Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemd Structured version   Visualization version   GIF version

Theorem eulerpartlemd 34379
Description: Lemma for eulerpart 34395: 𝐷 is the set of distinct part. of 𝑁. (Contributed by Thierry Arnoux, 11-Aug-2017.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
Assertion
Ref Expression
eulerpartlemd (𝐴𝐷 ↔ (𝐴𝑃 ∧ (𝐴 “ ℕ) ⊆ {0, 1}))
Distinct variable groups:   𝑓,𝑔,𝑘,𝑛,𝐴   𝑓,𝑁   𝑃,𝑔,𝑛
Allowed substitution hints:   𝐷(𝑓,𝑔,𝑘,𝑛)   𝑃(𝑓,𝑘)   𝑁(𝑔,𝑘,𝑛)   𝑂(𝑓,𝑔,𝑘,𝑛)

Proof of Theorem eulerpartlemd
StepHypRef Expression
1 fveq1 6821 . . . . 5 (𝑔 = 𝐴 → (𝑔𝑛) = (𝐴𝑛))
21breq1d 5099 . . . 4 (𝑔 = 𝐴 → ((𝑔𝑛) ≤ 1 ↔ (𝐴𝑛) ≤ 1))
32ralbidv 3155 . . 3 (𝑔 = 𝐴 → (∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1 ↔ ∀𝑛 ∈ ℕ (𝐴𝑛) ≤ 1))
4 eulerpart.d . . 3 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
53, 4elrab2 3645 . 2 (𝐴𝐷 ↔ (𝐴𝑃 ∧ ∀𝑛 ∈ ℕ (𝐴𝑛) ≤ 1))
6 2z 12504 . . . . . . . . 9 2 ∈ ℤ
7 fzoval 13560 . . . . . . . . 9 (2 ∈ ℤ → (0..^2) = (0...(2 − 1)))
86, 7ax-mp 5 . . . . . . . 8 (0..^2) = (0...(2 − 1))
9 fzo0to2pr 13650 . . . . . . . 8 (0..^2) = {0, 1}
10 2m1e1 12246 . . . . . . . . 9 (2 − 1) = 1
1110oveq2i 7357 . . . . . . . 8 (0...(2 − 1)) = (0...1)
128, 9, 113eqtr3i 2762 . . . . . . 7 {0, 1} = (0...1)
1312eleq2i 2823 . . . . . 6 ((𝐴𝑛) ∈ {0, 1} ↔ (𝐴𝑛) ∈ (0...1))
14 eulerpart.p . . . . . . . . . 10 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
1514eulerpartleme 34376 . . . . . . . . 9 (𝐴𝑃 ↔ (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁))
1615simp1bi 1145 . . . . . . . 8 (𝐴𝑃𝐴:ℕ⟶ℕ0)
1716ffvelcdmda 7017 . . . . . . 7 ((𝐴𝑃𝑛 ∈ ℕ) → (𝐴𝑛) ∈ ℕ0)
18 1nn0 12397 . . . . . . 7 1 ∈ ℕ0
19 elfz2nn0 13518 . . . . . . . . 9 ((𝐴𝑛) ∈ (0...1) ↔ ((𝐴𝑛) ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ (𝐴𝑛) ≤ 1))
20 df-3an 1088 . . . . . . . . 9 (((𝐴𝑛) ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ (𝐴𝑛) ≤ 1) ↔ (((𝐴𝑛) ∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (𝐴𝑛) ≤ 1))
2119, 20bitri 275 . . . . . . . 8 ((𝐴𝑛) ∈ (0...1) ↔ (((𝐴𝑛) ∈ ℕ0 ∧ 1 ∈ ℕ0) ∧ (𝐴𝑛) ≤ 1))
2221baib 535 . . . . . . 7 (((𝐴𝑛) ∈ ℕ0 ∧ 1 ∈ ℕ0) → ((𝐴𝑛) ∈ (0...1) ↔ (𝐴𝑛) ≤ 1))
2317, 18, 22sylancl 586 . . . . . 6 ((𝐴𝑃𝑛 ∈ ℕ) → ((𝐴𝑛) ∈ (0...1) ↔ (𝐴𝑛) ≤ 1))
2413, 23bitr2id 284 . . . . 5 ((𝐴𝑃𝑛 ∈ ℕ) → ((𝐴𝑛) ≤ 1 ↔ (𝐴𝑛) ∈ {0, 1}))
2524ralbidva 3153 . . . 4 (𝐴𝑃 → (∀𝑛 ∈ ℕ (𝐴𝑛) ≤ 1 ↔ ∀𝑛 ∈ ℕ (𝐴𝑛) ∈ {0, 1}))
2616ffund 6655 . . . . 5 (𝐴𝑃 → Fun 𝐴)
27 fdm 6660 . . . . . 6 (𝐴:ℕ⟶ℕ0 → dom 𝐴 = ℕ)
28 eqimss2 3989 . . . . . 6 (dom 𝐴 = ℕ → ℕ ⊆ dom 𝐴)
2916, 27, 283syl 18 . . . . 5 (𝐴𝑃 → ℕ ⊆ dom 𝐴)
30 funimass4 6886 . . . . 5 ((Fun 𝐴 ∧ ℕ ⊆ dom 𝐴) → ((𝐴 “ ℕ) ⊆ {0, 1} ↔ ∀𝑛 ∈ ℕ (𝐴𝑛) ∈ {0, 1}))
3126, 29, 30syl2anc 584 . . . 4 (𝐴𝑃 → ((𝐴 “ ℕ) ⊆ {0, 1} ↔ ∀𝑛 ∈ ℕ (𝐴𝑛) ∈ {0, 1}))
3225, 31bitr4d 282 . . 3 (𝐴𝑃 → (∀𝑛 ∈ ℕ (𝐴𝑛) ≤ 1 ↔ (𝐴 “ ℕ) ⊆ {0, 1}))
3332pm5.32i 574 . 2 ((𝐴𝑃 ∧ ∀𝑛 ∈ ℕ (𝐴𝑛) ≤ 1) ↔ (𝐴𝑃 ∧ (𝐴 “ ℕ) ⊆ {0, 1}))
345, 33bitri 275 1 (𝐴𝐷 ↔ (𝐴𝑃 ∧ (𝐴 “ ℕ) ⊆ {0, 1}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  {crab 3395  wss 3897  {cpr 4575   class class class wbr 5089  ccnv 5613  dom cdm 5614  cima 5617  Fun wfun 6475  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  Fincfn 8869  0cc0 11006  1c1 11007   · cmul 11011  cle 11147  cmin 11344  cn 12125  2c2 12180  0cn0 12381  cz 12468  ...cfz 13407  ..^cfzo 13554  Σcsu 15593  cdvds 16163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-seq 13909  df-sum 15594
This theorem is referenced by:  eulerpartlemn  34394
  Copyright terms: Public domain W3C validator