Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dih1dimatlem Structured version   Visualization version   GIF version

Theorem dih1dimatlem 37285
Description: Lemma for dih1dimat 37286. (Contributed by NM, 10-Apr-2014.)
Hypotheses
Ref Expression
dih1dimat.h 𝐻 = (LHyp‘𝐾)
dih1dimat.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dih1dimat.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dih1dimat.a 𝐴 = (LSAtoms‘𝑈)
dih1dimat.b 𝐵 = (Base‘𝐾)
dih1dimat.l = (le‘𝐾)
dih1dimat.c 𝐶 = (Atoms‘𝐾)
dih1dimat.p 𝑃 = ((oc‘𝐾)‘𝑊)
dih1dimat.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dih1dimat.r 𝑅 = ((trL‘𝐾)‘𝑊)
dih1dimat.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dih1dimat.o 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
dih1dimat.d 𝐹 = (Scalar‘𝑈)
dih1dimat.j 𝐽 = (invr𝐹)
dih1dimat.v 𝑉 = (Base‘𝑈)
dih1dimat.m · = ( ·𝑠𝑈)
dih1dimat.s 𝑆 = (LSubSp‘𝑈)
dih1dimat.n 𝑁 = (LSpan‘𝑈)
dih1dimat.z 0 = (0g𝑈)
dih1dimat.g 𝐺 = (𝑇 (𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃))
Assertion
Ref Expression
dih1dimatlem (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝐴) → 𝐷 ∈ ran 𝐼)
Distinct variable groups:   ,   𝐵,   𝑓,𝑠,𝐸   𝐶,   ,𝐽   𝑓,𝑁,𝑠   𝑓,,𝐾,𝑠   𝑇,𝑓,,𝑠   𝑈,𝑓,,𝑠   𝑓,𝐻,,𝑠   𝑓,𝑉,𝑠   𝑓,𝑊,,𝑠   𝑓,𝐼,𝑠   𝑃,
Allowed substitution hints:   𝐴(𝑓,,𝑠)   𝐵(𝑓,𝑠)   𝐶(𝑓,𝑠)   𝐷(𝑓,,𝑠)   𝑃(𝑓,𝑠)   𝑅(𝑓,,𝑠)   𝑆(𝑓,,𝑠)   · (𝑓,,𝑠)   𝐸()   𝐹(𝑓,,𝑠)   𝐺(𝑓,,𝑠)   𝐼()   𝐽(𝑓,𝑠)   (𝑓,𝑠)   𝑁()   𝑂(𝑓,,𝑠)   𝑉()   0 (𝑓,,𝑠)

Proof of Theorem dih1dimatlem
Dummy variables 𝑣 𝑔 𝑖 𝑝 𝑟 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dih1dimat.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dih1dimat.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 id 22 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3dvhlvec 37065 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LVec)
5 dih1dimat.v . . . . 5 𝑉 = (Base‘𝑈)
6 dih1dimat.n . . . . 5 𝑁 = (LSpan‘𝑈)
7 dih1dimat.z . . . . 5 0 = (0g𝑈)
8 dih1dimat.a . . . . 5 𝐴 = (LSAtoms‘𝑈)
95, 6, 7, 8islsat 34947 . . . 4 (𝑈 ∈ LVec → (𝐷𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })𝐷 = (𝑁‘{𝑣})))
104, 9syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐷𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })𝐷 = (𝑁‘{𝑣})))
1110biimpa 468 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝐴) → ∃𝑣 ∈ (𝑉 ∖ { 0 })𝐷 = (𝑁‘{𝑣}))
12 eldifi 3894 . . . . . . . 8 (𝑣 ∈ (𝑉 ∖ { 0 }) → 𝑣𝑉)
13 dih1dimat.t . . . . . . . . . 10 𝑇 = ((LTrn‘𝐾)‘𝑊)
14 dih1dimat.e . . . . . . . . . 10 𝐸 = ((TEndo‘𝐾)‘𝑊)
151, 13, 14, 2, 5dvhvbase 37043 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑉 = (𝑇 × 𝐸))
1615eleq2d 2830 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑣𝑉𝑣 ∈ (𝑇 × 𝐸)))
1712, 16syl5ib 235 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑣 ∈ (𝑉 ∖ { 0 }) → 𝑣 ∈ (𝑇 × 𝐸)))
1817imp 395 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑣 ∈ (𝑉 ∖ { 0 })) → 𝑣 ∈ (𝑇 × 𝐸))
19 simpr 477 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠 = 𝑂) → 𝑠 = 𝑂)
2019opeq2d 4566 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠 = 𝑂) → ⟨𝑓, 𝑠⟩ = ⟨𝑓, 𝑂⟩)
2120sneqd 4346 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠 = 𝑂) → {⟨𝑓, 𝑠⟩} = {⟨𝑓, 𝑂⟩})
2221fveq2d 6379 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠 = 𝑂) → (𝑁‘{⟨𝑓, 𝑠⟩}) = (𝑁‘{⟨𝑓, 𝑂⟩}))
23 simpl 474 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
24 dih1dimat.b . . . . . . . . . . . . . . . . 17 𝐵 = (Base‘𝐾)
25 dih1dimat.r . . . . . . . . . . . . . . . . 17 𝑅 = ((trL‘𝐾)‘𝑊)
2624, 1, 13, 25trlcl 36120 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝑅𝑓) ∈ 𝐵)
27 dih1dimat.l . . . . . . . . . . . . . . . . 17 = (le‘𝐾)
2827, 1, 13, 25trlle 36140 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝑅𝑓) 𝑊)
29 dih1dimat.i . . . . . . . . . . . . . . . . 17 𝐼 = ((DIsoH‘𝐾)‘𝑊)
30 eqid 2765 . . . . . . . . . . . . . . . . 17 ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊)
3124, 27, 1, 29, 30dihvalb 37193 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝑓) ∈ 𝐵 ∧ (𝑅𝑓) 𝑊)) → (𝐼‘(𝑅𝑓)) = (((DIsoB‘𝐾)‘𝑊)‘(𝑅𝑓)))
3223, 26, 28, 31syl12anc 865 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝐼‘(𝑅𝑓)) = (((DIsoB‘𝐾)‘𝑊)‘(𝑅𝑓)))
33 dih1dimat.o . . . . . . . . . . . . . . . 16 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
3424, 1, 13, 25, 33, 2, 30, 6dib1dim2 37124 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (((DIsoB‘𝐾)‘𝑊)‘(𝑅𝑓)) = (𝑁‘{⟨𝑓, 𝑂⟩}))
3532, 34eqtr2d 2800 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝑁‘{⟨𝑓, 𝑂⟩}) = (𝐼‘(𝑅𝑓)))
36 dih1dimat.s . . . . . . . . . . . . . . . . . 18 𝑆 = (LSubSp‘𝑈)
3724, 1, 29, 2, 36dihf11 37223 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:𝐵1-1𝑆)
3837adantr 472 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → 𝐼:𝐵1-1𝑆)
39 f1fn 6284 . . . . . . . . . . . . . . . 16 (𝐼:𝐵1-1𝑆𝐼 Fn 𝐵)
4038, 39syl 17 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → 𝐼 Fn 𝐵)
41 fnfvelrn 6546 . . . . . . . . . . . . . . 15 ((𝐼 Fn 𝐵 ∧ (𝑅𝑓) ∈ 𝐵) → (𝐼‘(𝑅𝑓)) ∈ ran 𝐼)
4240, 26, 41syl2anc 579 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝐼‘(𝑅𝑓)) ∈ ran 𝐼)
4335, 42eqeltrd 2844 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝑁‘{⟨𝑓, 𝑂⟩}) ∈ ran 𝐼)
4443adantrr 708 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) → (𝑁‘{⟨𝑓, 𝑂⟩}) ∈ ran 𝐼)
4544adantr 472 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠 = 𝑂) → (𝑁‘{⟨𝑓, 𝑂⟩}) ∈ ran 𝐼)
4622, 45eqeltrd 2844 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠 = 𝑂) → (𝑁‘{⟨𝑓, 𝑠⟩}) ∈ ran 𝐼)
47 simpll 783 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝐾 ∈ HL ∧ 𝑊𝐻))
48 dih1dimat.d . . . . . . . . . . . . . . . . . . 19 𝐹 = (Scalar‘𝑈)
49 eqid 2765 . . . . . . . . . . . . . . . . . . 19 (Base‘𝐹) = (Base‘𝐹)
501, 14, 2, 48, 49dvhbase 37039 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐹) = 𝐸)
5147, 50syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (Base‘𝐹) = 𝐸)
5251rexeqdv 3293 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (∃𝑡 ∈ (Base‘𝐹)𝑢 = (𝑡 ·𝑓, 𝑠⟩) ↔ ∃𝑡𝐸 𝑢 = (𝑡 ·𝑓, 𝑠⟩)))
53 simplll 791 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → (𝐾 ∈ HL ∧ 𝑊𝐻))
54 simpr 477 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → 𝑡𝐸)
55 opelxpi 5314 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓𝑇𝑠𝐸) → ⟨𝑓, 𝑠⟩ ∈ (𝑇 × 𝐸))
5655ad3antlr 722 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → ⟨𝑓, 𝑠⟩ ∈ (𝑇 × 𝐸))
57 dih1dimat.m . . . . . . . . . . . . . . . . . . . . 21 · = ( ·𝑠𝑈)
581, 13, 14, 2, 57dvhvscacl 37059 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸 ∧ ⟨𝑓, 𝑠⟩ ∈ (𝑇 × 𝐸))) → (𝑡 ·𝑓, 𝑠⟩) ∈ (𝑇 × 𝐸))
5953, 54, 56, 58syl12anc 865 . . . . . . . . . . . . . . . . . . 19 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → (𝑡 ·𝑓, 𝑠⟩) ∈ (𝑇 × 𝐸))
60 eleq1a 2839 . . . . . . . . . . . . . . . . . . 19 ((𝑡 ·𝑓, 𝑠⟩) ∈ (𝑇 × 𝐸) → (𝑢 = (𝑡 ·𝑓, 𝑠⟩) → 𝑢 ∈ (𝑇 × 𝐸)))
6159, 60syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → (𝑢 = (𝑡 ·𝑓, 𝑠⟩) → 𝑢 ∈ (𝑇 × 𝐸)))
6261rexlimdva 3178 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (∃𝑡𝐸 𝑢 = (𝑡 ·𝑓, 𝑠⟩) → 𝑢 ∈ (𝑇 × 𝐸)))
6362pm4.71rd 558 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (∃𝑡𝐸 𝑢 = (𝑡 ·𝑓, 𝑠⟩) ↔ (𝑢 ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸 𝑢 = (𝑡 ·𝑓, 𝑠⟩))))
64 simplrl 795 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝑓𝑇)
6564adantr 472 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → 𝑓𝑇)
66 simplrr 796 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝑠𝐸)
6766adantr 472 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → 𝑠𝐸)
681, 13, 14, 2, 57dvhopvsca 37058 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸𝑓𝑇𝑠𝐸)) → (𝑡 ·𝑓, 𝑠⟩) = ⟨(𝑡𝑓), (𝑡𝑠)⟩)
6953, 54, 65, 67, 68syl13anc 1491 . . . . . . . . . . . . . . . . . . 19 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → (𝑡 ·𝑓, 𝑠⟩) = ⟨(𝑡𝑓), (𝑡𝑠)⟩)
7069eqeq2d 2775 . . . . . . . . . . . . . . . . . 18 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → (𝑢 = (𝑡 ·𝑓, 𝑠⟩) ↔ 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩))
7170rexbidva 3196 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (∃𝑡𝐸 𝑢 = (𝑡 ·𝑓, 𝑠⟩) ↔ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩))
7271anbi2d 622 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ((𝑢 ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸 𝑢 = (𝑡 ·𝑓, 𝑠⟩)) ↔ (𝑢 ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩)))
7352, 63, 723bitrd 296 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (∃𝑡 ∈ (Base‘𝐹)𝑢 = (𝑡 ·𝑓, 𝑠⟩) ↔ (𝑢 ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩)))
7473abbidv 2884 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → {𝑢 ∣ ∃𝑡 ∈ (Base‘𝐹)𝑢 = (𝑡 ·𝑓, 𝑠⟩)} = {𝑢 ∣ (𝑢 ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩)})
75 df-rab 3064 . . . . . . . . . . . . . 14 {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩} = {𝑢 ∣ (𝑢 ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩)}
7674, 75syl6eqr 2817 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → {𝑢 ∣ ∃𝑡 ∈ (Base‘𝐹)𝑢 = (𝑡 ·𝑓, 𝑠⟩)} = {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩})
