| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartlemo | Structured version Visualization version GIF version | ||
| Description: Lemma for eulerpart 34414: 𝑂 is the set of odd partitions of 𝑁. (Contributed by Thierry Arnoux, 10-Aug-2017.) |
| Ref | Expression |
|---|---|
| eulerpart.p | ⊢ 𝑃 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁)} |
| eulerpart.o | ⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} |
| eulerpart.d | ⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} |
| Ref | Expression |
|---|---|
| eulerpartlemo | ⊢ (𝐴 ∈ 𝑂 ↔ (𝐴 ∈ 𝑃 ∧ ∀𝑛 ∈ (◡𝐴 “ ℕ) ¬ 2 ∥ 𝑛)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveq 5853 | . . . 4 ⊢ (𝑔 = 𝐴 → ◡𝑔 = ◡𝐴) | |
| 2 | 1 | imaeq1d 6046 | . . 3 ⊢ (𝑔 = 𝐴 → (◡𝑔 “ ℕ) = (◡𝐴 “ ℕ)) |
| 3 | 2 | raleqdv 3305 | . 2 ⊢ (𝑔 = 𝐴 → (∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛 ↔ ∀𝑛 ∈ (◡𝐴 “ ℕ) ¬ 2 ∥ 𝑛)) |
| 4 | eulerpart.o | . 2 ⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} | |
| 5 | 3, 4 | elrab2 3674 | 1 ⊢ (𝐴 ∈ 𝑂 ↔ (𝐴 ∈ 𝑃 ∧ ∀𝑛 ∈ (◡𝐴 “ ℕ) ¬ 2 ∥ 𝑛)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 {crab 3415 class class class wbr 5119 ◡ccnv 5653 “ cima 5657 ‘cfv 6531 (class class class)co 7405 ↑m cmap 8840 Fincfn 8959 1c1 11130 · cmul 11134 ≤ cle 11270 ℕcn 12240 2c2 12295 ℕ0cn0 12501 Σcsu 15702 ∥ cdvds 16272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-cnv 5662 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 |
| This theorem is referenced by: eulerpartlemr 34406 |
| Copyright terms: Public domain | W3C validator |