Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemo Structured version   Visualization version   GIF version

Theorem eulerpartlemo 34356
Description: Lemma for eulerpart 34373: 𝑂 is the set of odd partitions of 𝑁. (Contributed by Thierry Arnoux, 10-Aug-2017.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
Assertion
Ref Expression
eulerpartlemo (𝐴𝑂 ↔ (𝐴𝑃 ∧ ∀𝑛 ∈ (𝐴 “ ℕ) ¬ 2 ∥ 𝑛))
Distinct variable groups:   𝑔,𝑛,𝐴   𝑃,𝑔
Allowed substitution hints:   𝐴(𝑓,𝑘)   𝐷(𝑓,𝑔,𝑘,𝑛)   𝑃(𝑓,𝑘,𝑛)   𝑁(𝑓,𝑔,𝑘,𝑛)   𝑂(𝑓,𝑔,𝑘,𝑛)

Proof of Theorem eulerpartlemo
StepHypRef Expression
1 cnveq 5837 . . . 4 (𝑔 = 𝐴𝑔 = 𝐴)
21imaeq1d 6030 . . 3 (𝑔 = 𝐴 → (𝑔 “ ℕ) = (𝐴 “ ℕ))
32raleqdv 3299 . 2 (𝑔 = 𝐴 → (∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛 ↔ ∀𝑛 ∈ (𝐴 “ ℕ) ¬ 2 ∥ 𝑛))
4 eulerpart.o . 2 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
53, 4elrab2 3662 1 (𝐴𝑂 ↔ (𝐴𝑃 ∧ ∀𝑛 ∈ (𝐴 “ ℕ) ¬ 2 ∥ 𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3405   class class class wbr 5107  ccnv 5637  cima 5641  cfv 6511  (class class class)co 7387  m cmap 8799  Fincfn 8918  1c1 11069   · cmul 11073  cle 11209  cn 12186  2c2 12241  0cn0 12442  Σcsu 15652  cdvds 16222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-cnv 5646  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651
This theorem is referenced by:  eulerpartlemr  34365
  Copyright terms: Public domain W3C validator