Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemd Structured version   Visualization version   GIF version

Theorem eulerpartlemd 34309
Description: Lemma for eulerpart 34325: 𝐷 is the set of distinct part. of 𝑁. (Contributed by Thierry Arnoux, 11-Aug-2017.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
Assertion
Ref Expression
eulerpartlemd (𝐴𝐷 ↔ (𝐴𝑃 ∧ (𝐴 “ ℕ) ⊆ {0, 1}))
Distinct variable groups:   𝑓,𝑔,𝑘,𝑛,𝐴   𝑓,𝑁   𝑃,𝑔,𝑛
Allowed substitution hints:   𝐷(𝑓,𝑔,𝑘,𝑛)   𝑃(𝑓,𝑘)   𝑁(𝑔,𝑘,𝑛)   𝑂(𝑓,𝑔,𝑘,𝑛)

Proof of Theorem eulerpartlemd
StepHypRef Expression
1 fveq1 6886 . . . . 5 (𝑔 = 𝐴 → (𝑔𝑛) = (𝐴𝑛))
21breq1d 5135 . . . 4 (𝑔 = 𝐴 → ((𝑔𝑛) ≤ 1 ↔ (𝐴𝑛) ≤ 1))
32ralbidv 3165 . . 3 (𝑔 = 𝐴 → (∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1 ↔ ∀𝑛 ∈ ℕ (𝐴𝑛) ≤ 1))
4 eulerpart.d . . 3 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
53, 4elrab2 3679 . 2 (𝐴𝐷 ↔ (𝐴𝑃 ∧ ∀𝑛 ∈ ℕ (𝐴𝑛) ≤ 1))
6 2z 12633 . . . . . . . . 9 2 ∈ ℤ
7 fzoval 13683 . . . . . . . . 9 (2 ∈ ℤ → (0..^2) = (0...(2 − 1)))
86, 7ax-mp 5 . . . . . . . 8 (0..^2) = (0...(2 − 1))
9 fzo0to2pr 13772 . . . . . . . 8 (0..^2) = {0, 1}
10 2m1e1 12375 . . . . . . . . 9 (2 − 1) = 1
1110oveq2i 7425 . . . . . . . 8 (0...(2 − 1)) = (0...1)
128, 9, 113eqtr3i 2765 . . . . . . 7 {0, 1} = (0...1)
1312eleq2i 2825 . . . . . 6 ((𝐴𝑛) ∈ {0, 1} ↔ (𝐴𝑛) ∈ (0...1))
14 eulerpart.p . . . . . . . . . 10 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
1514eulerpartleme 34306 . . . . . . . . 9 (𝐴𝑃 ↔ (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁))
1615simp1bi 1145 . . . . . . . 8 (𝐴𝑃𝐴:ℕ⟶ℕ0)
1716ffvelcdmda 7085 . . . . . . 7 ((𝐴𝑃𝑛 ∈ ℕ) → (𝐴𝑛) ∈ ℕ0)
18 1nn0 12526 . . . . . . 7 1 ∈ ℕ0
19 elfz2nn0 13641 . . . . . . . . 9 ((𝐴𝑛) ∈ (0...1) ↔ ((𝐴𝑛) ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ (𝐴𝑛) ≤ 1))
20 df-3an 1088 . . . . . . . . 9 (((𝐴𝑛) ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ (𝐴𝑛) ≤ 1) ↔ (((𝐴𝑛) ∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (𝐴𝑛) ≤ 1))
2119, 20bitri 275 . . . . . . . 8 ((𝐴𝑛) ∈ (0...1) ↔ (((𝐴𝑛) ∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (𝐴𝑛) ≤ 1))
2221baib 535 . . . . . . 7 (((𝐴𝑛) ∈ ℕ0 ∧ 1 ∈ ℕ0) → ((𝐴𝑛) ∈ (0...1) ↔ (𝐴𝑛) ≤ 1))
2317, 18, 22sylancl 586 . . . . . 6 ((𝐴𝑃𝑛 ∈ ℕ) → ((𝐴𝑛) ∈ (0...1) ↔ (𝐴𝑛) ≤ 1))
2413, 23bitr2id 284 . . . . 5 ((𝐴𝑃𝑛 ∈ ℕ) → ((𝐴𝑛) ≤ 1 ↔ (𝐴𝑛) ∈ {0, 1}))
2524ralbidva 3163 . . . 4 (𝐴𝑃 → (∀𝑛 ∈ ℕ (𝐴𝑛) ≤ 1 ↔ ∀𝑛 ∈ ℕ (𝐴𝑛) ∈ {0, 1}))
2616ffund 6721 . . . . 5 (𝐴𝑃 → Fun 𝐴)
27 fdm 6726 . . . . . 6 (𝐴:ℕ⟶ℕ0 → dom 𝐴 = ℕ)
28 eqimss2 4025 . . . . . 6 (dom 𝐴 = ℕ → ℕ ⊆ dom 𝐴)
2916, 27, 283syl 18 . . . . 5 (𝐴𝑃 → ℕ ⊆ dom 𝐴)
30 funimass4 6954 . . . . 5 ((Fun 𝐴 ∧ ℕ ⊆ dom 𝐴) → ((𝐴 “ ℕ) ⊆ {0, 1} ↔ ∀𝑛 ∈ ℕ (𝐴𝑛) ∈ {0, 1}))
3126, 29, 30syl2anc 584 . . . 4 (𝐴𝑃 → ((𝐴 “ ℕ) ⊆ {0, 1} ↔ ∀𝑛 ∈ ℕ (𝐴𝑛) ∈ {0, 1}))
3225, 31bitr4d 282 . . 3 (𝐴𝑃 → (∀𝑛 ∈ ℕ (𝐴𝑛) ≤ 1 ↔ (𝐴 “ ℕ) ⊆ {0, 1}))
3332pm5.32i 574 . 2 ((𝐴𝑃 ∧ ∀𝑛 ∈ ℕ (𝐴𝑛) ≤ 1) ↔ (𝐴𝑃 ∧ (𝐴 “ ℕ) ⊆ {0, 1}))
345, 33bitri 275 1 (𝐴𝐷 ↔ (𝐴𝑃 ∧ (𝐴 “ ℕ) ⊆ {0, 1}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3050  {crab 3420  wss 3933  {cpr 4610   class class class wbr 5125  ccnv 5666  dom cdm 5667  cima 5670  Fun wfun 6536  wf 6538  cfv 6542  (class class class)co 7414  m cmap 8849  Fincfn 8968  0cc0 11138  1c1 11139   · cmul 11143  cle 11279  cmin 11475  cn 12249  2c2 12304  0cn0 12510  cz 12597  ...cfz 13530  ..^cfzo 13677  Σcsu 15705  cdvds 16273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-1st 7997  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-er 8728  df-map 8851  df-en 8969  df-dom 8970  df-sdom 8971  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-nn 12250  df-2 12312  df-n0 12511  df-z 12598  df-uz 12862  df-fz 13531  df-fzo 13678  df-seq 14026  df-sum 15706
This theorem is referenced by:  eulerpartlemn  34324
  Copyright terms: Public domain W3C validator