Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dih1dimatlem Structured version   Visualization version   GIF version

Theorem dih1dimatlem 41332
Description: Lemma for dih1dimat 41333. (Contributed by NM, 10-Apr-2014.)
Hypotheses
Ref Expression
dih1dimat.h 𝐻 = (LHyp‘𝐾)
dih1dimat.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dih1dimat.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dih1dimat.a 𝐴 = (LSAtoms‘𝑈)
dih1dimat.b 𝐵 = (Base‘𝐾)
dih1dimat.l = (le‘𝐾)
dih1dimat.c 𝐶 = (Atoms‘𝐾)
dih1dimat.p 𝑃 = ((oc‘𝐾)‘𝑊)
dih1dimat.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dih1dimat.r 𝑅 = ((trL‘𝐾)‘𝑊)
dih1dimat.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dih1dimat.o 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
dih1dimat.d 𝐹 = (Scalar‘𝑈)
dih1dimat.j 𝐽 = (invr𝐹)
dih1dimat.v 𝑉 = (Base‘𝑈)
dih1dimat.m · = ( ·𝑠𝑈)
dih1dimat.s 𝑆 = (LSubSp‘𝑈)
dih1dimat.n 𝑁 = (LSpan‘𝑈)
dih1dimat.z 0 = (0g𝑈)
dih1dimat.g 𝐺 = (𝑇 (𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃))
Assertion
Ref Expression
dih1dimatlem (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝐴) → 𝐷 ∈ ran 𝐼)
Distinct variable groups:   ,   𝐵,   𝑓,𝑠,𝐸   𝐶,   ,𝐽   𝑓,𝑁,𝑠   𝑓,,𝐾,𝑠   𝑇,𝑓,,𝑠   𝑈,𝑓,,𝑠   𝑓,𝐻,,𝑠   𝑓,𝑉,𝑠   𝑓,𝑊,,𝑠   𝑓,𝐼,𝑠   𝑃,
Allowed substitution hints:   𝐴(𝑓,,𝑠)   𝐵(𝑓,𝑠)   𝐶(𝑓,𝑠)   𝐷(𝑓,,𝑠)   𝑃(𝑓,𝑠)   𝑅(𝑓,,𝑠)   𝑆(𝑓,,𝑠)   · (𝑓,,𝑠)   𝐸()   𝐹(𝑓,,𝑠)   𝐺(𝑓,,𝑠)   𝐼()   𝐽(𝑓,𝑠)   (𝑓,𝑠)   𝑁()   𝑂(𝑓,,𝑠)   𝑉()   0 (𝑓,,𝑠)

Proof of Theorem dih1dimatlem
Dummy variables 𝑣 𝑔 𝑖 𝑝 𝑟 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dih1dimat.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dih1dimat.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 id 22 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3dvhlvec 41112 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LVec)
5 dih1dimat.v . . . . 5 𝑉 = (Base‘𝑈)
6 dih1dimat.n . . . . 5 𝑁 = (LSpan‘𝑈)
7 dih1dimat.z . . . . 5 0 = (0g𝑈)
8 dih1dimat.a . . . . 5 𝐴 = (LSAtoms‘𝑈)
95, 6, 7, 8islsat 38993 . . . 4 (𝑈 ∈ LVec → (𝐷𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })𝐷 = (𝑁‘{𝑣})))
104, 9syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐷𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })𝐷 = (𝑁‘{𝑣})))
1110biimpa 476 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝐴) → ∃𝑣 ∈ (𝑉 ∖ { 0 })𝐷 = (𝑁‘{𝑣}))
12 eldifi 4130 . . . . . . . 8 (𝑣 ∈ (𝑉 ∖ { 0 }) → 𝑣𝑉)
13 dih1dimat.t . . . . . . . . . 10 𝑇 = ((LTrn‘𝐾)‘𝑊)
14 dih1dimat.e . . . . . . . . . 10 𝐸 = ((TEndo‘𝐾)‘𝑊)
151, 13, 14, 2, 5dvhvbase 41090 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑉 = (𝑇 × 𝐸))
1615eleq2d 2826 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑣𝑉𝑣 ∈ (𝑇 × 𝐸)))
1712, 16imbitrid 244 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑣 ∈ (𝑉 ∖ { 0 }) → 𝑣 ∈ (𝑇 × 𝐸)))
1817imp 406 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑣 ∈ (𝑉 ∖ { 0 })) → 𝑣 ∈ (𝑇 × 𝐸))
19 simpr 484 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠 = 𝑂) → 𝑠 = 𝑂)
2019opeq2d 4879 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠 = 𝑂) → ⟨𝑓, 𝑠⟩ = ⟨𝑓, 𝑂⟩)
2120sneqd 4637 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠 = 𝑂) → {⟨𝑓, 𝑠⟩} = {⟨𝑓, 𝑂⟩})
2221fveq2d 6909 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠 = 𝑂) → (𝑁‘{⟨𝑓, 𝑠⟩}) = (𝑁‘{⟨𝑓, 𝑂⟩}))
23 simpl 482 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
24 dih1dimat.b . . . . . . . . . . . . . . . . 17 𝐵 = (Base‘𝐾)
25 dih1dimat.r . . . . . . . . . . . . . . . . 17 𝑅 = ((trL‘𝐾)‘𝑊)
2624, 1, 13, 25trlcl 40167 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝑅𝑓) ∈ 𝐵)
27 dih1dimat.l . . . . . . . . . . . . . . . . 17 = (le‘𝐾)
2827, 1, 13, 25trlle 40187 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝑅𝑓) 𝑊)
29 dih1dimat.i . . . . . . . . . . . . . . . . 17 𝐼 = ((DIsoH‘𝐾)‘𝑊)
30 eqid 2736 . . . . . . . . . . . . . . . . 17 ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊)
3124, 27, 1, 29, 30dihvalb 41240 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝑓) ∈ 𝐵 ∧ (𝑅𝑓) 𝑊)) → (𝐼‘(𝑅𝑓)) = (((DIsoB‘𝐾)‘𝑊)‘(𝑅𝑓)))
3223, 26, 28, 31syl12anc 836 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝐼‘(𝑅𝑓)) = (((DIsoB‘𝐾)‘𝑊)‘(𝑅𝑓)))
33 dih1dimat.o . . . . . . . . . . . . . . . 16 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
3424, 1, 13, 25, 33, 2, 30, 6dib1dim2 41171 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (((DIsoB‘𝐾)‘𝑊)‘(𝑅𝑓)) = (𝑁‘{⟨𝑓, 𝑂⟩}))
3532, 34eqtr2d 2777 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝑁‘{⟨𝑓, 𝑂⟩}) = (𝐼‘(𝑅𝑓)))
36 dih1dimat.s . . . . . . . . . . . . . . . . . 18 𝑆 = (LSubSp‘𝑈)
3724, 1, 29, 2, 36dihf11 41270 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:𝐵1-1𝑆)
3837adantr 480 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → 𝐼:𝐵1-1𝑆)
39 f1fn 6804 . . . . . . . . . . . . . . . 16 (𝐼:𝐵1-1𝑆𝐼 Fn 𝐵)
4038, 39syl 17 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → 𝐼 Fn 𝐵)
41 fnfvelrn 7099 . . . . . . . . . . . . . . 15 ((𝐼 Fn 𝐵 ∧ (𝑅𝑓) ∈ 𝐵) → (𝐼‘(𝑅𝑓)) ∈ ran 𝐼)
4240, 26, 41syl2anc 584 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝐼‘(𝑅𝑓)) ∈ ran 𝐼)
4335, 42eqeltrd 2840 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝑁‘{⟨𝑓, 𝑂⟩}) ∈ ran 𝐼)
4443adantrr 717 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) → (𝑁‘{⟨𝑓, 𝑂⟩}) ∈ ran 𝐼)
4544adantr 480 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠 = 𝑂) → (𝑁‘{⟨𝑓, 𝑂⟩}) ∈ ran 𝐼)
4622, 45eqeltrd 2840 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠 = 𝑂) → (𝑁‘{⟨𝑓, 𝑠⟩}) ∈ ran 𝐼)
47 simpll 766 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝐾 ∈ HL ∧ 𝑊𝐻))
48 dih1dimat.d . . . . . . . . . . . . . . . . . . 19 𝐹 = (Scalar‘𝑈)
49 eqid 2736 . . . . . . . . . . . . . . . . . . 19 (Base‘𝐹) = (Base‘𝐹)
501, 14, 2, 48, 49dvhbase 41086 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐹) = 𝐸)
5147, 50syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (Base‘𝐹) = 𝐸)
5251rexeqdv 3326 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (∃𝑡 ∈ (Base‘𝐹)𝑢 = (𝑡 ·𝑓, 𝑠⟩) ↔ ∃𝑡𝐸 𝑢 = (𝑡 ·𝑓, 𝑠⟩)))
53 simplll 774 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → (𝐾 ∈ HL ∧ 𝑊𝐻))
54 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → 𝑡𝐸)
55 opelxpi 5721 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓𝑇𝑠𝐸) → ⟨𝑓, 𝑠⟩ ∈ (𝑇 × 𝐸))
5655ad3antlr 731 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → ⟨𝑓, 𝑠⟩ ∈ (𝑇 × 𝐸))
57 dih1dimat.m . . . . . . . . . . . . . . . . . . . . 21 · = ( ·𝑠𝑈)
581, 13, 14, 2, 57dvhvscacl 41106 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸 ∧ ⟨𝑓, 𝑠⟩ ∈ (𝑇 × 𝐸))) → (𝑡 ·𝑓, 𝑠⟩) ∈ (𝑇 × 𝐸))
5953, 54, 56, 58syl12anc 836 . . . . . . . . . . . . . . . . . . 19 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → (𝑡 ·𝑓, 𝑠⟩) ∈ (𝑇 × 𝐸))
60 eleq1a 2835 . . . . . . . . . . . . . . . . . . 19 ((𝑡 ·𝑓, 𝑠⟩) ∈ (𝑇 × 𝐸) → (𝑢 = (𝑡 ·𝑓, 𝑠⟩) → 𝑢 ∈ (𝑇 × 𝐸)))
6159, 60syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → (𝑢 = (𝑡 ·𝑓, 𝑠⟩) → 𝑢 ∈ (𝑇 × 𝐸)))
6261rexlimdva 3154 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (∃𝑡𝐸 𝑢 = (𝑡 ·𝑓, 𝑠⟩) → 𝑢 ∈ (𝑇 × 𝐸)))
6362pm4.71rd 562 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (∃𝑡𝐸 𝑢 = (𝑡 ·𝑓, 𝑠⟩) ↔ (𝑢 ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸 𝑢 = (𝑡 ·𝑓, 𝑠⟩))))
64 simplrl 776 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝑓𝑇)
6564adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → 𝑓𝑇)
66 simplrr 777 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝑠𝐸)
6766adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → 𝑠𝐸)
681, 13, 14, 2, 57dvhopvsca 41105 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸𝑓𝑇𝑠𝐸)) → (𝑡 ·𝑓, 𝑠⟩) = ⟨(𝑡𝑓), (𝑡𝑠)⟩)
6953, 54, 65, 67, 68syl13anc 1373 . . . . . . . . . . . . . . . . . . 19 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → (𝑡 ·𝑓, 𝑠⟩) = ⟨(𝑡𝑓), (𝑡𝑠)⟩)
7069eqeq2d 2747 . . . . . . . . . . . . . . . . . 18 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → (𝑢 = (𝑡 ·𝑓, 𝑠⟩) ↔ 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩))
7170rexbidva 3176 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (∃𝑡𝐸 𝑢 = (𝑡 ·𝑓, 𝑠⟩) ↔ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩))
7271anbi2d 630 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ((𝑢 ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸 𝑢 = (𝑡 ·𝑓, 𝑠⟩)) ↔ (𝑢 ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩)))
7352, 63, 723bitrd 305 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (∃𝑡 ∈ (Base‘𝐹)𝑢 = (𝑡 ·𝑓, 𝑠⟩) ↔ (𝑢 ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩)))
7473abbidv 2807 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → {𝑢 ∣ ∃𝑡 ∈ (Base‘𝐹)𝑢 = (𝑡 ·𝑓, 𝑠⟩)} = {𝑢 ∣ (𝑢 ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩)})
75 df-rab 3436 . . . . . . . . . . . . . 14 {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩} = {𝑢 ∣ (𝑢 ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩)}
7674, 75eqtr4di 2794 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → {𝑢 ∣ ∃𝑡 ∈ (Base‘𝐹)𝑢 = (𝑡 ·𝑓, 𝑠⟩)} = {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩})
77 ssrab2 4079 . . . . . . . . . . . . . . 15 {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩} ⊆ (𝑇 × 𝐸)
78 relxp 5702 . . . . . . . . . . . . . . 15 Rel (𝑇 × 𝐸)
79 relss 5790 . . . . . . . . . . . . . . 15 ({𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩} ⊆ (𝑇 × 𝐸) → (Rel (𝑇 × 𝐸) → Rel {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩}))
8077, 78, 79mp2 9 . . . . . . . . . . . . . 14 Rel {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩}
81 relopabv 5830 . . . . . . . . . . . . . 14 Rel {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)}
82 vex 3483 . . . . . . . . . . . . . . . 16 𝑖 ∈ V
83 vex 3483 . . . . . . . . . . . . . . . 16 𝑝 ∈ V
84 eqeq1 2740 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑖 → (𝑔 = (𝑟𝐺) ↔ 𝑖 = (𝑟𝐺)))
8584anbi1d 631 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑖 → ((𝑔 = (𝑟𝐺) ∧ 𝑟𝐸) ↔ (𝑖 = (𝑟𝐺) ∧ 𝑟𝐸)))
86 fveq1 6904 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝑝 → (𝑟𝐺) = (𝑝𝐺))
8786eqeq2d 2747 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑝 → (𝑖 = (𝑟𝐺) ↔ 𝑖 = (𝑝𝐺)))
88 eleq1w 2823 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑝 → (𝑟𝐸𝑝𝐸))
8987, 88anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑝 → ((𝑖 = (𝑟𝐺) ∧ 𝑟𝐸) ↔ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)))
9082, 83, 85, 89opelopab 5546 . . . . . . . . . . . . . . 15 (⟨𝑖, 𝑝⟩ ∈ {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)} ↔ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸))
91 dih1dimat.c . . . . . . . . . . . . . . . . . . 19 𝐶 = (Atoms‘𝐾)
92 dih1dimat.p . . . . . . . . . . . . . . . . . . 19 𝑃 = ((oc‘𝐾)‘𝑊)
93 dih1dimat.j . . . . . . . . . . . . . . . . . . 19 𝐽 = (invr𝐹)
94 dih1dimat.g . . . . . . . . . . . . . . . . . . 19 𝐺 = (𝑇 (𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃))
951, 2, 29, 8, 24, 27, 91, 92, 13, 25, 14, 33, 48, 93, 5, 57, 36, 6, 7, 94dih1dimatlem0 41331 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → ((𝑖 = (𝑝𝐺) ∧ 𝑝𝐸) ↔ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))))
96953expa 1118 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ((𝑖 = (𝑝𝐺) ∧ 𝑝𝐸) ↔ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))))
97 opelxp 5720 . . . . . . . . . . . . . . . . . 18 (⟨𝑖, 𝑝⟩ ∈ (𝑇 × 𝐸) ↔ (𝑖𝑇𝑝𝐸))
9882, 83opth 5480 . . . . . . . . . . . . . . . . . . 19 (⟨𝑖, 𝑝⟩ = ⟨(𝑡𝑓), (𝑡𝑠)⟩ ↔ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))
9998rexbii 3093 . . . . . . . . . . . . . . . . . 18 (∃𝑡𝐸𝑖, 𝑝⟩ = ⟨(𝑡𝑓), (𝑡𝑠)⟩ ↔ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))
10097, 99anbi12i 628 . . . . . . . . . . . . . . . . 17 ((⟨𝑖, 𝑝⟩ ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸𝑖, 𝑝⟩ = ⟨(𝑡𝑓), (𝑡𝑠)⟩) ↔ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))))
