MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcnvres Structured version   Visualization version   GIF version

Theorem fcnvres 6596
Description: The converse of a restriction of a function. (Contributed by NM, 26-Mar-1998.)
Assertion
Ref Expression
fcnvres (𝐹:𝐴𝐵(𝐹𝐴) = (𝐹𝐵))

Proof of Theorem fcnvres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5972 . 2 Rel (𝐹𝐴)
2 relres 5880 . 2 Rel (𝐹𝐵)
3 opelf 6580 . . . . . . 7 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → (𝑥𝐴𝑦𝐵))
43simpld 498 . . . . . 6 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → 𝑥𝐴)
54ex 416 . . . . 5 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥𝐴))
65pm4.71rd 566 . . . 4 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ (𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
7 vex 3412 . . . . . 6 𝑦 ∈ V
8 vex 3412 . . . . . 6 𝑥 ∈ V
97, 8opelcnv 5750 . . . . 5 (⟨𝑦, 𝑥⟩ ∈ (𝐹𝐴) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐹𝐴))
107opelresi 5859 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (𝐹𝐴) ↔ (𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
119, 10bitri 278 . . . 4 (⟨𝑦, 𝑥⟩ ∈ (𝐹𝐴) ↔ (𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
126, 11bitr4di 292 . . 3 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐹𝐴)))
133simprd 499 . . . . . 6 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → 𝑦𝐵)
1413ex 416 . . . . 5 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑦𝐵))
1514pm4.71rd 566 . . . 4 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ (𝑦𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
168opelresi 5859 . . . . 5 (⟨𝑦, 𝑥⟩ ∈ (𝐹𝐵) ↔ (𝑦𝐵 ∧ ⟨𝑦, 𝑥⟩ ∈ 𝐹))
177, 8opelcnv 5750 . . . . . 6 (⟨𝑦, 𝑥⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹)
1817anbi2i 626 . . . . 5 ((𝑦𝐵 ∧ ⟨𝑦, 𝑥⟩ ∈ 𝐹) ↔ (𝑦𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
1916, 18bitri 278 . . . 4 (⟨𝑦, 𝑥⟩ ∈ (𝐹𝐵) ↔ (𝑦𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
2015, 19bitr4di 292 . . 3 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐹𝐵)))
2112, 20bitr3d 284 . 2 (𝐹:𝐴𝐵 → (⟨𝑦, 𝑥⟩ ∈ (𝐹𝐴) ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐹𝐵)))
221, 2, 21eqrelrdv 5662 1 (𝐹:𝐴𝐵(𝐹𝐴) = (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  cop 4547  ccnv 5550  cres 5553  wf 6376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-op 4548  df-br 5054  df-opab 5116  df-xp 5557  df-rel 5558  df-cnv 5559  df-dm 5561  df-rn 5562  df-res 5563  df-fun 6382  df-fn 6383  df-f 6384
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator