MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fcnvres Structured version   Visualization version   GIF version

Theorem fcnvres 6383
Description: The converse of a restriction of a function. (Contributed by NM, 26-Mar-1998.)
Assertion
Ref Expression
fcnvres (𝐹:𝐴𝐵(𝐹𝐴) = (𝐹𝐵))

Proof of Theorem fcnvres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 5805 . 2 Rel (𝐹𝐴)
2 relres 5725 . 2 Rel (𝐹𝐵)
3 opelf 6366 . . . . . . 7 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → (𝑥𝐴𝑦𝐵))
43simpld 487 . . . . . 6 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → 𝑥𝐴)
54ex 405 . . . . 5 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥𝐴))
65pm4.71rd 555 . . . 4 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ (𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
7 vex 3415 . . . . . 6 𝑦 ∈ V
8 vex 3415 . . . . . 6 𝑥 ∈ V
97, 8opelcnv 5599 . . . . 5 (⟨𝑦, 𝑥⟩ ∈ (𝐹𝐴) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐹𝐴))
107opelresi 5700 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ (𝐹𝐴) ↔ (𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
119, 10bitri 267 . . . 4 (⟨𝑦, 𝑥⟩ ∈ (𝐹𝐴) ↔ (𝑥𝐴 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
126, 11syl6bbr 281 . . 3 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐹𝐴)))
133simprd 488 . . . . . 6 ((𝐹:𝐴𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹) → 𝑦𝐵)
1413ex 405 . . . . 5 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑦𝐵))
1514pm4.71rd 555 . . . 4 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ (𝑦𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹)))
168opelresi 5700 . . . . 5 (⟨𝑦, 𝑥⟩ ∈ (𝐹𝐵) ↔ (𝑦𝐵 ∧ ⟨𝑦, 𝑥⟩ ∈ 𝐹))
177, 8opelcnv 5599 . . . . . 6 (⟨𝑦, 𝑥⟩ ∈ 𝐹 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹)
1817anbi2i 613 . . . . 5 ((𝑦𝐵 ∧ ⟨𝑦, 𝑥⟩ ∈ 𝐹) ↔ (𝑦𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
1916, 18bitri 267 . . . 4 (⟨𝑦, 𝑥⟩ ∈ (𝐹𝐵) ↔ (𝑦𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
2015, 19syl6bbr 281 . . 3 (𝐹:𝐴𝐵 → (⟨𝑥, 𝑦⟩ ∈ 𝐹 ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐹𝐵)))
2112, 20bitr3d 273 . 2 (𝐹:𝐴𝐵 → (⟨𝑦, 𝑥⟩ ∈ (𝐹𝐴) ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐹𝐵)))
221, 2, 21eqrelrdv 5512 1 (𝐹:𝐴𝐵(𝐹𝐴) = (𝐹𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1507  wcel 2048  cop 4445  ccnv 5403  cres 5406  wf 6182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1964  ax-8 2050  ax-9 2057  ax-10 2077  ax-11 2091  ax-12 2104  ax-13 2299  ax-ext 2747  ax-sep 5058  ax-nul 5065  ax-pr 5184
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2014  df-mo 2544  df-eu 2580  df-clab 2756  df-cleq 2768  df-clel 2843  df-nfc 2915  df-ral 3090  df-rex 3091  df-rab 3094  df-v 3414  df-dif 3831  df-un 3833  df-in 3835  df-ss 3842  df-nul 4178  df-if 4349  df-sn 4440  df-pr 4442  df-op 4446  df-br 4928  df-opab 4990  df-xp 5410  df-rel 5411  df-cnv 5412  df-dm 5414  df-rn 5415  df-res 5416  df-fun 6188  df-fn 6189  df-f 6190
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator