| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartlemo | Structured version Visualization version GIF version | ||
| Description: Lemma for eulerpart 34393: 𝑂 is the set of odd partitions of 𝑁. (Contributed by Thierry Arnoux, 10-Aug-2017.) |
| Ref | Expression |
|---|---|
| eulerpart.p | ⊢ 𝑃 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁)} |
| eulerpart.o | ⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} |
| eulerpart.d | ⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} |
| Ref | Expression |
|---|---|
| eulerpartlemo | ⊢ (𝐴 ∈ 𝑂 ↔ (𝐴 ∈ 𝑃 ∧ ∀𝑛 ∈ (◡𝐴 “ ℕ) ¬ 2 ∥ 𝑛)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnveq 5813 | . . . 4 ⊢ (𝑔 = 𝐴 → ◡𝑔 = ◡𝐴) | |
| 2 | 1 | imaeq1d 6008 | . . 3 ⊢ (𝑔 = 𝐴 → (◡𝑔 “ ℕ) = (◡𝐴 “ ℕ)) |
| 3 | 2 | raleqdv 3292 | . 2 ⊢ (𝑔 = 𝐴 → (∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛 ↔ ∀𝑛 ∈ (◡𝐴 “ ℕ) ¬ 2 ∥ 𝑛)) |
| 4 | eulerpart.o | . 2 ⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} | |
| 5 | 3, 4 | elrab2 3650 | 1 ⊢ (𝐴 ∈ 𝑂 ↔ (𝐴 ∈ 𝑃 ∧ ∀𝑛 ∈ (◡𝐴 “ ℕ) ¬ 2 ∥ 𝑛)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 class class class wbr 5091 ◡ccnv 5615 “ cima 5619 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 Fincfn 8869 1c1 11007 · cmul 11011 ≤ cle 11147 ℕcn 12125 2c2 12180 ℕ0cn0 12381 Σcsu 15593 ∥ cdvds 16163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-cnv 5624 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 |
| This theorem is referenced by: eulerpartlemr 34385 |
| Copyright terms: Public domain | W3C validator |