ∧ (𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (𝑦 < (𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) ↔ (𝑦 · 𝑃) < ((𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) · 𝑃)))
264238, 259, 261, 262, 263syl112anc 1376 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (𝑦 < (𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) ↔ (𝑦 · 𝑃) < ((𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) · 𝑃)))
265 ltsub13 11598 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑦 ∈ ℝ ∧ 𝑄 ∈ ℝ ∧ ((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℝ) → (𝑦 < (𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) ↔ ((𝑄 / 𝑃) · (2 · 𝑢)) < (𝑄𝑦)))
266238, 236, 258, 265syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (𝑦 < (𝑄 − ((𝑄 / 𝑃) · (2 · 𝑢))) ↔ ((𝑄 / 𝑃) · (2 · 𝑢)) < (𝑄𝑦)))
267257, 264, 2663bitr2d 307 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄) ↔ ((𝑄 / 𝑃) · (2 · 𝑢)) < (𝑄𝑦)))
2687adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑄 ∈ ℕ)
269268nnzd 12495 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑄 ∈ ℤ)
270 nnz 12489 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
271 zsubcl 12514 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑄 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑄𝑦) ∈ ℤ)
272269, 270, 271syl2an 596 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (𝑄𝑦) ∈ ℤ)
273 fllt 13710 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℝ ∧ (𝑄𝑦) ∈ ℤ) → (((𝑄 / 𝑃) · (2 · 𝑢)) < (𝑄𝑦) ↔ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < (𝑄𝑦)))
274258, 272, 273syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (((𝑄 / 𝑃) · (2 · 𝑢)) < (𝑄𝑦) ↔ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < (𝑄𝑦)))
27520adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℤ)
276 zltp1le 12522 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℤ ∧ (𝑄𝑦) ∈ ℤ) → ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < (𝑄𝑦) ↔ ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ≤ (𝑄𝑦)))
277275, 272, 276syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < (𝑄𝑦) ↔ ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ≤ (𝑄𝑦)))
278267, 274, 2773bitrd 305 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄) ↔ ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1) ≤ (𝑄𝑦)))
279 lgsquad.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 𝑁 = ((𝑄 − 1) / 2)
280279oveq2i 7357 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (2 · 𝑁) = (2 · ((𝑄 − 1) / 2))
281 peano2rem 11428 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑄 ∈ ℝ → (𝑄 − 1) ∈ ℝ)
282241, 281syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 − 1) ∈ ℝ)
283282recnd 11140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 − 1) ∈ ℂ)
284 2cnd 12203 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 2 ∈ ℂ)
28573a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 2 ≠ 0)
286283, 284, 285divcan2d 11899 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · ((𝑄 − 1) / 2)) = (𝑄 − 1))
287280, 286eqtrid 2778 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑁) = (𝑄 − 1))
288287oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = ((𝑄 − 1) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
289 1cnd 11107 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 1 ∈ ℂ)
29020zcnd 12578 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℂ)
291242, 289, 290sub32d 11504 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 − 1) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = ((𝑄 − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) − 1))
292242, 290, 289subsub4d 11503 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) − 1) = (𝑄 − ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1)))
293288, 291, 2923eqtrd 2770 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (𝑄 − ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1)))
294293adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (𝑄 − ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1)))
295294breq2d 5101 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ↔ 𝑦 ≤ (𝑄 − ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + 1))))
296240, 278, 2953bitr4d 311 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄) ↔ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
297296anbi2d 630 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑦𝑁 ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄)) ↔ (𝑦𝑁𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
298 2nn 12198 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2 ∈ ℕ
2996, 279gausslemma2dlem0b 27295 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑁 ∈ ℕ)
300 nnmulcl 12149 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
301298, 299, 300sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑 → (2 · 𝑁) ∈ ℕ)
302301adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑁) ∈ ℕ)
303302nnred 12140 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑁) ∈ ℝ)
304299adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 ∈ ℕ)
305304nnred 12140 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 ∈ ℝ)
30620zred 12577 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℝ)
307299nncnd 12141 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑𝑁 ∈ ℂ)
308307adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 ∈ ℂ)
3093082timesd 12364 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑁) = (𝑁 + 𝑁))
310308, 308, 309mvrladdd 11530 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑁) − 𝑁) = 𝑁)
311241rehalfcld 12368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 / 2) ∈ ℝ)
312241ltm1d 12054 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 − 1) < 𝑄)
313150a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 2 ∈ ℝ)
314152a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 0 < 2)
315 ltdiv1 11986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝑄 − 1) ∈ ℝ ∧ 𝑄 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑄 − 1) < 𝑄 ↔ ((𝑄 − 1) / 2) < (𝑄 / 2)))
316282, 241, 313, 314, 315syl112anc 1376 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 − 1) < 𝑄 ↔ ((𝑄 − 1) / 2) < (𝑄 / 2)))
317312, 316mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 − 1) / 2) < (𝑄 / 2))
318279, 317eqbrtrid 5124 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 < (𝑄 / 2))
319305, 311, 318ltled 11261 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 ≤ (𝑄 / 2))
320242, 284, 63, 285div32d 11920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 / 2) · 𝑃) = (𝑄 · (𝑃 / 2)))
321124adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑀 ∈ ℝ)
322321rehalfcld 12368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑀 / 2) ∈ ℝ)
323 peano2re 11286 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((⌊‘(𝑀 / 2)) ∈ ℝ → ((⌊‘(𝑀 / 2)) + 1) ∈ ℝ)
324322, 133, 3233syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((⌊‘(𝑀 / 2)) + 1) ∈ ℝ)
32515zred 12577 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑢 ∈ ℝ)
326 flltp1 13704 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑀 / 2) ∈ ℝ → (𝑀 / 2) < ((⌊‘(𝑀 / 2)) + 1))
327322, 326syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑀 / 2) < ((⌊‘(𝑀 / 2)) + 1))
328 elfzle1 13427 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) → ((⌊‘(𝑀 / 2)) + 1) ≤ 𝑢)
329328adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((⌊‘(𝑀 / 2)) + 1) ≤ 𝑢)
330322, 324, 325, 327, 329ltletrd 11273 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑀 / 2) < 𝑢)
331 ltdivmul 11997 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 ((𝑀 ∈ ℝ ∧ 𝑢 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑀 / 2) < 𝑢𝑀 < (2 · 𝑢)))
332321, 325, 313, 314, 331syl112anc 1376 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑀 / 2) < 𝑢𝑀 < (2 · 𝑢)))
333330, 332mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑀 < (2 · 𝑢))
334122, 333eqbrtrrid 5125 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − 1) / 2) < (2 · 𝑢))
33562nnred 12140 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℝ)
336 peano2rem 11428 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (𝑃 ∈ ℝ → (𝑃 − 1) ∈ ℝ)
337335, 336syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − 1) ∈ ℝ)
338 ltdivmul 11997 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 (((𝑃 − 1) ∈ ℝ ∧ (2 · 𝑢) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (((𝑃 − 1) / 2) < (2 · 𝑢) ↔ (𝑃 − 1) < (2 · (2 · 𝑢))))
339337, 18, 313, 314, 338syl112anc 1376 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (((𝑃 − 1) / 2) < (2 · 𝑢) ↔ (𝑃 − 1) < (2 · (2 · 𝑢))))
340334, 339mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − 1) < (2 · (2 · 𝑢)))
341202adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℤ)
342 zmulcl 12521 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((2 ∈ ℤ ∧ (2 · 𝑢) ∈ ℤ) → (2 · (2 · 𝑢)) ∈ ℤ)
34313, 17, 342sylancr 587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · (2 · 𝑢)) ∈ ℤ)
344 zlem1lt 12524 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((𝑃 ∈ ℤ ∧ (2 · (2 · 𝑢)) ∈ ℤ) → (𝑃 ≤ (2 · (2 · 𝑢)) ↔ (𝑃 − 1) < (2 · (2 · 𝑢))))
345341, 343, 344syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 ≤ (2 · (2 · 𝑢)) ↔ (𝑃 − 1) < (2 · (2 · 𝑢))))
346340, 345mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ≤ (2 · (2 · 𝑢)))
347 ledivmul 11998 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((𝑃 ∈ ℝ ∧ (2 · 𝑢) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((𝑃 / 2) ≤ (2 · 𝑢) ↔ 𝑃 ≤ (2 · (2 · 𝑢))))
348335, 18, 313, 314, 347syl112anc 1376 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 / 2) ≤ (2 · 𝑢) ↔ 𝑃 ≤ (2 · (2 · 𝑢))))
349346, 348mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 / 2) ≤ (2 · 𝑢))
350335rehalfcld 12368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 / 2) ∈ ℝ)
351268nngt0d 12174 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 0 < 𝑄)
352 lemul2 11974 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝑃 / 2) ∈ ℝ ∧ (2 · 𝑢) ∈ ℝ ∧ (𝑄 ∈ ℝ ∧ 0 < 𝑄)) → ((𝑃 / 2) ≤ (2 · 𝑢) ↔ (𝑄 · (𝑃 / 2)) ≤ (𝑄 · (2 · 𝑢))))
353350, 18, 241, 351, 352syl112anc 1376 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 / 2) ≤ (2 · 𝑢) ↔ (𝑄 · (𝑃 / 2)) ≤ (𝑄 · (2 · 𝑢))))
354349, 353mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 · (𝑃 / 2)) ≤ (𝑄 · (2 · 𝑢)))
355320, 354eqbrtrd 5111 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 / 2) · 𝑃) ≤ (𝑄 · (2 · 𝑢)))
356241, 18remulcld 11142 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 · (2 · 𝑢)) ∈ ℝ)
35762nngt0d 12174 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 0 < 𝑃)
358 lemuldiv 12002 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑄 / 2) ∈ ℝ ∧ (𝑄 · (2 · 𝑢)) ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (((𝑄 / 2) · 𝑃) ≤ (𝑄 · (2 · 𝑢)) ↔ (𝑄 / 2) ≤ ((𝑄 · (2 · 𝑢)) / 𝑃)))
359311, 356, 335, 357, 358syl112anc 1376 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (((𝑄 / 2) · 𝑃) ≤ (𝑄 · (2 · 𝑢)) ↔ (𝑄 / 2) ≤ ((𝑄 · (2 · 𝑢)) / 𝑃)))
360355, 359mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 / 2) ≤ ((𝑄 · (2 · 𝑢)) / 𝑃))
361242, 65, 63, 245div23d 11934 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 · (2 · 𝑢)) / 𝑃) = ((𝑄 / 𝑃) · (2 · 𝑢)))
362360, 361breqtrd 5115 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 / 2) ≤ ((𝑄 / 𝑃) · (2 · 𝑢)))
363305, 311, 19, 319, 362letrd 11270 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 ≤ ((𝑄 / 𝑃) · (2 · 𝑢)))
364299nnzd 12495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑𝑁 ∈ ℤ)
365364adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 ∈ ℤ)
366 flge 13709 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℝ ∧ 𝑁 ∈ ℤ) → (𝑁 ≤ ((𝑄 / 𝑃) · (2 · 𝑢)) ↔ 𝑁 ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
36719, 365, 366syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑁 ≤ ((𝑄 / 𝑃) · (2 · 𝑢)) ↔ 𝑁 ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
368363, 367mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑁 ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))
369310, 368eqbrtrd 5111 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑁) − 𝑁) ≤ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))
370303, 305, 306, 369subled 11720 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ≤ 𝑁)
371370adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ≤ 𝑁)
372302nnzd 12495 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑁) ∈ ℤ)
373372, 20zsubcld 12582 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℤ)
374373adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℤ)
375374zred 12577 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℝ)
376299ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → 𝑁 ∈ ℕ)
377376nnred 12140 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → 𝑁 ∈ ℝ)
378 letr 11207 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑦 ∈ ℝ ∧ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∧ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ≤ 𝑁) → 𝑦𝑁))
379238, 375, 377, 378syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∧ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ≤ 𝑁) → 𝑦𝑁))
380371, 379mpan2d 694 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) → 𝑦𝑁))
381380pm4.71rd 562 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → (𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ↔ (𝑦𝑁𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
382297, 381bitr4d 282 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑦 ∈ ℕ) → ((𝑦𝑁 ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄)) ↔ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
383382pm5.32da 579 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑦 ∈ ℕ ∧ (𝑦𝑁 ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄))) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
384383adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → ((𝑦 ∈ ℕ ∧ (𝑦𝑁 ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄))) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
385232, 384bitrid 283 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (((𝑦 ∈ ℕ ∧ 𝑦𝑁) ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄)) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
386 simpr 484 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → 𝑥 = (𝑃 − (2 · 𝑢)))
387341, 17zsubcld 12582 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − (2 · 𝑢)) ∈ ℤ)
388 elfzle2 13428 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀) → 𝑢𝑀)
389388adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑢𝑀)
390389, 122breqtrdi 5130 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑢 ≤ ((𝑃 − 1) / 2))
391 lemuldiv2 12003 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑢 ∈ ℝ ∧ (𝑃 − 1) ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((2 · 𝑢) ≤ (𝑃 − 1) ↔ 𝑢 ≤ ((𝑃 − 1) / 2)))
392325, 337, 313, 314, 391syl112anc 1376 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑢) ≤ (𝑃 − 1) ↔ 𝑢 ≤ ((𝑃 − 1) / 2)))
393390, 392mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) ≤ (𝑃 − 1))
394335ltm1d 12054 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − 1) < 𝑃)
39518, 337, 335, 393, 394lelttrd 11271 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑢) < 𝑃)
39618, 335posdifd 11704 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑢) < 𝑃 ↔ 0 < (𝑃 − (2 · 𝑢))))
397395, 396mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 0 < (𝑃 − (2 · 𝑢)))
398 elnnz 12478 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑃 − (2 · 𝑢)) ∈ ℕ ↔ ((𝑃 − (2 · 𝑢)) ∈ ℤ ∧ 0 < (𝑃 − (2 · 𝑢))))
399387, 397, 398sylanbrc 583 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − (2 · 𝑢)) ∈ ℕ)
40063, 65, 289sub32d 11504 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − (2 · 𝑢)) − 1) = ((𝑃 − 1) − (2 · 𝑢)))
401122, 122oveq12i 7358 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑀 + 𝑀) = (((𝑃 − 1) / 2) + ((𝑃 − 1) / 2))
40262nnzd 12495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑃 ∈ ℤ)
403402, 204syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − 1) ∈ ℤ)
404403zcnd 12578 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − 1) ∈ ℂ)
4054042halvesd 12367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (((𝑃 − 1) / 2) + ((𝑃 − 1) / 2)) = (𝑃 − 1))
406401, 405eqtrid 2778 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑀 + 𝑀) = (𝑃 − 1))
407406oveq1d 7361 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑀 + 𝑀) − 𝑀) = ((𝑃 − 1) − 𝑀))
408158adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑀 ∈ ℂ)
409408, 408pncan2d 11474 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑀 + 𝑀) − 𝑀) = 𝑀)
410407, 409eqtr3d 2768 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − 1) − 𝑀) = 𝑀)
411410, 333eqbrtrd 5111 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − 1) − 𝑀) < (2 · 𝑢))
412337, 321, 18, 411ltsub23d 11722 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − 1) − (2 · 𝑢)) < 𝑀)
413400, 412eqbrtrd 5111 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − (2 · 𝑢)) − 1) < 𝑀)
414123adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑀 ∈ ℕ)
415414nnzd 12495 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → 𝑀 ∈ ℤ)
416 zlem1lt 12524 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑃 − (2 · 𝑢)) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑃 − (2 · 𝑢)) ≤ 𝑀 ↔ ((𝑃 − (2 · 𝑢)) − 1) < 𝑀))
417387, 415, 416syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − (2 · 𝑢)) ≤ 𝑀 ↔ ((𝑃 − (2 · 𝑢)) − 1) < 𝑀))
418413, 417mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − (2 · 𝑢)) ≤ 𝑀)
419 fznn 13492 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑀 ∈ ℤ → ((𝑃 − (2 · 𝑢)) ∈ (1...𝑀) ↔ ((𝑃 − (2 · 𝑢)) ∈ ℕ ∧ (𝑃 − (2 · 𝑢)) ≤ 𝑀)))
420415, 419syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑃 − (2 · 𝑢)) ∈ (1...𝑀) ↔ ((𝑃 − (2 · 𝑢)) ∈ ℕ ∧ (𝑃 − (2 · 𝑢)) ≤ 𝑀)))
421399, 418, 420mpbir2and 713 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑃 − (2 · 𝑢)) ∈ (1...𝑀))
422421adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (𝑃 − (2 · 𝑢)) ∈ (1...𝑀))
423386, 422eqeltrd 2831 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → 𝑥 ∈ (1...𝑀))
424423biantrurd 532 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (𝑦 ∈ (1...𝑁) ↔ (𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁))))
425364ad2antrr 726 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → 𝑁 ∈ ℤ)
426 fznn 13492 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℤ → (𝑦 ∈ (1...𝑁) ↔ (𝑦 ∈ ℕ ∧ 𝑦𝑁)))
427425, 426syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (𝑦 ∈ (1...𝑁) ↔ (𝑦 ∈ ℕ ∧ 𝑦𝑁)))
428424, 427bitr3d 281 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → ((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ↔ (𝑦 ∈ ℕ ∧ 𝑦𝑁)))
429386oveq1d 7361 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (𝑥 · 𝑄) = ((𝑃 − (2 · 𝑢)) · 𝑄))
430429breq2d 5101 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → ((𝑦 · 𝑃) < (𝑥 · 𝑄) ↔ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄)))
431428, 430anbi12d 632 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)) ↔ ((𝑦 ∈ ℕ ∧ 𝑦𝑁) ∧ (𝑦 · 𝑃) < ((𝑃 − (2 · 𝑢)) · 𝑄))))
432373adantr 480 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℤ)
433 fznn 13492 . . . . . . . . . . . . . . . . . . 19 (((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℤ → (𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
434432, 433syl 17 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ↔ (𝑦 ∈ ℕ ∧ 𝑦 ≤ ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
435385, 431, 4343bitr4d 311 . . . . . . . . . . . . . . . . 17 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (((𝑥 ∈ (1...𝑀) ∧ 𝑦 ∈ (1...𝑁)) ∧ (𝑦 · 𝑃) < (𝑥 · 𝑄)) ↔ 𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
436231, 435bitrid 283 . . . . . . . . . . . . . . . 16 (((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∧ 𝑥 = (𝑃 − (2 · 𝑢))) → (⟨𝑥, 𝑦⟩ ∈ 𝑆𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
437436pm5.32da 579 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑥 = (𝑃 − (2 · 𝑢)) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑆) ↔ (𝑥 = (𝑃 − (2 · 𝑢)) ∧ 𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))))
438 vex 3440 . . . . . . . . . . . . . . . . . . 19 𝑥 ∈ V
439 vex 3440 . . . . . . . . . . . . . . . . . . 19 𝑦 ∈ V
440438, 439op1std 7931 . . . . . . . . . . . . . . . . . 18 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
441440eqeq1d 2733 . . . . . . . . . . . . . . . . 17 (𝑧 = ⟨𝑥, 𝑦⟩ → ((1st𝑧) = (𝑃 − (2 · 𝑢)) ↔ 𝑥 = (𝑃 − (2 · 𝑢))))
442441elrab 3642 . . . . . . . . . . . . . . . 16 (⟨𝑥, 𝑦⟩ ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑆𝑥 = (𝑃 − (2 · 𝑢))))