77 ssrab2 3847 . . . . . . . . . . . . . . 15 {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩} ⊆ (𝑇 × 𝐸)
78 relxp 5295 . . . . . . . . . . . . . . 15 Rel (𝑇 × 𝐸)
79 relss 5376 . . . . . . . . . . . . . . 15 ({𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩} ⊆ (𝑇 × 𝐸) → (Rel (𝑇 × 𝐸) → Rel {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩}))
8077, 78, 79mp2 9 . . . . . . . . . . . . . 14 Rel {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩}
81 relopab 5416 . . . . . . . . . . . . . 14 Rel {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)}
82 vex 3353 . . . . . . . . . . . . . . . 16 𝑖 ∈ V
83 vex 3353 . . . . . . . . . . . . . . . 16 𝑝 ∈ V
84 eqeq1 2769 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑖 → (𝑔 = (𝑟𝐺) ↔ 𝑖 = (𝑟𝐺)))
8584anbi1d 623 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑖 → ((𝑔 = (𝑟𝐺) ∧ 𝑟𝐸) ↔ (𝑖 = (𝑟𝐺) ∧ 𝑟𝐸)))
86 fveq1 6374 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝑝 → (𝑟𝐺) = (𝑝𝐺))
8786eqeq2d 2775 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑝 → (𝑖 = (𝑟𝐺) ↔ 𝑖 = (𝑝𝐺)))
88 eleq1w 2827 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑝 → (𝑟𝐸𝑝𝐸))
8987, 88anbi12d 624 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑝 → ((𝑖 = (𝑟𝐺) ∧ 𝑟𝐸) ↔ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)))
9082, 83, 85, 89opelopab 5158 . . . . . . . . . . . . . . 15 (⟨𝑖, 𝑝⟩ ∈ {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)} ↔ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸))
91 dih1dimat.c . . . . . . . . . . . . . . . . . . 19 𝐶 = (Atoms‘𝐾)
92 dih1dimat.p . . . . . . . . . . . . . . . . . . 19 𝑃 = ((oc‘𝐾)‘𝑊)
93 dih1dimat.j . . . . . . . . . . . . . . . . . . 19 𝐽 = (invr𝐹)
94 dih1dimat.g . . . . . . . . . . . . . . . . . . 19 𝐺 = (𝑇 (𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃))
951, 2, 29, 8, 24, 27, 91, 92, 13, 25, 14, 33, 48, 93, 5, 57, 36, 6, 7, 94dih1dimatlem0 37284 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → ((𝑖 = (𝑝𝐺) ∧ 𝑝𝐸) ↔ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))))
96953expa 1147 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ((𝑖 = (𝑝𝐺) ∧ 𝑝𝐸) ↔ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))))
97 opelxp 5313 . . . . . . . . . . . . . . . . . 18 (⟨𝑖, 𝑝⟩ ∈ (𝑇 × 𝐸) ↔ (𝑖𝑇𝑝𝐸))
9882, 83opth 5100 . . . . . . . . . . . . . . . . . . 19 (⟨𝑖, 𝑝⟩ = ⟨(𝑡𝑓), (𝑡𝑠)⟩ ↔ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))
9998rexbii 3188 . . . . . . . . . . . . . . . . . 18 (∃𝑡𝐸𝑖, 𝑝⟩ = ⟨(𝑡𝑓), (𝑡𝑠)⟩ ↔ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))
10097, 99anbi12i 620 . . . . . . . . . . . . . . . . 17 ((⟨𝑖, 𝑝⟩ ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸𝑖, 𝑝⟩ = ⟨(𝑡𝑓), (𝑡𝑠)⟩) ↔ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))))
10196, 100syl6bbr 280 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ((𝑖 = (𝑝𝐺) ∧ 𝑝𝐸) ↔ (⟨𝑖, 𝑝⟩ ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸𝑖, 𝑝⟩ = ⟨(𝑡𝑓), (𝑡𝑠)⟩)))
102 eqeq1 2769 . . . . . . . . . . . . . . . . . 18 (𝑢 = ⟨𝑖, 𝑝⟩ → (𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩ ↔ ⟨𝑖, 𝑝⟩ = ⟨(𝑡𝑓), (𝑡𝑠)⟩))
103102rexbidv 3199 . . . . . . . . . . . . . . . . 17 (𝑢 = ⟨𝑖, 𝑝⟩ → (∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩ ↔ ∃𝑡𝐸𝑖, 𝑝⟩ = ⟨(𝑡𝑓), (𝑡𝑠)⟩))
104103elrab 3519 . . . . . . . . . . . . . . . 16 (⟨𝑖, 𝑝⟩ ∈ {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩} ↔ (⟨𝑖, 𝑝⟩ ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸𝑖, 𝑝⟩ = ⟨(𝑡𝑓), (𝑡𝑠)⟩))
105101, 104syl6bbr 280 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ((𝑖 = (𝑝𝐺) ∧ 𝑝𝐸) ↔ ⟨𝑖, 𝑝⟩ ∈ {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩}))
10690, 105syl5rbb 275 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (⟨𝑖, 𝑝⟩ ∈ {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩} ↔ ⟨𝑖, 𝑝⟩ ∈ {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)}))
10780, 81, 106eqrelrdv 5385 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩} = {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)})
10876, 107eqtrd 2799 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → {𝑢 ∣ ∃𝑡 ∈ (Base‘𝐹)𝑢 = (𝑡 ·𝑓, 𝑠⟩)} = {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)})
1091, 2, 47dvhlmod 37066 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝑈 ∈ LMod)
1101, 13, 14, 2, 5dvhelvbasei 37044 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) → ⟨𝑓, 𝑠⟩ ∈ 𝑉)
111110adantr 472 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ⟨𝑓, 𝑠⟩ ∈ 𝑉)
11248, 49, 5, 57, 6lspsn 19274 . . . . . . . . . . . . 13 ((𝑈 ∈ LMod ∧ ⟨𝑓, 𝑠⟩ ∈ 𝑉) → (𝑁‘{⟨𝑓, 𝑠⟩}) = {𝑢 ∣ ∃𝑡 ∈ (Base‘𝐹)𝑢 = (𝑡 ·𝑓, 𝑠⟩)})
113109, 111, 112syl2anc 579 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝑁‘{⟨𝑓, 𝑠⟩}) = {𝑢 ∣ ∃𝑡 ∈ (Base‘𝐹)𝑢 = (𝑡 ·𝑓, 𝑠⟩)})
114 simpr 477 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝑠𝑂)
11524, 1, 13, 14, 33, 2, 48, 93tendoinvcl 37060 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑠𝑂) → ((𝐽𝑠) ∈ 𝐸 ∧ (𝐽𝑠) ≠ 𝑂))
116115simpld 488 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑠𝑂) → (𝐽𝑠) ∈ 𝐸)
11747, 66, 114, 116syl3anc 1490 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝐽𝑠) ∈ 𝐸)
1181, 13, 14tendocl 36723 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐽𝑠) ∈ 𝐸𝑓𝑇) → ((𝐽𝑠)‘𝑓) ∈ 𝑇)
11947, 117, 64, 118syl3anc 1490 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ((𝐽𝑠)‘𝑓) ∈ 𝑇)
12027, 91, 1, 92lhpocnel2 35975 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐶 ∧ ¬ 𝑃 𝑊))
12147, 120syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝑃𝐶 ∧ ¬ 𝑃 𝑊))
12227, 91, 1, 13ltrnel 36095 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐽𝑠)‘𝑓) ∈ 𝑇 ∧ (𝑃𝐶 ∧ ¬ 𝑃 𝑊)) → ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊))
12347, 119, 121, 122syl3anc 1490 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊))
124 eqid 2765 . . . . . . . . . . . . . . 15 ((DIsoC‘𝐾)‘𝑊) = ((DIsoC‘𝐾)‘𝑊)
12527, 91, 1, 124, 29dihvalcqat 37195 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊)) → (𝐼‘(((𝐽𝑠)‘𝑓)‘𝑃)) = (((DIsoC‘𝐾)‘𝑊)‘(((𝐽𝑠)‘𝑓)‘𝑃)))
