Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemd Structured version   Visualization version   GIF version

Theorem eulerpartlemd 34363
Description: Lemma for eulerpart 34379: 𝐷 is the set of distinct part. of 𝑁. (Contributed by Thierry Arnoux, 11-Aug-2017.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
Assertion
Ref Expression
eulerpartlemd (𝐴𝐷 ↔ (𝐴𝑃 ∧ (𝐴 “ ℕ) ⊆ {0, 1}))
Distinct variable groups:   𝑓,𝑔,𝑘,𝑛,𝐴   𝑓,𝑁   𝑃,𝑔,𝑛
Allowed substitution hints:   𝐷(𝑓,𝑔,𝑘,𝑛)   𝑃(𝑓,𝑘)   𝑁(𝑔,𝑘,𝑛)   𝑂(𝑓,𝑔,𝑘,𝑛)

Proof of Theorem eulerpartlemd
StepHypRef Expression
1 fveq1 6859 . . . . 5 (𝑔 = 𝐴 → (𝑔𝑛) = (𝐴𝑛))
21breq1d 5119 . . . 4 (𝑔 = 𝐴 → ((𝑔𝑛) ≤ 1 ↔ (𝐴𝑛) ≤ 1))
32ralbidv 3157 . . 3 (𝑔 = 𝐴 → (∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1 ↔ ∀𝑛 ∈ ℕ (𝐴𝑛) ≤ 1))
4 eulerpart.d . . 3 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
53, 4elrab2 3664 . 2 (𝐴𝐷 ↔ (𝐴𝑃 ∧ ∀𝑛 ∈ ℕ (𝐴𝑛) ≤ 1))
6 2z 12571 . . . . . . . . 9 2 ∈ ℤ
7 fzoval 13627 . . . . . . . . 9 (2 ∈ ℤ → (0..^2) = (0...(2 − 1)))
86, 7ax-mp 5 . . . . . . . 8 (0..^2) = (0...(2 − 1))
9 fzo0to2pr 13717 . . . . . . . 8 (0..^2) = {0, 1}
10 2m1e1 12313 . . . . . . . . 9 (2 − 1) = 1
1110oveq2i 7400 . . . . . . . 8 (0...(2 − 1)) = (0...1)
128, 9, 113eqtr3i 2761 . . . . . . 7 {0, 1} = (0...1)
1312eleq2i 2821 . . . . . 6 ((𝐴𝑛) ∈ {0, 1} ↔ (𝐴𝑛) ∈ (0...1))
14 eulerpart.p . . . . . . . . . 10 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
1514eulerpartleme 34360 . . . . . . . . 9 (𝐴𝑃 ↔ (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁))
1615simp1bi 1145 . . . . . . . 8 (𝐴𝑃𝐴:ℕ⟶ℕ0)
1716ffvelcdmda 7058 . . . . . . 7 ((𝐴𝑃𝑛 ∈ ℕ) → (𝐴𝑛) ∈ ℕ0)
18 1nn0 12464 . . . . . . 7 1 ∈ ℕ0
19 elfz2nn0 13585 . . . . . . . . 9 ((𝐴𝑛) ∈ (0...1) ↔ ((𝐴𝑛) ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ (𝐴𝑛) ≤ 1))
20 df-3an 1088 . . . . . . . . 9 (((𝐴𝑛) ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ (𝐴𝑛) ≤ 1) ↔ (((𝐴𝑛) ∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (𝐴𝑛) ≤ 1))
2119, 20bitri 275 . . . . . . . 8 ((𝐴𝑛) ∈ (0...1) ↔ (((𝐴𝑛) ∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (𝐴𝑛) ≤ 1))
2221baib 535 . . . . . . 7 (((𝐴𝑛) ∈ ℕ0 ∧ 1 ∈ ℕ0) → ((𝐴𝑛) ∈ (0...1) ↔ (𝐴𝑛) ≤ 1))
2317, 18, 22sylancl 586 . . . . . 6 ((𝐴𝑃𝑛 ∈ ℕ) → ((𝐴𝑛) ∈ (0...1) ↔ (𝐴𝑛) ≤ 1))
2413, 23bitr2id 284 . . . . 5 ((𝐴𝑃𝑛 ∈ ℕ) → ((𝐴𝑛) ≤ 1 ↔ (𝐴𝑛) ∈ {0, 1}))
2524ralbidva 3155 . . . 4 (𝐴𝑃 → (∀𝑛 ∈ ℕ (𝐴𝑛) ≤ 1 ↔ ∀𝑛 ∈ ℕ (𝐴𝑛) ∈ {0, 1}))
2616ffund 6694 . . . . 5 (𝐴𝑃 → Fun 𝐴)
27 fdm 6699 . . . . . 6 (𝐴:ℕ⟶ℕ0 → dom 𝐴 = ℕ)
28 eqimss2 4008 . . . . . 6 (dom 𝐴 = ℕ → ℕ ⊆ dom 𝐴)
2916, 27, 283syl 18 . . . . 5 (𝐴𝑃 → ℕ ⊆ dom 𝐴)
30 funimass4 6927 . . . . 5 ((Fun 𝐴 ∧ ℕ ⊆ dom 𝐴) → ((𝐴 “ ℕ) ⊆ {0, 1} ↔ ∀𝑛 ∈ ℕ (𝐴𝑛) ∈ {0, 1}))
3126, 29, 30syl2anc 584 . . . 4 (𝐴𝑃 → ((𝐴 “ ℕ) ⊆ {0, 1} ↔ ∀𝑛 ∈ ℕ (𝐴𝑛) ∈ {0, 1}))
3225, 31bitr4d 282 . . 3 (𝐴𝑃 → (∀𝑛 ∈ ℕ (𝐴𝑛) ≤ 1 ↔ (𝐴 “ ℕ) ⊆ {0, 1}))
3332pm5.32i 574 . 2 ((𝐴𝑃 ∧ ∀𝑛 ∈ ℕ (𝐴𝑛) ≤ 1) ↔ (𝐴𝑃 ∧ (𝐴 “ ℕ) ⊆ {0, 1}))
345, 33bitri 275 1 (𝐴𝐷 ↔ (𝐴𝑃 ∧ (𝐴 “ ℕ) ⊆ {0, 1}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  {crab 3408  wss 3916  {cpr 4593   class class class wbr 5109  ccnv 5639  dom cdm 5640  cima 5643  Fun wfun 6507  wf 6509  cfv 6513  (class class class)co 7389  m cmap 8801  Fincfn 8920  0cc0 11074  1c1 11075   · cmul 11079  cle 11215  cmin 11411  cn 12187  2c2 12242  0cn0 12448  cz 12535  ...cfz 13474  ..^cfzo 13621  Σcsu 15658  cdvds 16228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-er 8673  df-map 8803  df-en 8921  df-dom 8922  df-sdom 8923  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-n0 12449  df-z 12536  df-uz 12800  df-fz 13475  df-fzo 13622  df-seq 13973  df-sum 15659
This theorem is referenced by:  eulerpartlemn  34378
  Copyright terms: Public domain W3C validator