| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartlemo | Structured version Visualization version GIF version | ||
| Description: Lemma for eulerpart 34418: 𝑂 is the set of odd partitions of 𝑁. (Contributed by Thierry Arnoux, 10-Aug-2017.) |
| Ref | Expression |
|---|---|
| eulerpart.p | ⊢ 𝑃 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁)} |
| eulerpart.o | ⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} |
| eulerpart.d | ⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} |
| Ref | Expression |
|---|---|
| eulerpartlemo | ⊢ (𝐴 ∈ 𝑂 ↔ (𝐴 ∈ 𝑃 ∧ ∀𝑛 ∈ (◡𝐴 “ ℕ) ¬ 2 ∥ 𝑛)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveq 5819 | . . . 4 ⊢ (𝑔 = 𝐴 → ◡𝑔 = ◡𝐴) | |
| 2 | 1 | imaeq1d 6014 | . . 3 ⊢ (𝑔 = 𝐴 → (◡𝑔 “ ℕ) = (◡𝐴 “ ℕ)) |
| 3 | 2 | raleqdv 3293 | . 2 ⊢ (𝑔 = 𝐴 → (∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛 ↔ ∀𝑛 ∈ (◡𝐴 “ ℕ) ¬ 2 ∥ 𝑛)) |
| 4 | eulerpart.o | . 2 ⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} | |
| 5 | 3, 4 | elrab2 3646 | 1 ⊢ (𝐴 ∈ 𝑂 ↔ (𝐴 ∈ 𝑃 ∧ ∀𝑛 ∈ (◡𝐴 “ ℕ) ¬ 2 ∥ 𝑛)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 {crab 3396 class class class wbr 5095 ◡ccnv 5620 “ cima 5624 ‘cfv 6488 (class class class)co 7354 ↑m cmap 8758 Fincfn 8877 1c1 11016 · cmul 11020 ≤ cle 11156 ℕcn 12134 2c2 12189 ℕ0cn0 12390 Σcsu 15597 ∥ cdvds 16167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 |
| This theorem is referenced by: eulerpartlemr 34410 |
| Copyright terms: Public domain | W3C validator |