Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dih1dimatlem Structured version   Visualization version   GIF version

Theorem dih1dimatlem 41353
Description: Lemma for dih1dimat 41354. (Contributed by NM, 10-Apr-2014.)
Hypotheses
Ref Expression
dih1dimat.h 𝐻 = (LHyp‘𝐾)
dih1dimat.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
dih1dimat.i 𝐼 = ((DIsoH‘𝐾)‘𝑊)
dih1dimat.a 𝐴 = (LSAtoms‘𝑈)
dih1dimat.b 𝐵 = (Base‘𝐾)
dih1dimat.l = (le‘𝐾)
dih1dimat.c 𝐶 = (Atoms‘𝐾)
dih1dimat.p 𝑃 = ((oc‘𝐾)‘𝑊)
dih1dimat.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
dih1dimat.r 𝑅 = ((trL‘𝐾)‘𝑊)
dih1dimat.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
dih1dimat.o 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
dih1dimat.d 𝐹 = (Scalar‘𝑈)
dih1dimat.j 𝐽 = (invr𝐹)
dih1dimat.v 𝑉 = (Base‘𝑈)
dih1dimat.m · = ( ·𝑠𝑈)
dih1dimat.s 𝑆 = (LSubSp‘𝑈)
dih1dimat.n 𝑁 = (LSpan‘𝑈)
dih1dimat.z 0 = (0g𝑈)
dih1dimat.g 𝐺 = (𝑇 (𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃))
Assertion
Ref Expression
dih1dimatlem (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝐴) → 𝐷 ∈ ran 𝐼)
Distinct variable groups:   ,   𝐵,   𝑓,𝑠,𝐸   𝐶,   ,𝐽   𝑓,𝑁,𝑠   𝑓,,𝐾,𝑠   𝑇,𝑓,,𝑠   𝑈,𝑓,,𝑠   𝑓,𝐻,,𝑠   𝑓,𝑉,𝑠   𝑓,𝑊,,𝑠   𝑓,𝐼,𝑠   𝑃,
Allowed substitution hints:   𝐴(𝑓,,𝑠)   𝐵(𝑓,𝑠)   𝐶(𝑓,𝑠)   𝐷(𝑓,,𝑠)   𝑃(𝑓,𝑠)   𝑅(𝑓,,𝑠)   𝑆(𝑓,,𝑠)   · (𝑓,,𝑠)   𝐸()   𝐹(𝑓,,𝑠)   𝐺(𝑓,,𝑠)   𝐼()   𝐽(𝑓,𝑠)   (𝑓,𝑠)   𝑁()   𝑂(𝑓,,𝑠)   𝑉()   0 (𝑓,,𝑠)

Proof of Theorem dih1dimatlem
Dummy variables 𝑣 𝑔 𝑖 𝑝 𝑟 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dih1dimat.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dih1dimat.u . . . . 5 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 id 22 . . . . 5 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ HL ∧ 𝑊𝐻))
41, 2, 3dvhlvec 41133 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑈 ∈ LVec)
5 dih1dimat.v . . . . 5 𝑉 = (Base‘𝑈)
6 dih1dimat.n . . . . 5 𝑁 = (LSpan‘𝑈)
7 dih1dimat.z . . . . 5 0 = (0g𝑈)
8 dih1dimat.a . . . . 5 𝐴 = (LSAtoms‘𝑈)
95, 6, 7, 8islsat 39014 . . . 4 (𝑈 ∈ LVec → (𝐷𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })𝐷 = (𝑁‘{𝑣})))
104, 9syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐷𝐴 ↔ ∃𝑣 ∈ (𝑉 ∖ { 0 })𝐷 = (𝑁‘{𝑣})))
1110biimpa 476 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝐴) → ∃𝑣 ∈ (𝑉 ∖ { 0 })𝐷 = (𝑁‘{𝑣}))
12 eldifi 4111 . . . . . . . 8 (𝑣 ∈ (𝑉 ∖ { 0 }) → 𝑣𝑉)
13 dih1dimat.t . . . . . . . . . 10 𝑇 = ((LTrn‘𝐾)‘𝑊)
14 dih1dimat.e . . . . . . . . . 10 𝐸 = ((TEndo‘𝐾)‘𝑊)
151, 13, 14, 2, 5dvhvbase 41111 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑉 = (𝑇 × 𝐸))
1615eleq2d 2821 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑣𝑉𝑣 ∈ (𝑇 × 𝐸)))
1712, 16imbitrid 244 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑣 ∈ (𝑉 ∖ { 0 }) → 𝑣 ∈ (𝑇 × 𝐸)))
1817imp 406 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑣 ∈ (𝑉 ∖ { 0 })) → 𝑣 ∈ (𝑇 × 𝐸))
19 simpr 484 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠 = 𝑂) → 𝑠 = 𝑂)
2019opeq2d 4861 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠 = 𝑂) → ⟨𝑓, 𝑠⟩ = ⟨𝑓, 𝑂⟩)
2120sneqd 4618 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠 = 𝑂) → {⟨𝑓, 𝑠⟩} = {⟨𝑓, 𝑂⟩})
2221fveq2d 6885 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠 = 𝑂) → (𝑁‘{⟨𝑓, 𝑠⟩}) = (𝑁‘{⟨𝑓, 𝑂⟩}))
23 simpl 482 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
24 dih1dimat.b . . . . . . . . . . . . . . . . 17 𝐵 = (Base‘𝐾)
25 dih1dimat.r . . . . . . . . . . . . . . . . 17 𝑅 = ((trL‘𝐾)‘𝑊)
2624, 1, 13, 25trlcl 40188 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝑅𝑓) ∈ 𝐵)
27 dih1dimat.l . . . . . . . . . . . . . . . . 17 = (le‘𝐾)
2827, 1, 13, 25trlle 40208 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝑅𝑓) 𝑊)
29 dih1dimat.i . . . . . . . . . . . . . . . . 17 𝐼 = ((DIsoH‘𝐾)‘𝑊)
30 eqid 2736 . . . . . . . . . . . . . . . . 17 ((DIsoB‘𝐾)‘𝑊) = ((DIsoB‘𝐾)‘𝑊)
3124, 27, 1, 29, 30dihvalb 41261 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑅𝑓) ∈ 𝐵 ∧ (𝑅𝑓) 𝑊)) → (𝐼‘(𝑅𝑓)) = (((DIsoB‘𝐾)‘𝑊)‘(𝑅𝑓)))
3223, 26, 28, 31syl12anc 836 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝐼‘(𝑅𝑓)) = (((DIsoB‘𝐾)‘𝑊)‘(𝑅𝑓)))
33 dih1dimat.o . . . . . . . . . . . . . . . 16 𝑂 = (𝑇 ↦ ( I ↾ 𝐵))
3424, 1, 13, 25, 33, 2, 30, 6dib1dim2 41192 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (((DIsoB‘𝐾)‘𝑊)‘(𝑅𝑓)) = (𝑁‘{⟨𝑓, 𝑂⟩}))
3532, 34eqtr2d 2772 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝑁‘{⟨𝑓, 𝑂⟩}) = (𝐼‘(𝑅𝑓)))
36 dih1dimat.s . . . . . . . . . . . . . . . . . 18 𝑆 = (LSubSp‘𝑈)
3724, 1, 29, 2, 36dihf11 41291 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:𝐵1-1𝑆)
3837adantr 480 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → 𝐼:𝐵1-1𝑆)
39 f1fn 6780 . . . . . . . . . . . . . . . 16 (𝐼:𝐵1-1𝑆𝐼 Fn 𝐵)
4038, 39syl 17 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → 𝐼 Fn 𝐵)
41 fnfvelrn 7075 . . . . . . . . . . . . . . 15 ((𝐼 Fn 𝐵 ∧ (𝑅𝑓) ∈ 𝐵) → (𝐼‘(𝑅𝑓)) ∈ ran 𝐼)
4240, 26, 41syl2anc 584 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝐼‘(𝑅𝑓)) ∈ ran 𝐼)
4335, 42eqeltrd 2835 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑓𝑇) → (𝑁‘{⟨𝑓, 𝑂⟩}) ∈ ran 𝐼)
4443adantrr 717 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) → (𝑁‘{⟨𝑓, 𝑂⟩}) ∈ ran 𝐼)
4544adantr 480 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠 = 𝑂) → (𝑁‘{⟨𝑓, 𝑂⟩}) ∈ ran 𝐼)
4622, 45eqeltrd 2835 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠 = 𝑂) → (𝑁‘{⟨𝑓, 𝑠⟩}) ∈ ran 𝐼)
47 simpll 766 . . . . . . . . . . . . . . . . . 18 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝐾 ∈ HL ∧ 𝑊𝐻))
48 dih1dimat.d . . . . . . . . . . . . . . . . . . 19 𝐹 = (Scalar‘𝑈)
49 eqid 2736 . . . . . . . . . . . . . . . . . . 19 (Base‘𝐹) = (Base‘𝐹)
501, 14, 2, 48, 49dvhbase 41107 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (Base‘𝐹) = 𝐸)
5147, 50syl 17 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (Base‘𝐹) = 𝐸)
5251rexeqdv 3310 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (∃𝑡 ∈ (Base‘𝐹)𝑢 = (𝑡 ·𝑓, 𝑠⟩) ↔ ∃𝑡𝐸 𝑢 = (𝑡 ·𝑓, 𝑠⟩)))
53 simplll 774 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → (𝐾 ∈ HL ∧ 𝑊𝐻))
54 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → 𝑡𝐸)
55 opelxpi 5696 . . . . . . . . . . . . . . . . . . . . 21 ((𝑓𝑇𝑠𝐸) → ⟨𝑓, 𝑠⟩ ∈ (𝑇 × 𝐸))
5655ad3antlr 731 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → ⟨𝑓, 𝑠⟩ ∈ (𝑇 × 𝐸))
57 dih1dimat.m . . . . . . . . . . . . . . . . . . . . 21 · = ( ·𝑠𝑈)
581, 13, 14, 2, 57dvhvscacl 41127 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸 ∧ ⟨𝑓, 𝑠⟩ ∈ (𝑇 × 𝐸))) → (𝑡 ·𝑓, 𝑠⟩) ∈ (𝑇 × 𝐸))
5953, 54, 56, 58syl12anc 836 . . . . . . . . . . . . . . . . . . 19 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → (𝑡 ·𝑓, 𝑠⟩) ∈ (𝑇 × 𝐸))
60 eleq1a 2830 . . . . . . . . . . . . . . . . . . 19 ((𝑡 ·𝑓, 𝑠⟩) ∈ (𝑇 × 𝐸) → (𝑢 = (𝑡 ·𝑓, 𝑠⟩) → 𝑢 ∈ (𝑇 × 𝐸)))
6159, 60syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → (𝑢 = (𝑡 ·𝑓, 𝑠⟩) → 𝑢 ∈ (𝑇 × 𝐸)))
6261rexlimdva 3142 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (∃𝑡𝐸 𝑢 = (𝑡 ·𝑓, 𝑠⟩) → 𝑢 ∈ (𝑇 × 𝐸)))
6362pm4.71rd 562 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (∃𝑡𝐸 𝑢 = (𝑡 ·𝑓, 𝑠⟩) ↔ (𝑢 ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸 𝑢 = (𝑡 ·𝑓, 𝑠⟩))))
64 simplrl 776 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝑓𝑇)
6564adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → 𝑓𝑇)
66 simplrr 777 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝑠𝐸)
6766adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → 𝑠𝐸)
681, 13, 14, 2, 57dvhopvsca 41126 . . . . . . . . . . . . . . . . . . . 20 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑡𝐸𝑓𝑇𝑠𝐸)) → (𝑡 ·𝑓, 𝑠⟩) = ⟨(𝑡𝑓), (𝑡𝑠)⟩)
6953, 54, 65, 67, 68syl13anc 1374 . . . . . . . . . . . . . . . . . . 19 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → (𝑡 ·𝑓, 𝑠⟩) = ⟨(𝑡𝑓), (𝑡𝑠)⟩)
