MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcnvres Structured version   Visualization version   GIF version

Theorem fcnvres 6798
Description: The converse of a restriction of a function. (Contributed by NM, 26-Mar-1998.)
Assertion
Ref Expression
fcnvres (𝐹:𝐴𝐵(𝐹𝐴) = (𝐹𝐵))

Proof of Theorem fcnvres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 6134 . 2 Rel (𝐹𝐴)
2 relres 6035 . 2 Rel (𝐹𝐵)
3 opelf 6782 . . . . . . 7 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → (𝑥𝐴𝑦𝐵))
43simpld 494 . . . . . 6 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → 𝑥𝐴)
54ex 412 . . . . 5 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥𝐴))
65pm4.71rd 562 . . . 4 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ (𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
7 vex 3492 . . . . . 6 𝑦 ∈ V
8 vex 3492 . . . . . 6 𝑥 ∈ V
97, 8opelcnv 5906 . . . . 5 (⟨𝑦, 𝑥⟩ ∈ (𝐹𝐴) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐹𝐴))
107opelresi 6017 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (𝐹𝐴) ↔ (𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
119, 10bitri 275 . . . 4 (⟨𝑦, 𝑥⟩ ∈ (𝐹𝐴) ↔ (𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
126, 11bitr4di 289 . . 3 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐹𝐴)))
133simprd 495 . . . . . 6 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → 𝑦𝐵)
1413ex 412 . . . . 5 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑦𝐵))
1514pm4.71rd 562 . . . 4 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ (𝑦𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
168opelresi 6017 . . . . 5 (⟨𝑦, 𝑥⟩ ∈ (𝐹𝐵) ↔ (𝑦𝐵 ∧ ⟨𝑦, 𝑥⟩ ∈ 𝐹))
177, 8opelcnv 5906 . . . . . 6 (⟨𝑦, 𝑥⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹)
1817anbi2i 622 . . . . 5 ((𝑦𝐵 ∧ ⟨𝑦, 𝑥⟩ ∈ 𝐹) ↔ (𝑦𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
1916, 18bitri 275 . . . 4 (⟨𝑦, 𝑥⟩ ∈ (𝐹𝐵) ↔ (𝑦𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
2015, 19bitr4di 289 . . 3 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐹𝐵)))
2112, 20bitr3d 281 . 2 (𝐹:𝐴𝐵 → (⟨𝑦, 𝑥⟩ ∈ (𝐹𝐴) ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐹𝐵)))
221, 2, 21eqrelrdv 5816 1 (𝐹:𝐴𝐵(𝐹𝐴) = (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  cop 4654  ccnv 5699  cres 5702  wf 6569
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-fun 6575  df-fn 6576  df-f 6577
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator