MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcnvres Structured version   Visualization version   GIF version

Theorem fcnvres 6651
Description: The converse of a restriction of a function. (Contributed by NM, 26-Mar-1998.)
Assertion
Ref Expression
fcnvres (𝐹:𝐴𝐵(𝐹𝐴) = (𝐹𝐵))

Proof of Theorem fcnvres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 6012 . 2 Rel (𝐹𝐴)
2 relres 5920 . 2 Rel (𝐹𝐵)
3 opelf 6635 . . . . . . 7 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → (𝑥𝐴𝑦𝐵))
43simpld 495 . . . . . 6 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → 𝑥𝐴)
54ex 413 . . . . 5 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥𝐴))
65pm4.71rd 563 . . . 4 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ (𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
7 vex 3436 . . . . . 6 𝑦 ∈ V
8 vex 3436 . . . . . 6 𝑥 ∈ V
97, 8opelcnv 5790 . . . . 5 (⟨𝑦, 𝑥⟩ ∈ (𝐹𝐴) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐹𝐴))
107opelresi 5899 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (𝐹𝐴) ↔ (𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
119, 10bitri 274 . . . 4 (⟨𝑦, 𝑥⟩ ∈ (𝐹𝐴) ↔ (𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
126, 11bitr4di 289 . . 3 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐹𝐴)))
133simprd 496 . . . . . 6 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → 𝑦𝐵)
1413ex 413 . . . . 5 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑦𝐵))
1514pm4.71rd 563 . . . 4 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ (𝑦𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
168opelresi 5899 . . . . 5 (⟨𝑦, 𝑥⟩ ∈ (𝐹𝐵) ↔ (𝑦𝐵 ∧ ⟨𝑦, 𝑥⟩ ∈ 𝐹))
177, 8opelcnv 5790 . . . . . 6 (⟨𝑦, 𝑥⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹)
1817anbi2i 623 . . . . 5 ((𝑦𝐵 ∧ ⟨𝑦, 𝑥⟩ ∈ 𝐹) ↔ (𝑦𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
1916, 18bitri 274 . . . 4 (⟨𝑦, 𝑥⟩ ∈ (𝐹𝐵) ↔ (𝑦𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
2015, 19bitr4di 289 . . 3 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐹𝐵)))
2112, 20bitr3d 280 . 2 (𝐹:𝐴𝐵 → (⟨𝑦, 𝑥⟩ ∈ (𝐹𝐴) ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐹𝐵)))
221, 2, 21eqrelrdv 5702 1 (𝐹:𝐴𝐵(𝐹𝐴) = (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  cop 4567  ccnv 5588  cres 5591  wf 6429
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-dm 5599  df-rn 5600  df-res 5601  df-fun 6435  df-fn 6436  df-f 6437
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator