MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumcom2 Structured version   Visualization version   GIF version

Theorem gsumcom2 19360
Description: Two-dimensional commutation of a group sum. Note that while 𝐴 and 𝐷 are constants w.r.t. 𝑗, 𝑘, 𝐶(𝑗) and 𝐸(𝑘) are not. (Contributed by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
gsum2d2.b 𝐵 = (Base‘𝐺)
gsum2d2.z 0 = (0g𝐺)
gsum2d2.g (𝜑𝐺 ∈ CMnd)
gsum2d2.a (𝜑𝐴𝑉)
gsum2d2.r ((𝜑𝑗𝐴) → 𝐶𝑊)
gsum2d2.f ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑋𝐵)
gsum2d2.u (𝜑𝑈 ∈ Fin)
gsum2d2.n ((𝜑 ∧ ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 )
gsumcom2.d (𝜑𝐷𝑌)
gsumcom2.c (𝜑 → ((𝑗𝐴𝑘𝐶) ↔ (𝑘𝐷𝑗𝐸)))
Assertion
Ref Expression
gsumcom2 (𝜑 → (𝐺 Σg (𝑗𝐴, 𝑘𝐶𝑋)) = (𝐺 Σg (𝑘𝐷, 𝑗𝐸𝑋)))
Distinct variable groups:   𝑗,𝑘,𝐵   𝐷,𝑗,𝑘   𝑗,𝐸   𝜑,𝑗,𝑘   𝐴,𝑗,𝑘   𝑗,𝐺,𝑘   𝑈,𝑗,𝑘   𝐶,𝑘   𝑗,𝑉   0 ,𝑗,𝑘
Allowed substitution hints:   𝐶(𝑗)   𝐸(𝑘)   𝑉(𝑘)   𝑊(𝑗,𝑘)   𝑋(𝑗,𝑘)   𝑌(𝑗,𝑘)

Proof of Theorem gsumcom2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsum2d2.b . . 3 𝐵 = (Base‘𝐺)
2 gsum2d2.z . . 3 0 = (0g𝐺)
3 gsum2d2.g . . 3 (𝜑𝐺 ∈ CMnd)
4 gsum2d2.a . . . 4 (𝜑𝐴𝑉)
5 snex 5324 . . . . . 6 {𝑗} ∈ V
6 gsum2d2.r . . . . . 6 ((𝜑𝑗𝐴) → 𝐶𝑊)
7 xpexg 7535 . . . . . 6 (({𝑗} ∈ V ∧ 𝐶𝑊) → ({𝑗} × 𝐶) ∈ V)
85, 6, 7sylancr 590 . . . . 5 ((𝜑𝑗𝐴) → ({𝑗} × 𝐶) ∈ V)
98ralrimiva 3105 . . . 4 (𝜑 → ∀𝑗𝐴 ({𝑗} × 𝐶) ∈ V)
10 iunexg 7736 . . . 4 ((𝐴𝑉 ∧ ∀𝑗𝐴 ({𝑗} × 𝐶) ∈ V) → 𝑗𝐴 ({𝑗} × 𝐶) ∈ V)
114, 9, 10syl2anc 587 . . 3 (𝜑 𝑗𝐴 ({𝑗} × 𝐶) ∈ V)
12 gsum2d2.f . . . . 5 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑋𝐵)
1312ralrimivva 3112 . . . 4 (𝜑 → ∀𝑗𝐴𝑘𝐶 𝑋𝐵)
14 eqid 2737 . . . . 5 (𝑗𝐴, 𝑘𝐶𝑋) = (𝑗𝐴, 𝑘𝐶𝑋)
1514fmpox 7837 . . . 4 (∀𝑗𝐴𝑘𝐶 𝑋𝐵 ↔ (𝑗𝐴, 𝑘𝐶𝑋): 𝑗𝐴 ({𝑗} × 𝐶)⟶𝐵)
1613, 15sylib 221 . . 3 (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋): 𝑗𝐴 ({𝑗} × 𝐶)⟶𝐵)
17 gsum2d2.u . . . 4 (𝜑𝑈 ∈ Fin)
18 gsum2d2.n . . . 4 ((𝜑 ∧ ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 )
191, 2, 3, 4, 6, 12, 17, 18gsum2d2lem 19358 . . 3 (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋) finSupp 0 )
20 relxp 5569 . . . . . . 7 Rel ({𝑘} × 𝐸)
2120rgenw 3073 . . . . . 6 𝑘𝐷 Rel ({𝑘} × 𝐸)
22 reliun 5686 . . . . . 6 (Rel 𝑘𝐷 ({𝑘} × 𝐸) ↔ ∀𝑘𝐷 Rel ({𝑘} × 𝐸))
2321, 22mpbir 234 . . . . 5 Rel 𝑘𝐷 ({𝑘} × 𝐸)
24 cnvf1o 7879 . . . . 5 (Rel 𝑘𝐷 ({𝑘} × 𝐸) → (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}): 𝑘𝐷 ({𝑘} × 𝐸)–1-1-onto 𝑘𝐷 ({𝑘} × 𝐸))
2523, 24ax-mp 5 . . . 4 (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}): 𝑘𝐷 ({𝑘} × 𝐸)–1-1-onto 𝑘𝐷 ({𝑘} × 𝐸)
26 relxp 5569 . . . . . . . 8 Rel ({𝑗} × 𝐶)
2726rgenw 3073 . . . . . . 7 𝑗𝐴 Rel ({𝑗} × 𝐶)
28 reliun 5686 . . . . . . 7 (Rel 𝑗𝐴 ({𝑗} × 𝐶) ↔ ∀𝑗𝐴 Rel ({𝑗} × 𝐶))
2927, 28mpbir 234 . . . . . 6 Rel 𝑗𝐴 ({𝑗} × 𝐶)
30 relcnv 5972 . . . . . 6 Rel 𝑘𝐷 ({𝑘} × 𝐸)
31 nfv 1922 . . . . . . . 8 𝑘𝜑
32 nfv 1922 . . . . . . . . 9 𝑘𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶)
33 nfiu1 4938 . . . . . . . . . . 11 𝑘 𝑘𝐷 ({𝑘} × 𝐸)
3433nfcnv 5747 . . . . . . . . . 10 𝑘 𝑘𝐷 ({𝑘} × 𝐸)
3534nfel2 2922 . . . . . . . . 9 𝑘𝑥, 𝑦⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)
3632, 35nfbi 1911 . . . . . . . 8 𝑘(⟨𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸))
3731, 36nfim 1904 . . . . . . 7 𝑘(𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)))
38 opeq2 4785 . . . . . . . . . 10 (𝑘 = 𝑦 → ⟨𝑥, 𝑘⟩ = ⟨𝑥, 𝑦⟩)
3938eleq1d 2822 . . . . . . . . 9 (𝑘 = 𝑦 → (⟨𝑥, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶)))
4038eleq1d 2822 . . . . . . . . 9 (𝑘 = 𝑦 → (⟨𝑥, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)))
4139, 40bibi12d 349 . . . . . . . 8 (𝑘 = 𝑦 → ((⟨𝑥, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸))))
4241imbi2d 344 . . . . . . 7 (𝑘 = 𝑦 → ((𝜑 → (⟨𝑥, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸))) ↔ (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)))))
43 nfv 1922 . . . . . . . . 9 𝑗𝜑
44 nfiu1 4938 . . . . . . . . . . 11 𝑗 𝑗𝐴 ({𝑗} × 𝐶)
4544nfel2 2922 . . . . . . . . . 10 𝑗𝑥, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶)
46 nfv 1922 . . . . . . . . . 10 𝑗𝑥, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)
4745, 46nfbi 1911 . . . . . . . . 9 𝑗(⟨𝑥, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸))
4843, 47nfim 1904 . . . . . . . 8 𝑗(𝜑 → (⟨𝑥, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)))
49 opeq1 4784 . . . . . . . . . . 11 (𝑗 = 𝑥 → ⟨𝑗, 𝑘⟩ = ⟨𝑥, 𝑘⟩)
5049eleq1d 2822 . . . . . . . . . 10 (𝑗 = 𝑥 → (⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶)))
5149eleq1d 2822 . . . . . . . . . 10 (𝑗 = 𝑥 → (⟨𝑗, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸) ↔ ⟨𝑥, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)))
5250, 51bibi12d 349 . . . . . . . . 9 (𝑗 = 𝑥 → ((⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑗, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)) ↔ (⟨𝑥, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸))))
5352imbi2d 344 . . . . . . . 8 (𝑗 = 𝑥 → ((𝜑 → (⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑗, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸))) ↔ (𝜑 → (⟨𝑥, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)))))
54 gsumcom2.c . . . . . . . . . 10 (𝜑 → ((𝑗𝐴𝑘𝐶) ↔ (𝑘𝐷𝑗𝐸)))
55 opeliunxp 5616 . . . . . . . . . 10 (⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ (𝑗𝐴𝑘𝐶))
56 opeliunxp 5616 . . . . . . . . . 10 (⟨𝑘, 𝑗⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸) ↔ (𝑘𝐷𝑗𝐸))
5754, 55, 563bitr4g 317 . . . . . . . . 9 (𝜑 → (⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑘, 𝑗⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)))
58 vex 3412 . . . . . . . . . 10 𝑗 ∈ V
59 vex 3412 . . . . . . . . . 10 𝑘 ∈ V
6058, 59opelcnv 5750 . . . . . . . . 9 (⟨𝑗, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸) ↔ ⟨𝑘, 𝑗⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸))
6157, 60bitr4di 292 . . . . . . . 8 (𝜑 → (⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑗, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)))
6248, 53, 61chvarfv 2238 . . . . . . 7 (𝜑 → (⟨𝑥, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)))
6337, 42, 62chvarfv 2238 . . . . . 6 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)))
6429, 30, 63eqrelrdv 5662 . . . . 5 (𝜑 𝑗𝐴 ({𝑗} × 𝐶) = 𝑘𝐷 ({𝑘} × 𝐸))
6564f1oeq3d 6658 . . . 4 (𝜑 → ((𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}): 𝑘𝐷 ({𝑘} × 𝐸)–1-1-onto 𝑗𝐴 ({𝑗} × 𝐶) ↔ (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}): 𝑘𝐷 ({𝑘} × 𝐸)–1-1-onto 𝑘𝐷 ({𝑘} × 𝐸)))
6625, 65mpbiri 261 . . 3 (𝜑 → (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}): 𝑘𝐷 ({𝑘} × 𝐸)–1-1-onto 𝑗𝐴 ({𝑗} × 𝐶))
671, 2, 3, 11, 16, 19, 66gsumf1o 19301 . 2 (𝜑 → (𝐺 Σg (𝑗𝐴, 𝑘𝐶𝑋)) = (𝐺 Σg ((𝑗𝐴, 𝑘𝐶𝑋) ∘ (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}))))
68 sneq 4551 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → {𝑧} = {⟨𝑥, 𝑦⟩})
6968cnveqd 5744 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → {𝑧} = {⟨𝑥, 𝑦⟩})
7069unieqd 4833 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → {𝑧} = {⟨𝑥, 𝑦⟩})
71 opswap 6092 . . . . . . . . 9 {⟨𝑥, 𝑦⟩} = ⟨𝑦, 𝑥
7270, 71eqtrdi 2794 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → {𝑧} = ⟨𝑦, 𝑥⟩)
7372fveq2d 6721 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝑗𝐴, 𝑘𝐶𝑋)‘ {𝑧}) = ((𝑗𝐴, 𝑘𝐶𝑋)‘⟨𝑦, 𝑥⟩))
74 df-ov 7216 . . . . . . 7 (𝑦(𝑗𝐴, 𝑘𝐶𝑋)𝑥) = ((𝑗𝐴, 𝑘𝐶𝑋)‘⟨𝑦, 𝑥⟩)
7573, 74eqtr4di 2796 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝑗𝐴, 𝑘𝐶𝑋)‘ {𝑧}) = (𝑦(𝑗𝐴, 𝑘𝐶𝑋)𝑥))
7675mpomptx 7323 . . . . 5 (𝑧 𝑥𝐷 ({𝑥} × 𝑥 / 𝑘𝐸) ↦ ((𝑗𝐴, 𝑘𝐶𝑋)‘ {𝑧})) = (𝑥𝐷, 𝑦𝑥 / 𝑘𝐸 ↦ (𝑦(𝑗𝐴, 𝑘𝐶𝑋)𝑥))
77 nfcv 2904 . . . . . . 7 𝑥({𝑘} × 𝐸)
78 nfcv 2904 . . . . . . . 8 𝑘{𝑥}
79 nfcsb1v 3836 . . . . . . . 8 𝑘𝑥 / 𝑘𝐸
8078, 79nfxp 5584 . . . . . . 7 𝑘({𝑥} × 𝑥 / 𝑘𝐸)
81 sneq 4551 . . . . . . . 8 (𝑘 = 𝑥 → {𝑘} = {𝑥})
82 csbeq1a 3825 . . . . . . . 8 (𝑘 = 𝑥𝐸 = 𝑥 / 𝑘𝐸)
8381, 82xpeq12d 5582 . . . . . . 7 (𝑘 = 𝑥 → ({𝑘} × 𝐸) = ({𝑥} × 𝑥 / 𝑘𝐸))
8477, 80, 83cbviun 4945 . . . . . 6 𝑘𝐷 ({𝑘} × 𝐸) = 𝑥𝐷 ({𝑥} × 𝑥 / 𝑘𝐸)
8584mpteq1i 5145 . . . . 5 (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ ((𝑗𝐴, 𝑘𝐶𝑋)‘ {𝑧})) = (𝑧 𝑥𝐷 ({𝑥} × 𝑥 / 𝑘𝐸) ↦ ((𝑗𝐴, 𝑘𝐶𝑋)‘ {𝑧}))
86 nfcv 2904 . . . . . 6 𝑥𝐸
87 nfcv 2904 . . . . . 6 𝑥(𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘)
88 nfcv 2904 . . . . . 6 𝑦(𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘)
89 nfcv 2904 . . . . . . 7 𝑘𝑦
90 nfmpo2 7292 . . . . . . 7 𝑘(𝑗𝐴, 𝑘𝐶𝑋)
91 nfcv 2904 . . . . . . 7 𝑘𝑥
9289, 90, 91nfov 7243 . . . . . 6 𝑘(𝑦(𝑗𝐴, 𝑘𝐶𝑋)𝑥)
93 nfcv 2904 . . . . . . 7 𝑗𝑦
94 nfmpo1 7291 . . . . . . 7 𝑗(𝑗𝐴, 𝑘𝐶𝑋)
95 nfcv 2904 . . . . . . 7 𝑗𝑥
9693, 94, 95nfov 7243 . . . . . 6 𝑗(𝑦(𝑗𝐴, 𝑘𝐶𝑋)𝑥)
97 oveq2 7221 . . . . . . 7 (𝑘 = 𝑥 → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑥))
98 oveq1 7220 . . . . . . 7 (𝑗 = 𝑦 → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑥) = (𝑦(𝑗𝐴, 𝑘𝐶𝑋)𝑥))
9997, 98sylan9eq 2798 . . . . . 6 ((𝑘 = 𝑥𝑗 = 𝑦) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = (𝑦(𝑗𝐴, 𝑘𝐶𝑋)𝑥))
10086, 79, 87, 88, 92, 96, 82, 99cbvmpox 7304 . . . . 5 (𝑘𝐷, 𝑗𝐸 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘)) = (𝑥𝐷, 𝑦𝑥 / 𝑘𝐸 ↦ (𝑦(𝑗𝐴, 𝑘𝐶𝑋)𝑥))
10176, 85, 1003eqtr4i 2775 . . . 4 (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ ((𝑗𝐴, 𝑘𝐶𝑋)‘ {𝑧})) = (𝑘𝐷, 𝑗𝐸 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘))
102 f1of 6661 . . . . . . 7 ((𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}): 𝑘𝐷 ({𝑘} × 𝐸)–1-1-onto 𝑗𝐴 ({𝑗} × 𝐶) → (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}): 𝑘𝐷 ({𝑘} × 𝐸)⟶ 𝑗𝐴 ({𝑗} × 𝐶))
10366, 102syl 17 . . . . . 6 (𝜑 → (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}): 𝑘𝐷 ({𝑘} × 𝐸)⟶ 𝑗𝐴 ({𝑗} × 𝐶))
104 eqid 2737 . . . . . . 7 (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}) = (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧})
105104fmpt 6927 . . . . . 6 (∀𝑧 𝑘𝐷 ({𝑘} × 𝐸) {𝑧} ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}): 𝑘𝐷 ({𝑘} × 𝐸)⟶ 𝑗𝐴 ({𝑗} × 𝐶))
106103, 105sylibr 237 . . . . 5 (𝜑 → ∀𝑧 𝑘𝐷 ({𝑘} × 𝐸) {𝑧} ∈ 𝑗𝐴 ({𝑗} × 𝐶))
107 eqidd 2738 . . . . 5 (𝜑 → (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}) = (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}))
10816feqmptd 6780 . . . . 5 (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋) = (𝑥 𝑗𝐴 ({𝑗} × 𝐶) ↦ ((𝑗𝐴, 𝑘𝐶𝑋)‘𝑥)))
109 fveq2 6717 . . . . 5 (𝑥 = {𝑧} → ((𝑗𝐴, 𝑘𝐶𝑋)‘𝑥) = ((𝑗𝐴, 𝑘𝐶𝑋)‘ {𝑧}))
110106, 107, 108, 109fmptcof 6945 . . . 4 (𝜑 → ((𝑗𝐴, 𝑘𝐶𝑋) ∘ (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧})) = (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ ((𝑗𝐴, 𝑘𝐶𝑋)‘ {𝑧})))
11112ex 416 . . . . . . . . 9 (𝜑 → ((𝑗𝐴𝑘𝐶) → 𝑋𝐵))
11214ovmpt4g 7356 . . . . . . . . . 10 ((𝑗𝐴𝑘𝐶𝑋𝐵) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋)
1131123expia 1123 . . . . . . . . 9 ((𝑗𝐴𝑘𝐶) → (𝑋𝐵 → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋))
114111, 113sylcom 30 . . . . . . . 8 (𝜑 → ((𝑗𝐴𝑘𝐶) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋))
11554, 114sylbird 263 . . . . . . 7 (𝜑 → ((𝑘𝐷𝑗𝐸) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋))
1161153impib 1118 . . . . . 6 ((𝜑𝑘𝐷𝑗𝐸) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋)
117116eqcomd 2743 . . . . 5 ((𝜑𝑘𝐷𝑗𝐸) → 𝑋 = (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘))
118117mpoeq3dva 7288 . . . 4 (𝜑 → (𝑘𝐷, 𝑗𝐸𝑋) = (𝑘𝐷, 𝑗𝐸 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘)))
119101, 110, 1183eqtr4a 2804 . . 3 (𝜑 → ((𝑗𝐴, 𝑘𝐶𝑋) ∘ (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧})) = (𝑘𝐷, 𝑗𝐸𝑋))
120119oveq2d 7229 . 2 (𝜑 → (𝐺 Σg ((𝑗𝐴, 𝑘𝐶𝑋) ∘ (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}))) = (𝐺 Σg (𝑘𝐷, 𝑗𝐸𝑋)))
12167, 120eqtrd 2777 1 (𝜑 → (𝐺 Σg (𝑗𝐴, 𝑘𝐶𝑋)) = (𝐺 Σg (𝑘𝐷, 𝑗𝐸𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wral 3061  Vcvv 3408  csb 3811  {csn 4541  cop 4547   cuni 4819   ciun 4904   class class class wbr 5053  cmpt 5135   × cxp 5549  ccnv 5550  ccom 5555  Rel wrel 5556  wf 6376  1-1-ontowf1o 6379  cfv 6380  (class class class)co 7213  cmpo 7215  Fincfn 8626  Basecbs 16760  0gc0g 16944   Σg cgsu 16945  CMndccmn 19170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-n0 12091  df-z 12177  df-uz 12439  df-fz 13096  df-fzo 13239  df-seq 13575  df-hash 13897  df-0g 16946  df-gsum 16947  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-cntz 18711  df-cmn 19172
This theorem is referenced by:  gsumcom  19362  gsumbagdiagOLD  20898  gsumbagdiag  20901
  Copyright terms: Public domain W3C validator