MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumcom2 Structured version   Visualization version   GIF version

Theorem gsumcom2 19993
Description: Two-dimensional commutation of a group sum. Note that while 𝐴 and 𝐷 are constants w.r.t. 𝑗, 𝑘, 𝐶(𝑗) and 𝐸(𝑘) are not. (Contributed by Mario Carneiro, 28-Dec-2014.)
Hypotheses
Ref Expression
gsum2d2.b 𝐵 = (Base‘𝐺)
gsum2d2.z 0 = (0g𝐺)
gsum2d2.g (𝜑𝐺 ∈ CMnd)
gsum2d2.a (𝜑𝐴𝑉)
gsum2d2.r ((𝜑𝑗𝐴) → 𝐶𝑊)
gsum2d2.f ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑋𝐵)
gsum2d2.u (𝜑𝑈 ∈ Fin)
gsum2d2.n ((𝜑 ∧ ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 )
gsumcom2.d (𝜑𝐷𝑌)
gsumcom2.c (𝜑 → ((𝑗𝐴𝑘𝐶) ↔ (𝑘𝐷𝑗𝐸)))
Assertion
Ref Expression
gsumcom2 (𝜑 → (𝐺 Σg (𝑗𝐴, 𝑘𝐶𝑋)) = (𝐺 Σg (𝑘𝐷, 𝑗𝐸𝑋)))
Distinct variable groups:   𝑗,𝑘,𝐵   𝐷,𝑗,𝑘   𝑗,𝐸   𝜑,𝑗,𝑘   𝐴,𝑗,𝑘   𝑗,𝐺,𝑘   𝑈,𝑗,𝑘   𝐶,𝑘   𝑗,𝑉   0 ,𝑗,𝑘
Allowed substitution hints:   𝐶(𝑗)   𝐸(𝑘)   𝑉(𝑘)   𝑊(𝑗,𝑘)   𝑋(𝑗,𝑘)   𝑌(𝑗,𝑘)

Proof of Theorem gsumcom2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsum2d2.b . . 3 𝐵 = (Base‘𝐺)
2 gsum2d2.z . . 3 0 = (0g𝐺)
3 gsum2d2.g . . 3 (𝜑𝐺 ∈ CMnd)
4 gsum2d2.a . . . 4 (𝜑𝐴𝑉)
5 vsnex 5434 . . . . . 6 {𝑗} ∈ V
6 gsum2d2.r . . . . . 6 ((𝜑𝑗𝐴) → 𝐶𝑊)
7 xpexg 7770 . . . . . 6 (({𝑗} ∈ V ∧ 𝐶𝑊) → ({𝑗} × 𝐶) ∈ V)
85, 6, 7sylancr 587 . . . . 5 ((𝜑𝑗𝐴) → ({𝑗} × 𝐶) ∈ V)
98ralrimiva 3146 . . . 4 (𝜑 → ∀𝑗𝐴 ({𝑗} × 𝐶) ∈ V)
10 iunexg 7988 . . . 4 ((𝐴𝑉 ∧ ∀𝑗𝐴 ({𝑗} × 𝐶) ∈ V) → 𝑗𝐴 ({𝑗} × 𝐶) ∈ V)
114, 9, 10syl2anc 584 . . 3 (𝜑 𝑗𝐴 ({𝑗} × 𝐶) ∈ V)
12 gsum2d2.f . . . . 5 ((𝜑 ∧ (𝑗𝐴𝑘𝐶)) → 𝑋𝐵)
1312ralrimivva 3202 . . . 4 (𝜑 → ∀𝑗𝐴𝑘𝐶 𝑋𝐵)
14 eqid 2737 . . . . 5 (𝑗𝐴, 𝑘𝐶𝑋) = (𝑗𝐴, 𝑘𝐶𝑋)
1514fmpox 8092 . . . 4 (∀𝑗𝐴𝑘𝐶 𝑋𝐵 ↔ (𝑗𝐴, 𝑘𝐶𝑋): 𝑗𝐴 ({𝑗} × 𝐶)⟶𝐵)
1613, 15sylib 218 . . 3 (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋): 𝑗𝐴 ({𝑗} × 𝐶)⟶𝐵)
17 gsum2d2.u . . . 4 (𝜑𝑈 ∈ Fin)
18 gsum2d2.n . . . 4 ((𝜑 ∧ ((𝑗𝐴𝑘𝐶) ∧ ¬ 𝑗𝑈𝑘)) → 𝑋 = 0 )
191, 2, 3, 4, 6, 12, 17, 18gsum2d2lem 19991 . . 3 (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋) finSupp 0 )
20 relxp 5703 . . . . . . 7 Rel ({𝑘} × 𝐸)
2120rgenw 3065 . . . . . 6 𝑘𝐷 Rel ({𝑘} × 𝐸)
22 reliun 5826 . . . . . 6 (Rel 𝑘𝐷 ({𝑘} × 𝐸) ↔ ∀𝑘𝐷 Rel ({𝑘} × 𝐸))
2321, 22mpbir 231 . . . . 5 Rel 𝑘𝐷 ({𝑘} × 𝐸)
24 cnvf1o 8136 . . . . 5 (Rel 𝑘𝐷 ({𝑘} × 𝐸) → (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}): 𝑘𝐷 ({𝑘} × 𝐸)–1-1-onto 𝑘𝐷 ({𝑘} × 𝐸))
2523, 24ax-mp 5 . . . 4 (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}): 𝑘𝐷 ({𝑘} × 𝐸)–1-1-onto 𝑘𝐷 ({𝑘} × 𝐸)
26 relxp 5703 . . . . . . . 8 Rel ({𝑗} × 𝐶)
2726rgenw 3065 . . . . . . 7 𝑗𝐴 Rel ({𝑗} × 𝐶)
28 reliun 5826 . . . . . . 7 (Rel 𝑗𝐴 ({𝑗} × 𝐶) ↔ ∀𝑗𝐴 Rel ({𝑗} × 𝐶))
2927, 28mpbir 231 . . . . . 6 Rel 𝑗𝐴 ({𝑗} × 𝐶)
30 relcnv 6122 . . . . . 6 Rel 𝑘𝐷 ({𝑘} × 𝐸)
31 nfv 1914 . . . . . . . 8 𝑘𝜑
32 nfv 1914 . . . . . . . . 9 𝑘𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶)
33 nfiu1 5027 . . . . . . . . . . 11 𝑘 𝑘𝐷 ({𝑘} × 𝐸)
3433nfcnv 5889 . . . . . . . . . 10 𝑘 𝑘𝐷 ({𝑘} × 𝐸)
3534nfel2 2924 . . . . . . . . 9 𝑘𝑥, 𝑦⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)
3632, 35nfbi 1903 . . . . . . . 8 𝑘(⟨𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸))
3731, 36nfim 1896 . . . . . . 7 𝑘(𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)))
38 opeq2 4874 . . . . . . . . . 10 (𝑘 = 𝑦 → ⟨𝑥, 𝑘⟩ = ⟨𝑥, 𝑦⟩)
3938eleq1d 2826 . . . . . . . . 9 (𝑘 = 𝑦 → (⟨𝑥, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶)))
4038eleq1d 2826 . . . . . . . . 9 (𝑘 = 𝑦 → (⟨𝑥, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)))
4139, 40bibi12d 345 . . . . . . . 8 (𝑘 = 𝑦 → ((⟨𝑥, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)) ↔ (⟨𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸))))
4241imbi2d 340 . . . . . . 7 (𝑘 = 𝑦 → ((𝜑 → (⟨𝑥, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸))) ↔ (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)))))
43 nfv 1914 . . . . . . . . 9 𝑗𝜑
44 nfiu1 5027 . . . . . . . . . . 11 𝑗 𝑗𝐴 ({𝑗} × 𝐶)
4544nfel2 2924 . . . . . . . . . 10 𝑗𝑥, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶)
46 nfv 1914 . . . . . . . . . 10 𝑗𝑥, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)
4745, 46nfbi 1903 . . . . . . . . 9 𝑗(⟨𝑥, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸))
4843, 47nfim 1896 . . . . . . . 8 𝑗(𝜑 → (⟨𝑥, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)))
49 opeq1 4873 . . . . . . . . . . 11 (𝑗 = 𝑥 → ⟨𝑗, 𝑘⟩ = ⟨𝑥, 𝑘⟩)
5049eleq1d 2826 . . . . . . . . . 10 (𝑗 = 𝑥 → (⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶)))
5149eleq1d 2826 . . . . . . . . . 10 (𝑗 = 𝑥 → (⟨𝑗, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸) ↔ ⟨𝑥, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)))
5250, 51bibi12d 345 . . . . . . . . 9 (𝑗 = 𝑥 → ((⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑗, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)) ↔ (⟨𝑥, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸))))
5352imbi2d 340 . . . . . . . 8 (𝑗 = 𝑥 → ((𝜑 → (⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑗, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸))) ↔ (𝜑 → (⟨𝑥, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)))))
54 gsumcom2.c . . . . . . . . . 10 (𝜑 → ((𝑗𝐴𝑘𝐶) ↔ (𝑘𝐷𝑗𝐸)))
55 opeliunxp 5752 . . . . . . . . . 10 (⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ (𝑗𝐴𝑘𝐶))
56 opeliunxp 5752 . . . . . . . . . 10 (⟨𝑘, 𝑗⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸) ↔ (𝑘𝐷𝑗𝐸))
5754, 55, 563bitr4g 314 . . . . . . . . 9 (𝜑 → (⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑘, 𝑗⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)))
58 vex 3484 . . . . . . . . . 10 𝑗 ∈ V
59 vex 3484 . . . . . . . . . 10 𝑘 ∈ V
6058, 59opelcnv 5892 . . . . . . . . 9 (⟨𝑗, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸) ↔ ⟨𝑘, 𝑗⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸))
6157, 60bitr4di 289 . . . . . . . 8 (𝜑 → (⟨𝑗, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑗, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)))
6248, 53, 61chvarfv 2240 . . . . . . 7 (𝜑 → (⟨𝑥, 𝑘⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑘⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)))
6337, 42, 62chvarfv 2240 . . . . . 6 (𝜑 → (⟨𝑥, 𝑦⟩ ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑘𝐷 ({𝑘} × 𝐸)))
6429, 30, 63eqrelrdv 5802 . . . . 5 (𝜑 𝑗𝐴 ({𝑗} × 𝐶) = 𝑘𝐷 ({𝑘} × 𝐸))
6564f1oeq3d 6845 . . . 4 (𝜑 → ((𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}): 𝑘𝐷 ({𝑘} × 𝐸)–1-1-onto 𝑗𝐴 ({𝑗} × 𝐶) ↔ (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}): 𝑘𝐷 ({𝑘} × 𝐸)–1-1-onto 𝑘𝐷 ({𝑘} × 𝐸)))
6625, 65mpbiri 258 . . 3 (𝜑 → (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}): 𝑘𝐷 ({𝑘} × 𝐸)–1-1-onto 𝑗𝐴 ({𝑗} × 𝐶))
671, 2, 3, 11, 16, 19, 66gsumf1o 19934 . 2 (𝜑 → (𝐺 Σg (𝑗𝐴, 𝑘𝐶𝑋)) = (𝐺 Σg ((𝑗𝐴, 𝑘𝐶𝑋) ∘ (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}))))
68 sneq 4636 . . . . . . . . . . 11 (𝑧 = ⟨𝑥, 𝑦⟩ → {𝑧} = {⟨𝑥, 𝑦⟩})
6968cnveqd 5886 . . . . . . . . . 10 (𝑧 = ⟨𝑥, 𝑦⟩ → {𝑧} = {⟨𝑥, 𝑦⟩})
7069unieqd 4920 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → {𝑧} = {⟨𝑥, 𝑦⟩})
71 opswap 6249 . . . . . . . . 9 {⟨𝑥, 𝑦⟩} = ⟨𝑦, 𝑥
7270, 71eqtrdi 2793 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → {𝑧} = ⟨𝑦, 𝑥⟩)
7372fveq2d 6910 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝑗𝐴, 𝑘𝐶𝑋)‘ {𝑧}) = ((𝑗𝐴, 𝑘𝐶𝑋)‘⟨𝑦, 𝑥⟩))
74 df-ov 7434 . . . . . . 7 (𝑦(𝑗𝐴, 𝑘𝐶𝑋)𝑥) = ((𝑗𝐴, 𝑘𝐶𝑋)‘⟨𝑦, 𝑥⟩)
7573, 74eqtr4di 2795 . . . . . 6 (𝑧 = ⟨𝑥, 𝑦⟩ → ((𝑗𝐴, 𝑘𝐶𝑋)‘ {𝑧}) = (𝑦(𝑗𝐴, 𝑘𝐶𝑋)𝑥))
7675mpomptx 7546 . . . . 5 (𝑧 𝑥𝐷 ({𝑥} × 𝑥 / 𝑘𝐸) ↦ ((𝑗𝐴, 𝑘𝐶𝑋)‘ {𝑧})) = (𝑥𝐷, 𝑦𝑥 / 𝑘𝐸 ↦ (𝑦(𝑗𝐴, 𝑘𝐶𝑋)𝑥))
77 nfcv 2905 . . . . . . 7 𝑥({𝑘} × 𝐸)
78 nfcv 2905 . . . . . . . 8 𝑘{𝑥}
79 nfcsb1v 3923 . . . . . . . 8 𝑘𝑥 / 𝑘𝐸
8078, 79nfxp 5718 . . . . . . 7 𝑘({𝑥} × 𝑥 / 𝑘𝐸)
81 sneq 4636 . . . . . . . 8 (𝑘 = 𝑥 → {𝑘} = {𝑥})
82 csbeq1a 3913 . . . . . . . 8 (𝑘 = 𝑥𝐸 = 𝑥 / 𝑘𝐸)
8381, 82xpeq12d 5716 . . . . . . 7 (𝑘 = 𝑥 → ({𝑘} × 𝐸) = ({𝑥} × 𝑥 / 𝑘𝐸))
8477, 80, 83cbviun 5036 . . . . . 6 𝑘𝐷 ({𝑘} × 𝐸) = 𝑥𝐷 ({𝑥} × 𝑥 / 𝑘𝐸)
8584mpteq1i 5238 . . . . 5 (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ ((𝑗𝐴, 𝑘𝐶𝑋)‘ {𝑧})) = (𝑧 𝑥𝐷 ({𝑥} × 𝑥 / 𝑘𝐸) ↦ ((𝑗𝐴, 𝑘𝐶𝑋)‘ {𝑧}))
86 nfcv 2905 . . . . . 6 𝑥𝐸
87 nfcv 2905 . . . . . 6 𝑥(𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘)
88 nfcv 2905 . . . . . 6 𝑦(𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘)
89 nfcv 2905 . . . . . . 7 𝑘𝑦
90 nfmpo2 7514 . . . . . . 7 𝑘(𝑗𝐴, 𝑘𝐶𝑋)
91 nfcv 2905 . . . . . . 7 𝑘𝑥
9289, 90, 91nfov 7461 . . . . . 6 𝑘(𝑦(𝑗𝐴, 𝑘𝐶𝑋)𝑥)
93 nfcv 2905 . . . . . . 7 𝑗𝑦
94 nfmpo1 7513 . . . . . . 7 𝑗(𝑗𝐴, 𝑘𝐶𝑋)
95 nfcv 2905 . . . . . . 7 𝑗𝑥
9693, 94, 95nfov 7461 . . . . . 6 𝑗(𝑦(𝑗𝐴, 𝑘𝐶𝑋)𝑥)
97 oveq2 7439 . . . . . . 7 (𝑘 = 𝑥 → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑥))
98 oveq1 7438 . . . . . . 7 (𝑗 = 𝑦 → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑥) = (𝑦(𝑗𝐴, 𝑘𝐶𝑋)𝑥))
9997, 98sylan9eq 2797 . . . . . 6 ((𝑘 = 𝑥𝑗 = 𝑦) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = (𝑦(𝑗𝐴, 𝑘𝐶𝑋)𝑥))
10086, 79, 87, 88, 92, 96, 82, 99cbvmpox 7526 . . . . 5 (𝑘𝐷, 𝑗𝐸 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘)) = (𝑥𝐷, 𝑦𝑥 / 𝑘𝐸 ↦ (𝑦(𝑗𝐴, 𝑘𝐶𝑋)𝑥))
10176, 85, 1003eqtr4i 2775 . . . 4 (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ ((𝑗𝐴, 𝑘𝐶𝑋)‘ {𝑧})) = (𝑘𝐷, 𝑗𝐸 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘))
102 f1of 6848 . . . . . . 7 ((𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}): 𝑘𝐷 ({𝑘} × 𝐸)–1-1-onto 𝑗𝐴 ({𝑗} × 𝐶) → (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}): 𝑘𝐷 ({𝑘} × 𝐸)⟶ 𝑗𝐴 ({𝑗} × 𝐶))
10366, 102syl 17 . . . . . 6 (𝜑 → (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}): 𝑘𝐷 ({𝑘} × 𝐸)⟶ 𝑗𝐴 ({𝑗} × 𝐶))
104 eqid 2737 . . . . . . 7 (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}) = (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧})
105104fmpt 7130 . . . . . 6 (∀𝑧 𝑘𝐷 ({𝑘} × 𝐸) {𝑧} ∈ 𝑗𝐴 ({𝑗} × 𝐶) ↔ (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}): 𝑘𝐷 ({𝑘} × 𝐸)⟶ 𝑗𝐴 ({𝑗} × 𝐶))
106103, 105sylibr 234 . . . . 5 (𝜑 → ∀𝑧 𝑘𝐷 ({𝑘} × 𝐸) {𝑧} ∈ 𝑗𝐴 ({𝑗} × 𝐶))
107 eqidd 2738 . . . . 5 (𝜑 → (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}) = (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}))
10816feqmptd 6977 . . . . 5 (𝜑 → (𝑗𝐴, 𝑘𝐶𝑋) = (𝑥 𝑗𝐴 ({𝑗} × 𝐶) ↦ ((𝑗𝐴, 𝑘𝐶𝑋)‘𝑥)))
109 fveq2 6906 . . . . 5 (𝑥 = {𝑧} → ((𝑗𝐴, 𝑘𝐶𝑋)‘𝑥) = ((𝑗𝐴, 𝑘𝐶𝑋)‘ {𝑧}))
110106, 107, 108, 109fmptcof 7150 . . . 4 (𝜑 → ((𝑗𝐴, 𝑘𝐶𝑋) ∘ (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧})) = (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ ((𝑗𝐴, 𝑘𝐶𝑋)‘ {𝑧})))
11112ex 412 . . . . . . . . 9 (𝜑 → ((𝑗𝐴𝑘𝐶) → 𝑋𝐵))
11214ovmpt4g 7580 . . . . . . . . . 10 ((𝑗𝐴𝑘𝐶𝑋𝐵) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋)
1131123expia 1122 . . . . . . . . 9 ((𝑗𝐴𝑘𝐶) → (𝑋𝐵 → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋))
114111, 113sylcom 30 . . . . . . . 8 (𝜑 → ((𝑗𝐴𝑘𝐶) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋))
11554, 114sylbird 260 . . . . . . 7 (𝜑 → ((𝑘𝐷𝑗𝐸) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋))
1161153impib 1117 . . . . . 6 ((𝜑𝑘𝐷𝑗𝐸) → (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘) = 𝑋)
117116eqcomd 2743 . . . . 5 ((𝜑𝑘𝐷𝑗𝐸) → 𝑋 = (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘))
118117mpoeq3dva 7510 . . . 4 (𝜑 → (𝑘𝐷, 𝑗𝐸𝑋) = (𝑘𝐷, 𝑗𝐸 ↦ (𝑗(𝑗𝐴, 𝑘𝐶𝑋)𝑘)))
119101, 110, 1183eqtr4a 2803 . . 3 (𝜑 → ((𝑗𝐴, 𝑘𝐶𝑋) ∘ (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧})) = (𝑘𝐷, 𝑗𝐸𝑋))
120119oveq2d 7447 . 2 (𝜑 → (𝐺 Σg ((𝑗𝐴, 𝑘𝐶𝑋) ∘ (𝑧 𝑘𝐷 ({𝑘} × 𝐸) ↦ {𝑧}))) = (𝐺 Σg (𝑘𝐷, 𝑗𝐸𝑋)))
12167, 120eqtrd 2777 1 (𝜑 → (𝐺 Σg (𝑗𝐴, 𝑘𝐶𝑋)) = (𝐺 Σg (𝑘𝐷, 𝑗𝐸𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  Vcvv 3480  csb 3899  {csn 4626  cop 4632   cuni 4907   ciun 4991   class class class wbr 5143  cmpt 5225   × cxp 5683  ccnv 5684  ccom 5689  Rel wrel 5690  wf 6557  1-1-ontowf1o 6560  cfv 6561  (class class class)co 7431  cmpo 7433  Fincfn 8985  Basecbs 17247  0gc0g 17484   Σg cgsu 17485  CMndccmn 19798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-0g 17486  df-gsum 17487  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-cntz 19335  df-cmn 19800
This theorem is referenced by:  gsumcom  19995  gsumbagdiag  21951
  Copyright terms: Public domain W3C validator