10196, 100bitr4di 289 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ((𝑖 = (𝑝𝐺) ∧ 𝑝𝐸) ↔ (⟨𝑖, 𝑝⟩ ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸𝑖, 𝑝⟩ = ⟨(𝑡𝑓), (𝑡𝑠)⟩)))
102 eqeq1 2740 . . . . . . . . . . . . . . . . . 18 (𝑢 = ⟨𝑖, 𝑝⟩ → (𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩ ↔ ⟨𝑖, 𝑝⟩ = ⟨(𝑡𝑓), (𝑡𝑠)⟩))
103102rexbidv 3178 . . . . . . . . . . . . . . . . 17 (𝑢 = ⟨𝑖, 𝑝⟩ → (∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩ ↔ ∃𝑡𝐸𝑖, 𝑝⟩ = ⟨(𝑡𝑓), (𝑡𝑠)⟩))
104103elrab 3691 . . . . . . . . . . . . . . . 16 (⟨𝑖, 𝑝⟩ ∈ {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩} ↔ (⟨𝑖, 𝑝⟩ ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸𝑖, 𝑝⟩ = ⟨(𝑡𝑓), (𝑡𝑠)⟩))
105101, 104bitr4di 289 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ((𝑖 = (𝑝𝐺) ∧ 𝑝𝐸) ↔ ⟨𝑖, 𝑝⟩ ∈ {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩}))
10690, 105bitr2id 284 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (⟨𝑖, 𝑝⟩ ∈ {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩} ↔ ⟨𝑖, 𝑝⟩ ∈ {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)}))
10780, 81, 106eqrelrdv 5801 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩} = {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)})
10876, 107eqtrd 2776 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → {𝑢 ∣ ∃𝑡 ∈ (Base‘𝐹)𝑢 = (𝑡 ·𝑓, 𝑠⟩)} = {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)})
1091, 2, 47dvhlmod 41113 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝑈 ∈ LMod)
1101, 13, 14, 2, 5dvhelvbasei 41091 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) → ⟨𝑓, 𝑠⟩ ∈ 𝑉)
111110adantr 480 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ⟨𝑓, 𝑠⟩ ∈ 𝑉)
11248, 49, 5, 57, 6lspsn 21001 . . . . . . . . . . . . 13 ((𝑈 ∈ LMod ∧ ⟨𝑓, 𝑠⟩ ∈ 𝑉) → (𝑁‘{⟨𝑓, 𝑠⟩}) = {𝑢 ∣ ∃𝑡 ∈ (Base‘𝐹)𝑢 = (𝑡 ·𝑓, 𝑠⟩)})
113109, 111, 112syl2anc 584 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝑁‘{⟨𝑓, 𝑠⟩}) = {𝑢 ∣ ∃𝑡 ∈ (Base‘𝐹)𝑢 = (𝑡 ·𝑓, 𝑠⟩)})
114 simpr 484 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝑠𝑂)
11524, 1, 13, 14, 33, 2, 48, 93tendoinvcl 41107 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑠𝑂) → ((𝐽𝑠) ∈ 𝐸 ∧ (𝐽𝑠) ≠ 𝑂))
116115simpld 494 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑠𝑂) → (𝐽𝑠) ∈ 𝐸)
11747, 66, 114, 116syl3anc 1372 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝐽𝑠) ∈ 𝐸)
1181, 13, 14tendocl 40770 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐽𝑠) ∈ 𝐸𝑓𝑇) → ((𝐽𝑠)‘𝑓) ∈ 𝑇)
11947, 117, 64, 118syl3anc 1372 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ((𝐽𝑠)‘𝑓) ∈ 𝑇)
12027, 91, 1, 92lhpocnel2 40022 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐶 ∧ ¬ 𝑃 𝑊))
12147, 120syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝑃𝐶 ∧ ¬ 𝑃 𝑊))
12227, 91, 1, 13ltrnel 40142 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐽𝑠)‘𝑓) ∈ 𝑇 ∧ (𝑃𝐶 ∧ ¬ 𝑃 𝑊)) → ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊))
12347, 119, 121, 122syl3anc 1372 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊))
124 eqid 2736 . . . . . . . . . . . . . . 15 ((DIsoC‘𝐾)‘𝑊) = ((DIsoC‘𝐾)‘𝑊)
12527, 91, 1, 124, 29dihvalcqat 41242 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊)) → (𝐼‘(((𝐽𝑠)‘𝑓)‘𝑃)) = (((DIsoC‘𝐾)‘𝑊)‘(((𝐽𝑠)‘𝑓)‘𝑃)))
12647, 123, 125syl2anc 584 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝐼‘(((𝐽𝑠)‘𝑓)‘𝑃)) = (((DIsoC‘𝐾)‘𝑊)‘(((𝐽𝑠)‘𝑓)‘𝑃)))
12727, 91, 1, 92, 13, 14, 124, 94dicval2 41182 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊)) → (((DIsoC‘𝐾)‘𝑊)‘(((𝐽𝑠)‘𝑓)‘𝑃)) = {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)})
12847, 123, 127syl2anc 584 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (((DIsoC‘𝐾)‘𝑊)‘(((𝐽𝑠)‘𝑓)‘𝑃)) = {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)})
129126, 128eqtrd 2776 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝐼‘(((𝐽𝑠)‘𝑓)‘𝑃)) = {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)})
130108, 113, 1293eqtr4d 2786 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝑁‘{⟨𝑓, 𝑠⟩}) = (𝐼‘(((𝐽𝑠)‘𝑓)‘𝑃)))
13124, 1, 29dihfn 41271 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼 Fn 𝐵)
132131adantr 480 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) → 𝐼 Fn 𝐵)
133132adantr 480 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝐼 Fn 𝐵)
134 simplll 774 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝐾 ∈ HL)
135 hlop 39364 . . . . . . . . . . . . . . . 16 (𝐾 ∈ HL → 𝐾 ∈ OP)
136134, 135syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝐾 ∈ OP)
13724, 1lhpbase 40001 . . . . . . . . . . . . . . . 16 (𝑊𝐻𝑊𝐵)
138137ad3antlr 731 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝑊𝐵)
139 eqid 2736 . . . . . . . . . . . . . . . 16 (oc‘𝐾) = (oc‘𝐾)
14024, 139opoccl 39196 . . . . . . . . . . . . . . 15 ((𝐾 ∈ OP ∧ 𝑊𝐵) → ((oc‘𝐾)‘𝑊) ∈ 𝐵)
141136, 138, 140syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ((oc‘𝐾)‘𝑊) ∈ 𝐵)
14292, 141eqeltrid 2844 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝑃𝐵)
14324, 1, 13ltrncl 40128 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐽𝑠)‘𝑓) ∈ 𝑇𝑃𝐵) → (((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐵)
14447, 119, 142, 143syl3anc 1372 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐵)
145 fnfvelrn 7099 . . . . . . . . . . . 12 ((𝐼 Fn 𝐵 ∧ (((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐵) → (𝐼‘(((𝐽𝑠)‘𝑓)‘𝑃)) ∈ ran 𝐼)
146133, 144, 145syl2anc 584 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝐼‘(((𝐽𝑠)‘𝑓)‘𝑃)) ∈ ran 𝐼)
147130, 146eqeltrd 2840 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝑁‘{⟨𝑓, 𝑠⟩}) ∈ ran 𝐼)
14846, 147pm2.61dane 3028 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) → (𝑁‘{⟨𝑓, 𝑠⟩}) ∈ ran 𝐼)
149148ralrimivva 3201 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∀𝑓𝑇𝑠𝐸 (𝑁‘{⟨𝑓, 𝑠⟩}) ∈ ran 𝐼)
150 sneq 4635 . . . . . . . . . . 11 (𝑣 = ⟨𝑓, 𝑠⟩ → {𝑣} = {⟨𝑓, 𝑠⟩})
151150fveq2d 6909 . . . . . . . . . 10 (𝑣 = ⟨𝑓, 𝑠⟩ → (𝑁‘{𝑣}) = (𝑁‘{⟨𝑓, 𝑠⟩}))
152151eleq1d 2825 . . . . . . . . 9 (𝑣 = ⟨𝑓, 𝑠⟩ → ((𝑁‘{𝑣}) ∈ ran 𝐼 ↔ (𝑁‘{⟨𝑓, 𝑠⟩}) ∈ ran 𝐼))
