| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartlemd | Structured version Visualization version GIF version | ||
| Description: Lemma for eulerpart 34325: 𝐷 is the set of distinct part. of 𝑁. (Contributed by Thierry Arnoux, 11-Aug-2017.) |
| Ref | Expression |
|---|---|
| eulerpart.p | ⊢ 𝑃 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁)} |
| eulerpart.o | ⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} |
| eulerpart.d | ⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} |
| Ref | Expression |
|---|---|
| eulerpartlemd | ⊢ (𝐴 ∈ 𝐷 ↔ (𝐴 ∈ 𝑃 ∧ (𝐴 “ ℕ) ⊆ {0, 1})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6886 | . . . . 5 ⊢ (𝑔 = 𝐴 → (𝑔‘𝑛) = (𝐴‘𝑛)) | |
| 2 | 1 | breq1d 5135 | . . . 4 ⊢ (𝑔 = 𝐴 → ((𝑔‘𝑛) ≤ 1 ↔ (𝐴‘𝑛) ≤ 1)) |
| 3 | 2 | ralbidv 3165 | . . 3 ⊢ (𝑔 = 𝐴 → (∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1 ↔ ∀𝑛 ∈ ℕ (𝐴‘𝑛) ≤ 1)) |
| 4 | eulerpart.d | . . 3 ⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} | |
| 5 | 3, 4 | elrab2 3679 | . 2 ⊢ (𝐴 ∈ 𝐷 ↔ (𝐴 ∈ 𝑃 ∧ ∀𝑛 ∈ ℕ (𝐴‘𝑛) ≤ 1)) |
| 6 | 2z 12633 | . . . . . . . . 9 ⊢ 2 ∈ ℤ | |
| 7 | fzoval 13683 | . . . . . . . . 9 ⊢ (2 ∈ ℤ → (0..^2) = (0...(2 − 1))) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . . . 8 ⊢ (0..^2) = (0...(2 − 1)) |
| 9 | fzo0to2pr 13772 | . . . . . . . 8 ⊢ (0..^2) = {0, 1} | |
| 10 | 2m1e1 12375 | . . . . . . . . 9 ⊢ (2 − 1) = 1 | |
| 11 | 10 | oveq2i 7425 | . . . . . . . 8 ⊢ (0...(2 − 1)) = (0...1) |
| 12 | 8, 9, 11 | 3eqtr3i 2765 | . . . . . . 7 ⊢ {0, 1} = (0...1) |
| 13 | 12 | eleq2i 2825 | . . . . . 6 ⊢ ((𝐴‘𝑛) ∈ {0, 1} ↔ (𝐴‘𝑛) ∈ (0...1)) |
| 14 | eulerpart.p | . . . . . . . . . 10 ⊢ 𝑃 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁)} | |
| 15 | 14 | eulerpartleme 34306 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝑃 ↔ (𝐴:ℕ⟶ℕ0 ∧ (◡𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘) = 𝑁)) |
| 16 | 15 | simp1bi 1145 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑃 → 𝐴:ℕ⟶ℕ0) |
| 17 | 16 | ffvelcdmda 7085 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑃 ∧ 𝑛 ∈ ℕ) → (𝐴‘𝑛) ∈ ℕ0) |
| 18 | 1nn0 12526 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 19 | elfz2nn0 13641 | . . . . . . . . 9 ⊢ ((𝐴‘𝑛) ∈ (0...1) ↔ ((𝐴‘𝑛) ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ (𝐴‘𝑛) ≤ 1)) | |
| 20 | df-3an 1088 | . . . . . . . . 9 ⊢ (((𝐴‘𝑛) ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ (𝐴‘𝑛) ≤ 1) ↔ (((𝐴‘𝑛) ∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (𝐴‘𝑛) ≤ 1)) | |
| 21 | 19, 20 | bitri 275 | . . . . . . . 8 ⊢ ((𝐴‘𝑛) ∈ (0...1) ↔ (((𝐴‘𝑛) ∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (𝐴‘𝑛) ≤ 1)) |
| 22 | 21 | baib 535 | . . . . . . 7 ⊢ (((𝐴‘𝑛) ∈ ℕ0 ∧ 1 ∈ ℕ0) → ((𝐴‘𝑛) ∈ (0...1) ↔ (𝐴‘𝑛) ≤ 1)) |
| 23 | 17, 18, 22 | sylancl 586 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑃 ∧ 𝑛 ∈ ℕ) → ((𝐴‘𝑛) ∈ (0...1) ↔ (𝐴‘𝑛) ≤ 1)) |
| 24 | 13, 23 | bitr2id 284 | . . . . 5 ⊢ ((𝐴 ∈ 𝑃 ∧ 𝑛 ∈ ℕ) → ((𝐴‘𝑛) ≤ 1 ↔ (𝐴‘𝑛) ∈ {0, 1})) |
| 25 | 24 | ralbidva 3163 | . . . 4 ⊢ (𝐴 ∈ 𝑃 → (∀𝑛 ∈ ℕ (𝐴‘𝑛) ≤ 1 ↔ ∀𝑛 ∈ ℕ (𝐴‘𝑛) ∈ {0, 1})) |
| 26 | 16 | ffund 6721 | . . . . 5 ⊢ (𝐴 ∈ 𝑃 → Fun 𝐴) |
| 27 | fdm 6726 | . . . . . 6 ⊢ (𝐴:ℕ⟶ℕ0 → dom 𝐴 = ℕ) | |
| 28 | eqimss2 4025 | . . . . . 6 ⊢ (dom 𝐴 = ℕ → ℕ ⊆ dom 𝐴) | |
| 29 | 16, 27, 28 | 3syl 18 | . . . . 5 ⊢ (𝐴 ∈ 𝑃 → ℕ ⊆ dom 𝐴) |
| 30 | funimass4 6954 | . . . . 5 ⊢ ((Fun 𝐴 ∧ ℕ ⊆ dom 𝐴) → ((𝐴 “ ℕ) ⊆ {0, 1} ↔ ∀𝑛 ∈ ℕ (𝐴‘𝑛) ∈ {0, 1})) | |
| 31 | 26, 29, 30 | syl2anc 584 | . . . 4 ⊢ (𝐴 ∈ 𝑃 → ((𝐴 “ ℕ) ⊆ {0, 1} ↔ ∀𝑛 ∈ ℕ (𝐴‘𝑛) ∈ {0, 1})) |
| 32 | 25, 31 | bitr4d 282 | . . 3 ⊢ (𝐴 ∈ 𝑃 → (∀𝑛 ∈ ℕ (𝐴‘𝑛) ≤ 1 ↔ (𝐴 “ ℕ) ⊆ {0, 1})) |
| 33 | 32 | pm5.32i 574 | . 2 ⊢ ((𝐴 ∈ 𝑃 ∧ ∀𝑛 ∈ ℕ (𝐴‘𝑛) ≤ 1) ↔ (𝐴 ∈ 𝑃 ∧ (𝐴 “ ℕ) ⊆ {0, 1})) |
| 34 | 5, 33 | bitri 275 | 1 ⊢ (𝐴 ∈ 𝐷 ↔ (𝐴 ∈ 𝑃 ∧ (𝐴 “ ℕ) ⊆ {0, 1})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∀wral 3050 {crab 3420 ⊆ wss 3933 {cpr 4610 class class class wbr 5125 ◡ccnv 5666 dom cdm 5667 “ cima 5670 Fun wfun 6536 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 ↑m cmap 8849 Fincfn 8968 0cc0 11138 1c1 11139 · cmul 11143 ≤ cle 11279 − cmin 11475 ℕcn 12249 2c2 12304 ℕ0cn0 12510 ℤcz 12597 ...cfz 13530 ..^cfzo 13677 Σcsu 15705 ∥ cdvds 16273 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-er 8728 df-map 8851 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-n0 12511 df-z 12598 df-uz 12862 df-fz 13531 df-fzo 13678 df-seq 14026 df-sum 15706 |
| This theorem is referenced by: eulerpartlemn 34324 |
| Copyright terms: Public domain | W3C validator |