| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartlemd | Structured version Visualization version GIF version | ||
| Description: Lemma for eulerpart 34395: 𝐷 is the set of distinct part. of 𝑁. (Contributed by Thierry Arnoux, 11-Aug-2017.) |
| Ref | Expression |
|---|---|
| eulerpart.p | ⊢ 𝑃 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁)} |
| eulerpart.o | ⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} |
| eulerpart.d | ⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} |
| Ref | Expression |
|---|---|
| eulerpartlemd | ⊢ (𝐴 ∈ 𝐷 ↔ (𝐴 ∈ 𝑃 ∧ (𝐴 “ ℕ) ⊆ {0, 1})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6821 | . . . . 5 ⊢ (𝑔 = 𝐴 → (𝑔‘𝑛) = (𝐴‘𝑛)) | |
| 2 | 1 | breq1d 5099 | . . . 4 ⊢ (𝑔 = 𝐴 → ((𝑔‘𝑛) ≤ 1 ↔ (𝐴‘𝑛) ≤ 1)) |
| 3 | 2 | ralbidv 3155 | . . 3 ⊢ (𝑔 = 𝐴 → (∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1 ↔ ∀𝑛 ∈ ℕ (𝐴‘𝑛) ≤ 1)) |
| 4 | eulerpart.d | . . 3 ⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} | |
| 5 | 3, 4 | elrab2 3645 | . 2 ⊢ (𝐴 ∈ 𝐷 ↔ (𝐴 ∈ 𝑃 ∧ ∀𝑛 ∈ ℕ (𝐴‘𝑛) ≤ 1)) |
| 6 | 2z 12504 | . . . . . . . . 9 ⊢ 2 ∈ ℤ | |
| 7 | fzoval 13560 | . . . . . . . . 9 ⊢ (2 ∈ ℤ → (0..^2) = (0...(2 − 1))) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . . . 8 ⊢ (0..^2) = (0...(2 − 1)) |
| 9 | fzo0to2pr 13650 | . . . . . . . 8 ⊢ (0..^2) = {0, 1} | |
| 10 | 2m1e1 12246 | . . . . . . . . 9 ⊢ (2 − 1) = 1 | |
| 11 | 10 | oveq2i 7357 | . . . . . . . 8 ⊢ (0...(2 − 1)) = (0...1) |
| 12 | 8, 9, 11 | 3eqtr3i 2762 | . . . . . . 7 ⊢ {0, 1} = (0...1) |
| 13 | 12 | eleq2i 2823 | . . . . . 6 ⊢ ((𝐴‘𝑛) ∈ {0, 1} ↔ (𝐴‘𝑛) ∈ (0...1)) |
| 14 | eulerpart.p | . . . . . . . . . 10 ⊢ 𝑃 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁)} | |
| 15 | 14 | eulerpartleme 34376 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝑃 ↔ (𝐴:ℕ⟶ℕ0 ∧ (◡𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘) = 𝑁)) |
| 16 | 15 | simp1bi 1145 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑃 → 𝐴:ℕ⟶ℕ0) |
| 17 | 16 | ffvelcdmda 7017 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑃 ∧ 𝑛 ∈ ℕ) → (𝐴‘𝑛) ∈ ℕ0) |
