Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemo Structured version   Visualization version   GIF version

Theorem eulerpartlemo 34401
Description: Lemma for eulerpart 34418: 𝑂 is the set of odd partitions of 𝑁. (Contributed by Thierry Arnoux, 10-Aug-2017.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
Assertion
Ref Expression
eulerpartlemo (𝐴𝑂 ↔ (𝐴𝑃 ∧ ∀𝑛 ∈ (𝐴 “ ℕ) ¬ 2 ∥ 𝑛))
Distinct variable groups:   𝑔,𝑛,𝐴   𝑃,𝑔
Allowed substitution hints:   𝐴(𝑓,𝑘)   𝐷(𝑓,𝑔,𝑘,𝑛)   𝑃(𝑓,𝑘,𝑛)   𝑁(𝑓,𝑔,𝑘,𝑛)   𝑂(𝑓,𝑔,𝑘,𝑛)

Proof of Theorem eulerpartlemo
StepHypRef Expression
1 cnveq 5819 . . . 4 (𝑔 = 𝐴𝑔 = 𝐴)
21imaeq1d 6014 . . 3 (𝑔 = 𝐴 → (𝑔 “ ℕ) = (𝐴 “ ℕ))
32raleqdv 3293 . 2 (𝑔 = 𝐴 → (∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛 ↔ ∀𝑛 ∈ (𝐴 “ ℕ) ¬ 2 ∥ 𝑛))
4 eulerpart.o . 2 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
53, 4elrab2 3646 1 (𝐴𝑂 ↔ (𝐴𝑃 ∧ ∀𝑛 ∈ (𝐴 “ ℕ) ¬ 2 ∥ 𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  {crab 3396   class class class wbr 5095  ccnv 5620  cima 5624  cfv 6488  (class class class)co 7354  m cmap 8758  Fincfn 8877  1c1 11016   · cmul 11020  cle 11156  cn 12134  2c2 12189  0cn0 12390  Σcsu 15597  cdvds 16167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634
This theorem is referenced by:  eulerpartlemr  34410
  Copyright terms: Public domain W3C validator