12647, 123, 125syl2anc 579 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝐼‘(((𝐽𝑠)‘𝑓)‘𝑃)) = (((DIsoC‘𝐾)‘𝑊)‘(((𝐽𝑠)‘𝑓)‘𝑃)))
12727, 91, 1, 92, 13, 14, 124, 94dicval2 37135 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊)) → (((DIsoC‘𝐾)‘𝑊)‘(((𝐽𝑠)‘𝑓)‘𝑃)) = {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)})
12847, 123, 127syl2anc 579 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (((DIsoC‘𝐾)‘𝑊)‘(((𝐽𝑠)‘𝑓)‘𝑃)) = {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)})
129126, 128eqtrd 2799 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝐼‘(((𝐽𝑠)‘𝑓)‘𝑃)) = {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)})
130108, 113, 1293eqtr4d 2809 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝑁‘{⟨𝑓, 𝑠⟩}) = (𝐼‘(((𝐽𝑠)‘𝑓)‘𝑃)))
13124, 1, 29dihfn 37224 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼 Fn 𝐵)
132131adantr 472 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) → 𝐼 Fn 𝐵)
133132adantr 472 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝐼 Fn 𝐵)
134 simplll 791 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝐾 ∈ HL)
135 hlop 35318 . . . . . . . . . . . . . . . 16 (𝐾 ∈ HL → 𝐾 ∈ OP)
136134, 135syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝐾 ∈ OP)
13724, 1lhpbase 35954 . . . . . . . . . . . . . . . 16 (𝑊𝐻𝑊𝐵)
138137ad3antlr 722 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝑊𝐵)
139 eqid 2765 . . . . . . . . . . . . . . . 16 (oc‘𝐾) = (oc‘𝐾)
14024, 139opoccl 35150 . . . . . . . . . . . . . . 15 ((𝐾 ∈ OP ∧ 𝑊𝐵) → ((oc‘𝐾)‘𝑊) ∈ 𝐵)
141136, 138, 140syl2anc 579 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ((oc‘𝐾)‘𝑊) ∈ 𝐵)
14292, 141syl5eqel 2848 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝑃𝐵)
14324, 1, 13ltrncl 36081 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐽𝑠)‘𝑓) ∈ 𝑇𝑃𝐵) → (((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐵)
14447, 119, 142, 143syl3anc 1490 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐵)
145 fnfvelrn 6546 . . . . . . . . . . . 12 ((𝐼 Fn 𝐵 ∧ (((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐵) → (𝐼‘(((𝐽𝑠)‘𝑓)‘𝑃)) ∈ ran 𝐼)
146133, 144, 145syl2anc 579 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝐼‘(((𝐽𝑠)‘𝑓)‘𝑃)) ∈ ran 𝐼)
147130, 146eqeltrd 2844 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝑁‘{⟨𝑓, 𝑠⟩}) ∈ ran 𝐼)
14846, 147pm2.61dane 3024 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) → (𝑁‘{⟨𝑓, 𝑠⟩}) ∈ ran 𝐼)
149148ralrimivva 3118 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∀𝑓𝑇𝑠𝐸 (𝑁‘{⟨𝑓, 𝑠⟩}) ∈ ran 𝐼)
150 sneq 4344 . . . . . . . . . . 11 (𝑣 = ⟨𝑓, 𝑠⟩ → {𝑣} = {⟨𝑓, 𝑠⟩})
151150fveq2d 6379 . . . . . . . . . 10 (𝑣 = ⟨𝑓, 𝑠⟩ → (𝑁‘{𝑣}) = (𝑁‘{⟨𝑓, 𝑠⟩}))
152151eleq1d 2829 . . . . . . . . 9 (𝑣 = ⟨𝑓, 𝑠⟩ → ((𝑁‘{𝑣}) ∈ ran 𝐼 ↔ (𝑁‘{⟨𝑓, 𝑠⟩}) ∈ ran 𝐼))
153152ralxp 5432 . . . . . . . 8 (∀𝑣 ∈ (𝑇 × 𝐸)(𝑁‘{𝑣}) ∈ ran 𝐼 ↔ ∀𝑓𝑇𝑠𝐸 (𝑁‘{⟨𝑓, 𝑠⟩}) ∈ ran 𝐼)
154149, 153sylibr 225 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∀𝑣 ∈ (𝑇 × 𝐸)(𝑁‘{𝑣}) ∈ ran 𝐼)
