| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eulerpartlemd | Structured version Visualization version GIF version | ||
| Description: Lemma for eulerpart 34379: 𝐷 is the set of distinct part. of 𝑁. (Contributed by Thierry Arnoux, 11-Aug-2017.) |
| Ref | Expression |
|---|---|
| eulerpart.p | ⊢ 𝑃 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁)} |
| eulerpart.o | ⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} |
| eulerpart.d | ⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} |
| Ref | Expression |
|---|---|
| eulerpartlemd | ⊢ (𝐴 ∈ 𝐷 ↔ (𝐴 ∈ 𝑃 ∧ (𝐴 “ ℕ) ⊆ {0, 1})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 6859 | . . . . 5 ⊢ (𝑔 = 𝐴 → (𝑔‘𝑛) = (𝐴‘𝑛)) | |
| 2 | 1 | breq1d 5119 | . . . 4 ⊢ (𝑔 = 𝐴 → ((𝑔‘𝑛) ≤ 1 ↔ (𝐴‘𝑛) ≤ 1)) |
| 3 | 2 | ralbidv 3157 | . . 3 ⊢ (𝑔 = 𝐴 → (∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1 ↔ ∀𝑛 ∈ ℕ (𝐴‘𝑛) ≤ 1)) |
| 4 | eulerpart.d | . . 3 ⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} | |
| 5 | 3, 4 | elrab2 3664 | . 2 ⊢ (𝐴 ∈ 𝐷 ↔ (𝐴 ∈ 𝑃 ∧ ∀𝑛 ∈ ℕ (𝐴‘𝑛) ≤ 1)) |
| 6 | 2z 12571 | . . . . . . . . 9 ⊢ 2 ∈ ℤ | |
| 7 | fzoval 13627 | . . . . . . . . 9 ⊢ (2 ∈ ℤ → (0..^2) = (0...(2 − 1))) | |
| 8 | 6, 7 | ax-mp 5 | . . . . . . . 8 ⊢ (0..^2) = (0...(2 − 1)) |
| 9 | fzo0to2pr 13717 | . . . . . . . 8 ⊢ (0..^2) = {0, 1} | |
| 10 | 2m1e1 12313 | . . . . . . . . 9 ⊢ (2 − 1) = 1 | |
| 11 | 10 | oveq2i 7400 | . . . . . . . 8 ⊢ (0...(2 − 1)) = (0...1) |
| 12 | 8, 9, 11 | 3eqtr3i 2761 | . . . . . . 7 ⊢ {0, 1} = (0...1) |
| 13 | 12 | eleq2i 2821 | . . . . . 6 ⊢ ((𝐴‘𝑛) ∈ {0, 1} ↔ (𝐴‘𝑛) ∈ (0...1)) |
| 14 | eulerpart.p | . . . . . . . . . 10 ⊢ 𝑃 = {𝑓 ∈ (ℕ0 ↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁)} | |
| 15 | 14 | eulerpartleme 34360 | . . . . . . . . 9 ⊢ (𝐴 ∈ 𝑃 ↔ (𝐴:ℕ⟶ℕ0 ∧ (◡𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴‘𝑘) · 𝑘) = 𝑁)) |
| 16 | 15 | simp1bi 1145 | . . . . . . . 8 ⊢ (𝐴 ∈ 𝑃 → 𝐴:ℕ⟶ℕ0) |
| 17 | 16 | ffvelcdmda 7058 | . . . . . . 7 ⊢ ((𝐴 ∈ 𝑃 ∧ 𝑛 ∈ ℕ) → (𝐴‘𝑛) ∈ ℕ0) |
| 18 | 1nn0 12464 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 19 | elfz2nn0 13585 | . . . . . . . . 9 ⊢ ((𝐴‘𝑛) ∈ (0...1) ↔ ((𝐴‘𝑛) ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ (𝐴‘𝑛) ≤ 1)) | |