| 18 | 1nn0 12397 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 19 | elfz2nn0 13518 | . . . . . . . . 9 ⊢ ((𝐴‘𝑛) ∈ (0...1) ↔ ((𝐴‘𝑛) ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ (𝐴‘𝑛) ≤ 1)) | |
| 20 | df-3an 1088 | . . . . . . . . 9 ⊢ (((𝐴‘𝑛) ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ (𝐴‘𝑛) ≤ 1) ↔ (((𝐴‘𝑛) ∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (𝐴‘𝑛) ≤ 1)) | |
| 21 | 19, 20 | bitri 275 | . . . . . . . 8 ⊢ ((𝐴‘𝑛) ∈ (0...1) ↔ (((𝐴‘𝑛) ∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (𝐴‘𝑛) ≤ 1)) |
| 22 | 21 | baib 535 | . . . . . . 7 ⊢ (((𝐴‘𝑛) ∈ ℕ0 ∧ 1 ∈ ℕ0) → ((𝐴‘𝑛) ∈ (0...1) ↔ (𝐴‘𝑛) ≤ 1)) |
| 23 | 17, 18, 22 | sylancl 586 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑃 ∧ 𝑛 ∈ ℕ) → ((𝐴‘𝑛) ∈ (0...1) ↔ (𝐴‘𝑛) ≤ 1)) |
| 24 | 13, 23 | bitr2id 284 | . . . . 5 ⊢ ((𝐴 ∈ 𝑃 ∧ 𝑛 ∈ ℕ) → ((𝐴‘𝑛) ≤ 1 ↔ (𝐴‘𝑛) ∈ {0, 1})) |
| 25 | 24 | ralbidva 3153 | . . . 4 ⊢ (𝐴 ∈ 𝑃 → (∀𝑛 ∈ ℕ (𝐴‘𝑛) ≤ 1 ↔ ∀𝑛 ∈ ℕ (𝐴‘𝑛) ∈ {0, 1})) |
| 26 | 16 | ffund 6655 | . . . . 5 ⊢ (𝐴 ∈ 𝑃 → Fun 𝐴) |
| 27 | fdm 6660 | . . . . . 6 ⊢ (𝐴:ℕ⟶ℕ0 → dom 𝐴 = ℕ) | |
| 28 | eqimss2 3989 | . . . . . 6 ⊢ (dom 𝐴 = ℕ → ℕ ⊆ dom 𝐴) | |
| 29 | 16, 27, 28 | 3syl 18 | . . . . 5 ⊢ (𝐴 ∈ 𝑃 → ℕ ⊆ dom 𝐴) |
| 30 | funimass4 6886 | . . . . 5 ⊢ ((Fun 𝐴 ∧ ℕ ⊆ dom 𝐴) → ((𝐴 “ ℕ) ⊆ {0, 1} ↔ ∀𝑛 ∈ ℕ (𝐴‘𝑛) ∈ {0, 1})) | |
| 31 | 26, 29, 30 | syl2anc 584 | . . . 4 ⊢ (𝐴 ∈ 𝑃 → ((𝐴 “ ℕ) ⊆ {0, 1} ↔ ∀𝑛 ∈ ℕ (𝐴‘𝑛) ∈ {0, 1})) |
| 32 | 25, 31 | bitr4d 282 | . . 3 ⊢ (𝐴 ∈ 𝑃 → (∀𝑛 ∈ ℕ (𝐴‘𝑛) ≤ 1 ↔ (𝐴 “ ℕ) ⊆ {0, 1})) |
| 33 | 32 | pm5.32i 574 | . 2 ⊢ ((𝐴 ∈ 𝑃 ∧ ∀𝑛 ∈ ℕ (𝐴‘𝑛) ≤ 1) ↔ (𝐴 ∈ 𝑃 ∧ (𝐴 “ ℕ) ⊆ {0, 1})) |
| 34 | 5, 33 | bitri 275 | 1 ⊢ (𝐴 ∈ 𝐷 ↔ (𝐴 ∈ 𝑃 ∧ (𝐴 “ ℕ) ⊆ {0, 1})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 ⊆ wss 3897 {cpr 4575 class class class wbr 5089 ◡ccnv 5613 dom cdm 5614 “ cima 5617 Fun wfun 6475 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 Fincfn 8869 0cc0 11006 1c1 11007 · cmul 11011 ≤ cle 11147 − cmin 11344 ℕcn 12125 2c2 12180 ℕ0cn0 12381 ℤcz 12468 ...cfz 13407 ..^cfzo 13554 Σcsu 15593 ∥ cdvds 16163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-sum 15594 |
| This theorem is referenced by: eulerpartlemn 34394 |
| Copyright terms: Public domain | W3C validator |