155154r19.21bi 3079 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑣 ∈ (𝑇 × 𝐸)) → (𝑁‘{𝑣}) ∈ ran 𝐼)
15618, 155syldan 585 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑣 ∈ (𝑉 ∖ { 0 })) → (𝑁‘{𝑣}) ∈ ran 𝐼)
157 eleq1a 2839 . . . . 5 ((𝑁‘{𝑣}) ∈ ran 𝐼 → (𝐷 = (𝑁‘{𝑣}) → 𝐷 ∈ ran 𝐼))
158156, 157syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑣 ∈ (𝑉 ∖ { 0 })) → (𝐷 = (𝑁‘{𝑣}) → 𝐷 ∈ ran 𝐼))
159158rexlimdva 3178 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (∃𝑣 ∈ (𝑉 ∖ { 0 })𝐷 = (𝑁‘{𝑣}) → 𝐷 ∈ ran 𝐼))
160159adantr 472 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝐴) → (∃𝑣 ∈ (𝑉 ∖ { 0 })𝐷 = (𝑁‘{𝑣}) → 𝐷 ∈ ran 𝐼))
16111, 160mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝐴) → 𝐷 ∈ ran 𝐼)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  w3a 1107   = wceq 1652  wcel 2155  {cab 2751  wne 2937  wral 3055  wrex 3056  {crab 3059  cdif 3729  wss 3732  {csn 4334  cop 4340   class class class wbr 4809  {copab 4871  cmpt 4888   I cid 5184   × cxp 5275  ran crn 5278  cres 5279  ccom 5281  Rel wrel 5282   Fn wfn 6063  1-1wf1 6065  cfv 6068  crio 6802  (class class class)co 6842  Basecbs 16130  Scalarcsca 16217   ·𝑠 cvsca 16218  lecple 16221  occoc 16222  0gc0g 16366  invrcinvr 18938  LModclmod 19132  LSubSpclss 19201  LSpanclspn 19243  LVecclvec 19374  LSAtomsclsa 34930  OPcops 35128  Atomscatm 35219  HLchlt 35306  LHypclh 35940  LTrncltrn 36057  trLctrl 36114  TEndoctendo 36708  DVecHcdvh 37034  DIsoBcdib 37094  DIsoCcdic 37128  DIsoHcdih 37184
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-riotaBAD 34909
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-tpos 7555  df-undef 7602  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-map 8062  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-n0 11539  df-z 11625  df-uz 11887  df-fz 12534  df-struct 16132  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-mulr 16228  df-sca 16230  df-vsca 16231  df-0g 16368  df-proset 17194  df-poset 17212  df-plt 17224  df-lub 17240  df-glb 17241  df-join 17242  df-meet 17243  df-p0 17305  df-p1 17306  df-lat 17312  df-clat 17374  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-submnd 17602  df-grp 17692  df-minusg 17693  df-sbg 17694  df-subg 17855  df-cntz 18013  df-lsm 18315  df-cmn 18461  df-abl 18462  df-mgp 18757  df-ur 18769  df-ring 18816  df-oppr 18890  df-dvdsr 18908  df-unit 18909  df-invr 18939  df-dvr 18950  df-drng 19018  df-lmod 19134  df-lss 19202  df-lsp 19244  df-lvec 19375  df-lsatoms 34932  df-oposet 35132  df-ol 35134  df-oml 35135  df-covers 35222  df-ats 35223  df-atl 35254  df-cvlat 35278  df-hlat 35307  df-llines 35454  df-lplanes 35455  df-lvols 35456  df-lines 35457  df-psubsp 35459  df-pmap 35460  df-padd 35752  df-lhyp 35944  df-laut 35945  df-ldil 36060  df-ltrn 36061  df-trl 36115  df-tendo 36711  df-edring 36713  df-disoa 36985  df-dvech 37035  df-dib 37095  df-dic 37129  df-dih 37185
This theorem is referenced by:  dih1dimat  37286
  Copyright terms: Public domain W3C validator