Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartlemo | Structured version Visualization version GIF version |
Description: Lemma for eulerpart 32249: 𝑂 is the set of odd partitions of 𝑁. (Contributed by Thierry Arnoux, 10-Aug-2017.) |
Ref | Expression |
---|---|
eulerpart.p | ⊢ 𝑃 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁)} |
eulerpart.o | ⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} |
eulerpart.d | ⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} |
Ref | Expression |
---|---|
eulerpartlemo | ⊢ (𝐴 ∈ 𝑂 ↔ (𝐴 ∈ 𝑃 ∧ ∀𝑛 ∈ (◡𝐴 “ ℕ) ¬ 2 ∥ 𝑛)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveq 5771 | . . . 4 ⊢ (𝑔 = 𝐴 → ◡𝑔 = ◡𝐴) | |
2 | 1 | imaeq1d 5957 | . . 3 ⊢ (𝑔 = 𝐴 → (◡𝑔 “ ℕ) = (◡𝐴 “ ℕ)) |
3 | 2 | raleqdv 3339 | . 2 ⊢ (𝑔 = 𝐴 → (∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛 ↔ ∀𝑛 ∈ (◡𝐴 “ ℕ) ¬ 2 ∥ 𝑛)) |
4 | eulerpart.o | . 2 ⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} | |
5 | 3, 4 | elrab2 3620 | 1 ⊢ (𝐴 ∈ 𝑂 ↔ (𝐴 ∈ 𝑃 ∧ ∀𝑛 ∈ (◡𝐴 “ ℕ) ¬ 2 ∥ 𝑛)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 {crab 3067 class class class wbr 5070 ◡ccnv 5579 “ cima 5583 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 Fincfn 8691 1c1 10803 · cmul 10807 ≤ cle 10941 ℕcn 11903 2c2 11958 ℕ0cn0 12163 Σcsu 15325 ∥ cdvds 15891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-cnv 5588 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 |
This theorem is referenced by: eulerpartlemr 32241 |
Copyright terms: Public domain | W3C validator |