7069eqeq2d 2747 . . . . . . . . . . . . . . . . . 18 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) ∧ 𝑡𝐸) → (𝑢 = (𝑡 ·𝑓, 𝑠⟩) ↔ 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩))
7170rexbidva 3163 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (∃𝑡𝐸 𝑢 = (𝑡 ·𝑓, 𝑠⟩) ↔ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩))
7271anbi2d 630 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ((𝑢 ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸 𝑢 = (𝑡 ·𝑓, 𝑠⟩)) ↔ (𝑢 ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩)))
7352, 63, 723bitrd 305 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (∃𝑡 ∈ (Base‘𝐹)𝑢 = (𝑡 ·𝑓, 𝑠⟩) ↔ (𝑢 ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩)))
7473abbidv 2802 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → {𝑢 ∣ ∃𝑡 ∈ (Base‘𝐹)𝑢 = (𝑡 ·𝑓, 𝑠⟩)} = {𝑢 ∣ (𝑢 ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩)})
75 df-rab 3421 . . . . . . . . . . . . . 14 {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩} = {𝑢 ∣ (𝑢 ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩)}
7674, 75eqtr4di 2789 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → {𝑢 ∣ ∃𝑡 ∈ (Base‘𝐹)𝑢 = (𝑡 ·𝑓, 𝑠⟩)} = {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩})
77 ssrab2 4060 . . . . . . . . . . . . . . 15 {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩} ⊆ (𝑇 × 𝐸)
78 relxp 5677 . . . . . . . . . . . . . . 15 Rel (𝑇 × 𝐸)
79 relss 5765 . . . . . . . . . . . . . . 15 ({𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩} ⊆ (𝑇 × 𝐸) → (Rel (𝑇 × 𝐸) → Rel {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩}))
8077, 78, 79mp2 9 . . . . . . . . . . . . . 14 Rel {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩}
81 relopabv 5805 . . . . . . . . . . . . . 14 Rel {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)}
82 vex 3468 . . . . . . . . . . . . . . . 16 𝑖 ∈ V
83 vex 3468 . . . . . . . . . . . . . . . 16 𝑝 ∈ V
84 eqeq1 2740 . . . . . . . . . . . . . . . . 17 (𝑔 = 𝑖 → (𝑔 = (𝑟𝐺) ↔ 𝑖 = (𝑟𝐺)))
8584anbi1d 631 . . . . . . . . . . . . . . . 16 (𝑔 = 𝑖 → ((𝑔 = (𝑟𝐺) ∧ 𝑟𝐸) ↔ (𝑖 = (𝑟𝐺) ∧ 𝑟𝐸)))
86 fveq1 6880 . . . . . . . . . . . . . . . . . 18 (𝑟 = 𝑝 → (𝑟𝐺) = (𝑝𝐺))
8786eqeq2d 2747 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑝 → (𝑖 = (𝑟𝐺) ↔ 𝑖 = (𝑝𝐺)))
88 eleq1w 2818 . . . . . . . . . . . . . . . . 17 (𝑟 = 𝑝 → (𝑟𝐸𝑝𝐸))
8987, 88anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑟 = 𝑝 → ((𝑖 = (𝑟𝐺) ∧ 𝑟𝐸) ↔ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸)))
9082, 83, 85, 89opelopab 5522 . . . . . . . . . . . . . . 15 (⟨𝑖, 𝑝⟩ ∈ {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)} ↔ (𝑖 = (𝑝𝐺) ∧ 𝑝𝐸))
91 dih1dimat.c . . . . . . . . . . . . . . . . . . 19 𝐶 = (Atoms‘𝐾)
92 dih1dimat.p . . . . . . . . . . . . . . . . . . 19 𝑃 = ((oc‘𝐾)‘𝑊)
93 dih1dimat.j . . . . . . . . . . . . . . . . . . 19 𝐽 = (invr𝐹)
94 dih1dimat.g . . . . . . . . . . . . . . . . . . 19 𝐺 = (𝑇 (𝑃) = (((𝐽𝑠)‘𝑓)‘𝑃))
951, 2, 29, 8, 24, 27, 91, 92, 13, 25, 14, 33, 48, 93, 5, 57, 36, 6, 7, 94dih1dimatlem0 41352 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸) ∧ 𝑠𝑂) → ((𝑖 = (𝑝𝐺) ∧ 𝑝𝐸) ↔ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))))
96953expa 1118 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ((𝑖 = (𝑝𝐺) ∧ 𝑝𝐸) ↔ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))))
97 opelxp 5695 . . . . . . . . . . . . . . . . . 18 (⟨𝑖, 𝑝⟩ ∈ (𝑇 × 𝐸) ↔ (𝑖𝑇𝑝𝐸))
9882, 83opth 5456 . . . . . . . . . . . . . . . . . . 19 (⟨𝑖, 𝑝⟩ = ⟨(𝑡𝑓), (𝑡𝑠)⟩ ↔ (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))
9998rexbii 3084 . . . . . . . . . . . . . . . . . 18 (∃𝑡𝐸𝑖, 𝑝⟩ = ⟨(𝑡𝑓), (𝑡𝑠)⟩ ↔ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠)))
10097, 99anbi12i 628 . . . . . . . . . . . . . . . . 17 ((⟨𝑖, 𝑝⟩ ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸𝑖, 𝑝⟩ = ⟨(𝑡𝑓), (𝑡𝑠)⟩) ↔ ((𝑖𝑇𝑝𝐸) ∧ ∃𝑡𝐸 (𝑖 = (𝑡𝑓) ∧ 𝑝 = (𝑡𝑠))))
10196, 100bitr4di 289 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ((𝑖 = (𝑝𝐺) ∧ 𝑝𝐸) ↔ (⟨𝑖, 𝑝⟩ ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸𝑖, 𝑝⟩ = ⟨(𝑡𝑓), (𝑡𝑠)⟩)))
102 eqeq1 2740 . . . . . . . . . . . . . . . . . 18 (𝑢 = ⟨𝑖, 𝑝⟩ → (𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩ ↔ ⟨𝑖, 𝑝⟩ = ⟨(𝑡𝑓), (𝑡𝑠)⟩))
103102rexbidv 3165 . . . . . . . . . . . . . . . . 17 (𝑢 = ⟨𝑖, 𝑝⟩ → (∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩ ↔ ∃𝑡𝐸𝑖, 𝑝⟩ = ⟨(𝑡𝑓), (𝑡𝑠)⟩))
104103elrab 3676 . . . . . . . . . . . . . . . 16 (⟨𝑖, 𝑝⟩ ∈ {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩} ↔ (⟨𝑖, 𝑝⟩ ∈ (𝑇 × 𝐸) ∧ ∃𝑡𝐸𝑖, 𝑝⟩ = ⟨(𝑡𝑓), (𝑡𝑠)⟩))
105101, 104bitr4di 289 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ((𝑖 = (𝑝𝐺) ∧ 𝑝𝐸) ↔ ⟨𝑖, 𝑝⟩ ∈ {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩}))
10690, 105bitr2id 284 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (⟨𝑖, 𝑝⟩ ∈ {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩} ↔ ⟨𝑖, 𝑝⟩ ∈ {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)}))
10780, 81, 106eqrelrdv 5776 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → {𝑢 ∈ (𝑇 × 𝐸) ∣ ∃𝑡𝐸 𝑢 = ⟨(𝑡𝑓), (𝑡𝑠)⟩} = {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)})
10876, 107eqtrd 2771 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → {𝑢 ∣ ∃𝑡 ∈ (Base‘𝐹)𝑢 = (𝑡 ·𝑓, 𝑠⟩)} = {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)})
1091, 2, 47dvhlmod 41134 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝑈 ∈ LMod)
1101, 13, 14, 2, 5dvhelvbasei 41112 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) → ⟨𝑓, 𝑠⟩ ∈ 𝑉)
111110adantr 480 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ⟨𝑓, 𝑠⟩ ∈ 𝑉)
11248, 49, 5, 57, 6lspsn 20964 . . . . . . . . . . . . 13 ((𝑈 ∈ LMod ∧ ⟨𝑓, 𝑠⟩ ∈ 𝑉) → (𝑁‘{⟨𝑓, 𝑠⟩}) = {𝑢 ∣ ∃𝑡 ∈ (Base‘𝐹)𝑢 = (𝑡 ·𝑓, 𝑠⟩)})
113109, 111, 112syl2anc 584 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝑁‘{⟨𝑓, 𝑠⟩}) = {𝑢 ∣ ∃𝑡 ∈ (Base‘𝐹)𝑢 = (𝑡 ·𝑓, 𝑠⟩)})
114 simpr 484 . . . . . . . . . . . . . . . . 17 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝑠𝑂)
11524, 1, 13, 14, 33, 2, 48, 93tendoinvcl 41128 . . . . . . . . . . . . . . . . . 18 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑠𝑂) → ((𝐽𝑠) ∈ 𝐸 ∧ (𝐽𝑠) ≠ 𝑂))
116115simpld 494 . . . . . . . . . . . . . . . . 17 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑠𝐸𝑠𝑂) → (𝐽𝑠) ∈ 𝐸)
11747, 66, 114, 116syl3anc 1373 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝐽𝑠) ∈ 𝐸)
1181, 13, 14tendocl 40791 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐽𝑠) ∈ 𝐸𝑓𝑇) → ((𝐽𝑠)‘𝑓) ∈ 𝑇)
11947, 117, 64, 118syl3anc 1373 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ((𝐽𝑠)‘𝑓) ∈ 𝑇)
12027, 91, 1, 92lhpocnel2 40043 . . . . . . . . . . . . . . . 16 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝑃𝐶 ∧ ¬ 𝑃 𝑊))
12147, 120syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝑃𝐶 ∧ ¬ 𝑃 𝑊))
12227, 91, 1, 13ltrnel 40163 . . . . . . . . . . . . . . 15 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐽𝑠)‘𝑓) ∈ 𝑇 ∧ (𝑃𝐶 ∧ ¬ 𝑃 𝑊)) → ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊))
12347, 119, 121, 122syl3anc 1373 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊))
124 eqid 2736 . . . . . . . . . . . . . . 15 ((DIsoC‘𝐾)‘𝑊) = ((DIsoC‘𝐾)‘𝑊)
12527, 91, 1, 124, 29dihvalcqat 41263 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊)) → (𝐼‘(((𝐽𝑠)‘𝑓)‘𝑃)) = (((DIsoC‘𝐾)‘𝑊)‘(((𝐽𝑠)‘𝑓)‘𝑃)))
12647, 123, 125syl2anc 584 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝐼‘(((𝐽𝑠)‘𝑓)‘𝑃)) = (((DIsoC‘𝐾)‘𝑊)‘(((𝐽𝑠)‘𝑓)‘𝑃)))
12727, 91, 1, 92, 13, 14, 124, 94dicval2 41203 . . . . . . . . . . . . . 14 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐶 ∧ ¬ (((𝐽𝑠)‘𝑓)‘𝑃) 𝑊)) → (((DIsoC‘𝐾)‘𝑊)‘(((𝐽𝑠)‘𝑓)‘𝑃)) = {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)})
12847, 123, 127syl2anc 584 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (((DIsoC‘𝐾)‘𝑊)‘(((𝐽𝑠)‘𝑓)‘𝑃)) = {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)})
129126, 128eqtrd 2771 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝐼‘(((𝐽𝑠)‘𝑓)‘𝑃)) = {⟨𝑔, 𝑟⟩ ∣ (𝑔 = (𝑟𝐺) ∧ 𝑟𝐸)})
130108, 113, 1293eqtr4d 2781 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝑁‘{⟨𝑓, 𝑠⟩}) = (𝐼‘(((𝐽𝑠)‘𝑓)‘𝑃)))
13124, 1, 29dihfn 41292 . . . . . . . . . . . . . 14 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼 Fn 𝐵)
132131adantr 480 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) → 𝐼 Fn 𝐵)
133132adantr 480 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝐼 Fn 𝐵)
134 simplll 774 . . . . . . . . . . . . . . . 16 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝐾 ∈ HL)
135 hlop 39385 . . . . . . . . . . . . . . . 16 (𝐾 ∈ HL → 𝐾 ∈ OP)
136134, 135syl 17 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝐾 ∈ OP)
13724, 1lhpbase 40022 . . . . . . . . . . . . . . . 16 (𝑊𝐻𝑊𝐵)
138137ad3antlr 731 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝑊𝐵)
139 eqid 2736 . . . . . . . . . . . . . . . 16 (oc‘𝐾) = (oc‘𝐾)
14024, 139opoccl 39217 . . . . . . . . . . . . . . 15 ((𝐾 ∈ OP ∧ 𝑊𝐵) → ((oc‘𝐾)‘𝑊) ∈ 𝐵)
141136, 138, 140syl2anc 584 . . . . . . . . . . . . . 14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → ((oc‘𝐾)‘𝑊) ∈ 𝐵)
14292, 141eqeltrid 2839 . . . . . . . . . . . . 13 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → 𝑃𝐵)
14324, 1, 13ltrncl 40149 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐽𝑠)‘𝑓) ∈ 𝑇𝑃𝐵) → (((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐵)
14447, 119, 142, 143syl3anc 1373 . . . . . . . . . . . 12 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐵)
145 fnfvelrn 7075 . . . . . . . . . . . 12 ((𝐼 Fn 𝐵 ∧ (((𝐽𝑠)‘𝑓)‘𝑃) ∈ 𝐵) → (𝐼‘(((𝐽𝑠)‘𝑓)‘𝑃)) ∈ ran 𝐼)
146133, 144, 145syl2anc 584 . . . . . . . . . . 11 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝐼‘(((𝐽𝑠)‘𝑓)‘𝑃)) ∈ ran 𝐼)
147130, 146eqeltrd 2835 . . . . . . . . . 10 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) ∧ 𝑠𝑂) → (𝑁‘{⟨𝑓, 𝑠⟩}) ∈ ran 𝐼)
14846, 147pm2.61dane 3020 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑓𝑇𝑠𝐸)) → (𝑁‘{⟨𝑓, 𝑠⟩}) ∈ ran 𝐼)
149148ralrimivva 3188 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∀𝑓𝑇𝑠𝐸 (𝑁‘{⟨𝑓, 𝑠⟩}) ∈ ran 𝐼)
150 sneq 4616 . . . . . . . . . . 11 (𝑣 = ⟨𝑓, 𝑠⟩ → {𝑣} = {⟨𝑓, 𝑠⟩})
151150fveq2d 6885 . . . . . . . . . 10 (𝑣 = ⟨𝑓, 𝑠⟩ → (𝑁‘{𝑣}) = (𝑁‘{⟨𝑓, 𝑠⟩}))
152151eleq1d 2820 . . . . . . . . 9 (𝑣 = ⟨𝑓, 𝑠⟩ → ((𝑁‘{𝑣}) ∈ ran 𝐼 ↔ (𝑁‘{⟨𝑓, 𝑠⟩}) ∈ ran 𝐼))
153152ralxp 5826 . . . . . . . 8 (∀𝑣 ∈ (𝑇 × 𝐸)(𝑁‘{𝑣}) ∈ ran 𝐼 ↔ ∀𝑓𝑇𝑠𝐸 (𝑁‘{⟨𝑓, 𝑠⟩}) ∈ ran 𝐼)
154149, 153sylibr 234 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ∀𝑣 ∈ (𝑇 × 𝐸)(𝑁‘{𝑣}) ∈ ran 𝐼)
155154r19.21bi 3238 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑣 ∈ (𝑇 × 𝐸)) → (𝑁‘{𝑣}) ∈ ran 𝐼)
15618, 155syldan 591 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑣 ∈ (𝑉 ∖ { 0 })) → (𝑁‘{𝑣}) ∈ ran 𝐼)
157 eleq1a 2830 . . . . 5 ((𝑁‘{𝑣}) ∈ ran 𝐼 → (𝐷 = (𝑁‘{𝑣}) → 𝐷 ∈ ran 𝐼))
158156, 157syl 17 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑣 ∈ (𝑉 ∖ { 0 })) → (𝐷 = (𝑁‘{𝑣}) → 𝐷 ∈ ran 𝐼))
159158rexlimdva 3142 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (∃𝑣 ∈ (𝑉 ∖ { 0 })𝐷 = (𝑁‘{𝑣}) → 𝐷 ∈ ran 𝐼))
160159adantr 480 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝐴) → (∃𝑣 ∈ (𝑉 ∖ { 0 })𝐷 = (𝑁‘{𝑣}) → 𝐷 ∈ ran 𝐼))
16111, 160mpd 15 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝐴) → 𝐷 ∈ ran 𝐼)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2714  wne 2933  wral 3052  wrex 3061  {crab 3420  cdif 3928  wss 3931  {csn 4606  cop 4612   class class class wbr 5124  {copab 5186  cmpt 5206   I cid 5552   × cxp 5657  ran crn 5660  cres 5661  ccom 5663  Rel wrel 5664   Fn wfn 6531  1-1wf1 6533  cfv 6536  crio 7366  (class class class)co 7410  Basecbs 17233  Scalarcsca 17279   ·𝑠 cvsca 17280  lecple 17283  occoc 17284  0gc0g 17458  invrcinvr 20352  LModclmod 20822  LSubSpclss 20893  LSpanclspn 20933  LVecclvec 21065  LSAtomsclsa 38997  OPcops 39195  Atomscatm 39286  HLchlt 39373  LHypclh 40008  LTrncltrn 40125  trLctrl 40182  TEndoctendo 40776  DVecHcdvh 41102  DIsoBcdib 41162  DIsoCcdic 41196  DIsoHcdih 41252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-riotaBAD 38976
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-undef 8277  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-0g 17460  df-proset 18311  df-poset 18330  df-plt 18345  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-p0 18440  df-p1 18441  df-lat 18447  df-clat 18514  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-cntz 19305  df-lsm 19622  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-dvr 20366  df-drng 20696  df-lmod 20824  df-lss 20894  df-lsp 20934  df-lvec 21066  df-lsatoms 38999  df-oposet 39199  df-ol 39201  df-oml 39202  df-covers 39289  df-ats 39290  df-atl 39321  df-cvlat 39345  df-hlat 39374  df-llines 39522  df-lplanes 39523  df-lvols 39524  df-lines 39525  df-psubsp 39527  df-pmap 39528  df-padd 39820  df-lhyp 40012  df-laut 40013  df-ldil 40128  df-ltrn 40129  df-trl 40183  df-tendo 40779  df-edring 40781  df-disoa 41053  df-dvech 41103  df-dib 41163  df-dic 41197  df-dih 41253
This theorem is referenced by:  dih1dimat  41354
  Copyright terms: Public domain W3C validator