153152ralxp 5851 . . . . . . . 8 (∀𝑣 ∈ (𝑇 × 𝐸)(𝑁‘{𝑣}) ∈ ran 𝐼 ↔ ∀𝑓𝑇𝑠𝐸 (𝑁‘{⟨𝑓, 𝑠⟩}) ∈ ran 𝐼)
154149, 153sylibr 234 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∀𝑣 ∈ (𝑇 × 𝐸)(𝑁‘{𝑣}) ∈ ran 𝐼)
155154r19.21bi 3250 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑣 ∈ (𝑇 × 𝐸)) → (𝑁‘{𝑣}) ∈ ran 𝐼)
15618, 155syldan 591 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑣 ∈ (𝑉 ∖ { 0 })) → (𝑁‘{𝑣}) ∈ ran 𝐼)
157 eleq1a 2835 . . . . 5 ((𝑁‘{𝑣}) ∈ ran 𝐼 → (𝐷 = (𝑁‘{𝑣}) → 𝐷 ∈ ran 𝐼))
158156, 157syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑣 ∈ (𝑉 ∖ { 0 })) → (𝐷 = (𝑁‘{𝑣}) → 𝐷 ∈ ran 𝐼))
159158rexlimdva 3154 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (∃𝑣 ∈ (𝑉 ∖ { 0 })𝐷 = (𝑁‘{𝑣}) → 𝐷 ∈ ran 𝐼))
160159adantr 480 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝐴) → (∃𝑣 ∈ (𝑉 ∖ { 0 })𝐷 = (𝑁‘{𝑣}) → 𝐷 ∈ ran 𝐼))
16111, 160mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝐴) → 𝐷 ∈ ran 𝐼)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  {cab 2713  wne 2939  wral 3060  wrex 3069  {crab 3435  cdif 3947  wss 3950  {csn 4625  cop 4631   class class class wbr 5142  {copab 5204  cmpt 5224   I cid 5576   × cxp 5682  ran crn 5685  cres 5686  ccom 5688  Rel wrel 5689   Fn wfn 6555  1-1wf1 6557  cfv 6560  crio 7388  (class class class)co 7432  Basecbs 17248  Scalarcsca 17301   ·𝑠 cvsca 17302  lecple 17305  occoc 17306  0gc0g 17485  invrcinvr 20388  LModclmod 20859  LSubSpclss 20930  LSpanclspn 20970  LVecclvec 21102  LSAtomsclsa 38976  OPcops 39174  Atomscatm 39265  HLchlt 39352  LHypclh 39987  LTrncltrn 40104  trLctrl 40161  TEndoctendo 40755  DVecHcdvh 41081  DIsoBcdib 41141  DIsoCcdic 41175  DIsoHcdih 41231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233  ax-riotaBAD 38955
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-tpos 8252  df-undef 8299  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-0g 17487  df-proset 18341  df-poset 18360  df-plt 18376  df-lub 18392  df-glb 18393  df-join 18394  df-meet 18395  df-p0 18471  df-p1 18472  df-lat 18478  df-clat 18545  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-subg 19142  df-cntz 19336  df-lsm 19655  df-cmn 19801  df-abl 19802  df-mgp 20139  df-rng 20151  df-ur 20180  df-ring 20233  df-oppr 20335  df-dvdsr 20358  df-unit 20359  df-invr 20389  df-dvr 20402  df-drng 20732  df-lmod 20861  df-lss 20931  df-lsp 20971  df-lvec 21103  df-lsatoms 38978  df-oposet 39178  df-ol 39180  df-oml 39181  df-covers 39268  df-ats 39269  df-atl 39300  df-cvlat 39324  df-hlat 39353  df-llines 39501  df-lplanes 39502  df-lvols 39503  df-lines 39504  df-psubsp 39506  df-pmap 39507  df-padd 39799  df-lhyp 39991  df-laut 39992  df-ldil 40107  df-ltrn 40108  df-trl 40162  df-tendo 40758  df-edring 40760  df-disoa 41032  df-dvech 41082  df-dib 41142  df-dic 41176  df-dih 41232
This theorem is referenced by:  dih1dimat  41333
  Copyright terms: Public domain W3C validator