Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemo Structured version   Visualization version   GIF version

Theorem eulerpartlemo 31511
Description: Lemma for eulerpart 31528: 𝑂 is the set of odd partitions of 𝑁. (Contributed by Thierry Arnoux, 10-Aug-2017.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
Assertion
Ref Expression
eulerpartlemo (𝐴𝑂 ↔ (𝐴𝑃 ∧ ∀𝑛 ∈ (𝐴 “ ℕ) ¬ 2 ∥ 𝑛))
Distinct variable groups:   𝑔,𝑛,𝐴   𝑃,𝑔
Allowed substitution hints:   𝐴(𝑓,𝑘)   𝐷(𝑓,𝑔,𝑘,𝑛)   𝑃(𝑓,𝑘,𝑛)   𝑁(𝑓,𝑔,𝑘,𝑛)   𝑂(𝑓,𝑔,𝑘,𝑛)

Proof of Theorem eulerpartlemo
StepHypRef Expression
1 cnveq 5742 . . . 4 (𝑔 = 𝐴𝑔 = 𝐴)
21imaeq1d 5925 . . 3 (𝑔 = 𝐴 → (𝑔 “ ℕ) = (𝐴 “ ℕ))
32raleqdv 3420 . 2 (𝑔 = 𝐴 → (∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛 ↔ ∀𝑛 ∈ (𝐴 “ ℕ) ¬ 2 ∥ 𝑛))
4 eulerpart.o . 2 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
53, 4elrab2 3686 1 (𝐴𝑂 ↔ (𝐴𝑃 ∧ ∀𝑛 ∈ (𝐴 “ ℕ) ¬ 2 ∥ 𝑛))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 207  wa 396   = wceq 1530  wcel 2107  wral 3142  {crab 3146   class class class wbr 5062  ccnv 5552  cima 5556  cfv 6351  (class class class)co 7151  m cmap 8399  Fincfn 8501  1c1 10530   · cmul 10534  cle 10668  cn 11630  2c2 11684  0cn0 11889  Σcsu 15035  cdvds 15599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ral 3147  df-rab 3151  df-v 3501  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-sn 4564  df-pr 4566  df-op 4570  df-br 5063  df-opab 5125  df-cnv 5561  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566
This theorem is referenced by:  eulerpartlemr  31520
  Copyright terms: Public domain W3C validator