443442biancomi 462 . . . . . . . . . . . . . . 15 (⟨𝑥, 𝑦⟩ ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ↔ (𝑥 = (𝑃 − (2 · 𝑢)) ∧ ⟨𝑥, 𝑦⟩ ∈ 𝑆))
444 opelxp 5650 . . . . . . . . . . . . . . . 16 (⟨𝑥, 𝑦⟩ ∈ ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ↔ (𝑥 ∈ {(𝑃 − (2 · 𝑢))} ∧ 𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
445 velsn 4589 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ {(𝑃 − (2 · 𝑢))} ↔ 𝑥 = (𝑃 − (2 · 𝑢)))
446445anbi1i 624 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ {(𝑃 − (2 · 𝑢))} ∧ 𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ↔ (𝑥 = (𝑃 − (2 · 𝑢)) ∧ 𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
447444, 446bitri 275 . . . . . . . . . . . . . . 15 (⟨𝑥, 𝑦⟩ ∈ ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ↔ (𝑥 = (𝑃 − (2 · 𝑢)) ∧ 𝑦 ∈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
448437, 443, 4473bitr4g 314 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⟨𝑥, 𝑦⟩ ∈ {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} ↔ ⟨𝑥, 𝑦⟩ ∈ ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))))
449227, 228, 448eqrelrdv 5731 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → {𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))} = ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
450449fveq2d 6826 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (♯‘{𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))}) = (♯‘({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))))
451 fzfid 13880 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ∈ Fin)
452 xpsnen2g 8983 . . . . . . . . . . . . . 14 (((𝑃 − (2 · 𝑢)) ∈ ℤ ∧ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) ∈ Fin) → ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ≈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
453387, 451, 452syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ≈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
454 hasheni 14255 . . . . . . . . . . . . 13 (({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) ≈ (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) → (♯‘({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))) = (♯‘(1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
455453, 454syl 17 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (♯‘({(𝑃 − (2 · 𝑢))} × (1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))) = (♯‘(1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))))
456 ltmul2 11972 . . . . . . . . . . . . . . . . . . . . 21 (((2 · 𝑢) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ (𝑄 ∈ ℝ ∧ 0 < 𝑄)) → ((2 · 𝑢) < 𝑃 ↔ (𝑄 · (2 · 𝑢)) < (𝑄 · 𝑃)))
45718, 335, 241, 351, 456syl112anc 1376 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((2 · 𝑢) < 𝑃 ↔ (𝑄 · (2 · 𝑢)) < (𝑄 · 𝑃)))
458395, 457mpbid 232 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (𝑄 · (2 · 𝑢)) < (𝑄 · 𝑃))
459 ltdivmul2 11999 . . . . . . . . . . . . . . . . . . . 20 (((𝑄 · (2 · 𝑢)) ∈ ℝ ∧ 𝑄 ∈ ℝ ∧ (𝑃 ∈ ℝ ∧ 0 < 𝑃)) → (((𝑄 · (2 · 𝑢)) / 𝑃) < 𝑄 ↔ (𝑄 · (2 · 𝑢)) < (𝑄 · 𝑃)))
460356, 241, 335, 357, 459syl112anc 1376 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (((𝑄 · (2 · 𝑢)) / 𝑃) < 𝑄 ↔ (𝑄 · (2 · 𝑢)) < (𝑄 · 𝑃)))
461458, 460mpbird 257 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 · (2 · 𝑢)) / 𝑃) < 𝑄)
462361, 461eqbrtrrd 5113 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((𝑄 / 𝑃) · (2 · 𝑢)) < 𝑄)
463 fllt 13710 . . . . . . . . . . . . . . . . . 18 ((((𝑄 / 𝑃) · (2 · 𝑢)) ∈ ℝ ∧ 𝑄 ∈ ℤ) → (((𝑄 / 𝑃) · (2 · 𝑢)) < 𝑄 ↔ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < 𝑄))
46419, 269, 463syl2anc 584 . . . . . . . . . . . . . . . . 17 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (((𝑄 / 𝑃) · (2 · 𝑢)) < 𝑄 ↔ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < 𝑄))
465462, 464mpbid 232 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < 𝑄)
466 zltlem1 12525 . . . . . . . . . . . . . . . . 17 (((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℤ ∧ 𝑄 ∈ ℤ) → ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < 𝑄 ↔ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ≤ (𝑄 − 1)))
46720, 269, 466syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) < 𝑄 ↔ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ≤ (𝑄 − 1)))
468465, 467mpbid 232 . . . . . . . . . . . . . . 15 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ≤ (𝑄 − 1))
469468, 287breqtrrd 5117 . . . . . . . . . . . . . 14 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ≤ (2 · 𝑁))
470 eluz2 12738 . . . . . . . . . . . . . 14 ((2 · 𝑁) ∈ (ℤ‘(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ↔ ((⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℤ ∧ (2 · 𝑁) ∈ ℤ ∧ (⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ≤ (2 · 𝑁)))
47120, 372, 469, 470syl3anbrc 1344 . . . . . . . . . . . . 13 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑁) ∈ (ℤ‘(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
472 uznn0sub 12771 . . . . . . . . . . . . 13 ((2 · 𝑁) ∈ (ℤ‘(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) → ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℕ0)
473 hashfz1 14253 . . . . . . . . . . . . 13 (((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) ∈ ℕ0 → (♯‘(1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) = ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
474471, 472, 4733syl 18 . . . . . . . . . . . 12 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (♯‘(1...((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))) = ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
475450, 455, 4743eqtrd 2770 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (♯‘{𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))}) = ((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
476475sumeq2dv 15609 . . . . . . . . . 10 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(♯‘{𝑧𝑆 ∣ (1st𝑧) = (𝑃 − (2 · 𝑢))}) = Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
47780, 224, 4763eqtr3rd 2775 . . . . . . . . 9 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))
478301nncnd 12141 . . . . . . . . . . 11 (𝜑 → (2 · 𝑁) ∈ ℂ)
479478adantr 480 . . . . . . . . . 10 ((𝜑𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)) → (2 · 𝑁) ∈ ℂ)
4805, 479, 290fsumsub 15695 . . . . . . . . 9 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)((2 · 𝑁) − (⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) − Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
481477, 480eqtr3d 2768 . . . . . . . 8 (𝜑 → (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}) = (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) − Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))))
482481oveq2d 7362 . . . . . . 7 (𝜑 → (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) = (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) − Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))))
48321zcnd 12578 . . . . . . . 8 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℂ)
4845, 372fsumzcl 15642 . . . . . . . . 9 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) ∈ ℤ)
485484zcnd 12578 . . . . . . . 8 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) ∈ ℂ)
486483, 485pncan3d 11475 . . . . . . 7 (𝜑 → (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) − Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))))) = Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁))
487 fsumconst 15697 . . . . . . . . 9 (((((⌊‘(𝑀 / 2)) + 1)...𝑀) ∈ Fin ∧ (2 · 𝑁) ∈ ℂ) → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) = ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · (2 · 𝑁)))
4885, 478, 487syl2anc 584 . . . . . . . 8 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) = ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · (2 · 𝑁)))
489 hashcl 14263 . . . . . . . . . . 11 ((((⌊‘(𝑀 / 2)) + 1)...𝑀) ∈ Fin → (♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∈ ℕ0)
4905, 489syl 17 . . . . . . . . . 10 (𝜑 → (♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∈ ℕ0)
491490nn0cnd 12444 . . . . . . . . 9 (𝜑 → (♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∈ ℂ)
492 2cnd 12203 . . . . . . . . 9 (𝜑 → 2 ∈ ℂ)
493491, 492, 307mul12d 11322 . . . . . . . 8 (𝜑 → ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · (2 · 𝑁)) = (2 · ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)))
494488, 493eqtrd 2766 . . . . . . 7 (𝜑 → Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(2 · 𝑁) = (2 · ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)))
495482, 486, 4943eqtrd 2770 . . . . . 6 (𝜑 → (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) = (2 · ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)))
496495oveq2d 7362 . . . . 5 (𝜑 → (-1↑(Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))) = (-1↑(2 · ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁))))
49713a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℤ)
498490nn0zd 12494 . . . . . . 7 (𝜑 → (♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) ∈ ℤ)
499498, 364zmulcld 12583 . . . . . 6 (𝜑 → ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁) ∈ ℤ)
500 expmulz 14015 . . . . . 6 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (2 ∈ ℤ ∧ ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁) ∈ ℤ)) → (-1↑(2 · ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁))) = ((-1↑2)↑((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)))
5012, 4, 497, 499, 500syl22anc 838 . . . . 5 (𝜑 → (-1↑(2 · ((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁))) = ((-1↑2)↑((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)))
502 neg1sqe1 14103 . . . . . . 7 (-1↑2) = 1
503502oveq1i 7356 . . . . . 6 ((-1↑2)↑((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)) = (1↑((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁))
504 1exp 13998 . . . . . . 7 (((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁) ∈ ℤ → (1↑((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)) = 1)
505499, 504syl 17 . . . . . 6 (𝜑 → (1↑((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)) = 1)
506503, 505eqtrid 2778 . . . . 5 (𝜑 → ((-1↑2)↑((♯‘(((⌊‘(𝑀 / 2)) + 1)...𝑀)) · 𝑁)) = 1)
507496, 501, 5063eqtrd 2770 . . . 4 (𝜑 → (-1↑(Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))) = 1)
50841, 52, 5073eqtr4d 2776 . . 3 (𝜑 → ((-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) · (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))) = (-1↑(Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))))
509 expaddz 14013 . . . 4 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) ∈ ℤ ∧ (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}) ∈ ℤ)) → (-1↑(Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))) = ((-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) · (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))))
5102, 4, 21, 39, 509syl22anc 838 . . 3 (𝜑 → (-1↑(Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢))) + (♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))) = ((-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) · (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))))
511508, 510eqtr2d 2767 . 2 (𝜑 → ((-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) · (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))) = ((-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})) · (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)}))))
51222, 38, 38, 40, 511mulcan2ad 11753 1 (𝜑 → (-1↑Σ𝑢 ∈ (((⌊‘(𝑀 / 2)) + 1)...𝑀)(⌊‘((𝑄 / 𝑃) · (2 · 𝑢)))) = (-1↑(♯‘{𝑧𝑆 ∣ ¬ 2 ∥ (1st𝑧)})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  {crab 3395  cdif 3894  wss 3897  {csn 4573  cop 4579   ciun 4939  Disj wdisj 5056   class class class wbr 5089  {copab 5151   × cxp 5612  Rel wrel 5619  cfv 6481  (class class class)co 7346  1st c1st 7919  cen 8866  Fincfn 8869  cc 11004  cr 11005  0cc0 11006  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cle 11147  cmin 11344  -cneg 11345   / cdiv 11774  cn 12125  2c2 12180  0cn0 12381  cz 12468  cuz 12732  ...cfz 13407  cfl 13694  cexp 13968  chash 14237  Σcsu 15593  cdvds 16163  cprime 16582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-dvds 16164  df-prm 16583
This theorem is referenced by:  lgsquadlem2  27319
  Copyright terms: Public domain W3C validator