| 20 | df-3an 1088 | . . . . . . . . 9 ⊢ (((𝐴‘𝑛) ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ (𝐴‘𝑛) ≤ 1) ↔ (((𝐴‘𝑛) ∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (𝐴‘𝑛) ≤ 1)) | |
| 21 | 19, 20 | bitri 275 | . . . . . . . 8 ⊢ ((𝐴‘𝑛) ∈ (0...1) ↔ (((𝐴‘𝑛) ∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (𝐴‘𝑛) ≤ 1)) |
| 22 | 21 | baib 535 | . . . . . . 7 ⊢ (((𝐴‘𝑛) ∈ ℕ0 ∧ 1 ∈ ℕ0) → ((𝐴‘𝑛) ∈ (0...1) ↔ (𝐴‘𝑛) ≤ 1)) |
| 23 | 17, 18, 22 | sylancl 586 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑃 ∧ 𝑛 ∈ ℕ) → ((𝐴‘𝑛) ∈ (0...1) ↔ (𝐴‘𝑛) ≤ 1)) |
| 24 | 13, 23 | bitr2id 284 | . . . . 5 ⊢ ((𝐴 ∈ 𝑃 ∧ 𝑛 ∈ ℕ) → ((𝐴‘𝑛) ≤ 1 ↔ (𝐴‘𝑛) ∈ {0, 1})) |
| 25 | 24 | ralbidva 3155 | . . . 4 ⊢ (𝐴 ∈ 𝑃 → (∀𝑛 ∈ ℕ (𝐴‘𝑛) ≤ 1 ↔ ∀𝑛 ∈ ℕ (𝐴‘𝑛) ∈ {0, 1})) |
| 26 | 16 | ffund 6694 | . . . . 5 ⊢ (𝐴 ∈ 𝑃 → Fun 𝐴) |
| 27 | fdm 6699 | . . . . . 6 ⊢ (𝐴:ℕ⟶ℕ0 → dom 𝐴 = ℕ) | |
| 28 | eqimss2 4008 | . . . . . 6 ⊢ (dom 𝐴 = ℕ → ℕ ⊆ dom 𝐴) | |
| 29 | 16, 27, 28 | 3syl 18 | . . . . 5 ⊢ (𝐴 ∈ 𝑃 → ℕ ⊆ dom 𝐴) |
| 30 | funimass4 6927 | . . . . 5 ⊢ ((Fun 𝐴 ∧ ℕ ⊆ dom 𝐴) → ((𝐴 “ ℕ) ⊆ {0, 1} ↔ ∀𝑛 ∈ ℕ (𝐴‘𝑛) ∈ {0, 1})) | |
| 31 | 26, 29, 30 | syl2anc 584 | . . . 4 ⊢ (𝐴 ∈ 𝑃 → ((𝐴 “ ℕ) ⊆ {0, 1} ↔ ∀𝑛 ∈ ℕ (𝐴‘𝑛) ∈ {0, 1})) |
| 32 | 25, 31 | bitr4d 282 | . . 3 ⊢ (𝐴 ∈ 𝑃 → (∀𝑛 ∈ ℕ (𝐴‘𝑛) ≤ 1 ↔ (𝐴 “ ℕ) ⊆ {0, 1})) |
| 33 | 32 | pm5.32i 574 | . 2 ⊢ ((𝐴 ∈ 𝑃 ∧ ∀𝑛 ∈ ℕ (𝐴‘𝑛) ≤ 1) ↔ (𝐴 ∈ 𝑃 ∧ (𝐴 “ ℕ) ⊆ {0, 1})) |
| 34 | 5, 33 | bitri 275 | 1 ⊢ (𝐴 ∈ 𝐷 ↔ (𝐴 ∈ 𝑃 ∧ (𝐴 “ ℕ) ⊆ {0, 1})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 {crab 3408 ⊆ wss 3916 {cpr 4593 class class class wbr 5109 ◡ccnv 5639 dom cdm 5640 “ cima 5643 Fun wfun 6507 ⟶wf 6509 ‘cfv 6513 (class class class)co 7389 ↑m cmap 8801 Fincfn 8920 0cc0 11074 1c1 11075 · cmul 11079 ≤ cle 11215 − cmin 11411 ℕcn 12187 2c2 12242 ℕ0cn0 12448 ℤcz 12535 ...cfz 13474 ..^cfzo 13621 Σcsu 15658 ∥ cdvds 16228 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-om 7845 df-1st 7970 df-2nd 7971 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-er 8673 df-map 8803 df-en 8921 df-dom 8922 df-sdom 8923 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-n0 12449 df-z 12536 df-uz 12800 df-fz 13475 df-fzo 13622 df-seq 13973 df-sum 15659 |
| This theorem is referenced by: eulerpartlemn 34378 |
| Copyright terms: Public domain | W3C validator |