Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemv Structured version   Visualization version   GIF version

Theorem eulerpartlemv 34362
Description: Lemma for eulerpart 34380. (Contributed by Thierry Arnoux, 19-Aug-2018.)
Hypothesis
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
Assertion
Ref Expression
eulerpartlemv (𝐴𝑃 ↔ (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁))
Distinct variable groups:   𝑓,𝑘,𝐴   𝑓,𝑁,𝑘   𝑃,𝑘
Allowed substitution hint:   𝑃(𝑓)

Proof of Theorem eulerpartlemv
StepHypRef Expression
1 eulerpart.p . . 3 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
21eulerpartleme 34361 . 2 (𝐴𝑃 ↔ (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁))
3 cnvimass 6056 . . . . . . . . 9 (𝐴 “ ℕ) ⊆ dom 𝐴
4 fdm 6700 . . . . . . . . 9 (𝐴:ℕ⟶ℕ0 → dom 𝐴 = ℕ)
53, 4sseqtrid 3992 . . . . . . . 8 (𝐴:ℕ⟶ℕ0 → (𝐴 “ ℕ) ⊆ ℕ)
6 simpl 482 . . . . . . . . . . 11 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (𝐴 “ ℕ)) → 𝐴:ℕ⟶ℕ0)
75sselda 3949 . . . . . . . . . . 11 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (𝐴 “ ℕ)) → 𝑘 ∈ ℕ)
86, 7ffvelcdmd 7060 . . . . . . . . . 10 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (𝐴 “ ℕ)) → (𝐴𝑘) ∈ ℕ0)
97nnnn0d 12510 . . . . . . . . . 10 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (𝐴 “ ℕ)) → 𝑘 ∈ ℕ0)
108, 9nn0mulcld 12515 . . . . . . . . 9 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (𝐴 “ ℕ)) → ((𝐴𝑘) · 𝑘) ∈ ℕ0)
1110nn0cnd 12512 . . . . . . . 8 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (𝐴 “ ℕ)) → ((𝐴𝑘) · 𝑘) ∈ ℂ)
12 simpr 484 . . . . . . . . . . . . 13 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ)))
1312eldifad 3929 . . . . . . . . . . . 12 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → 𝑘 ∈ ℕ)
1412eldifbd 3930 . . . . . . . . . . . . . 14 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ¬ 𝑘 ∈ (𝐴 “ ℕ))
15 simpl 482 . . . . . . . . . . . . . . 15 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → 𝐴:ℕ⟶ℕ0)
16 ffn 6691 . . . . . . . . . . . . . . 15 (𝐴:ℕ⟶ℕ0𝐴 Fn ℕ)
17 elpreima 7033 . . . . . . . . . . . . . . 15 (𝐴 Fn ℕ → (𝑘 ∈ (𝐴 “ ℕ) ↔ (𝑘 ∈ ℕ ∧ (𝐴𝑘) ∈ ℕ)))
1815, 16, 173syl 18 . . . . . . . . . . . . . 14 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (𝑘 ∈ (𝐴 “ ℕ) ↔ (𝑘 ∈ ℕ ∧ (𝐴𝑘) ∈ ℕ)))
1914, 18mtbid 324 . . . . . . . . . . . . 13 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ¬ (𝑘 ∈ ℕ ∧ (𝐴𝑘) ∈ ℕ))
20 imnan 399 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ → ¬ (𝐴𝑘) ∈ ℕ) ↔ ¬ (𝑘 ∈ ℕ ∧ (𝐴𝑘) ∈ ℕ))
2119, 20sylibr 234 . . . . . . . . . . . 12 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (𝑘 ∈ ℕ → ¬ (𝐴𝑘) ∈ ℕ))
2213, 21mpd 15 . . . . . . . . . . 11 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ¬ (𝐴𝑘) ∈ ℕ)
2315, 13ffvelcdmd 7060 . . . . . . . . . . . 12 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (𝐴𝑘) ∈ ℕ0)
24 elnn0 12451 . . . . . . . . . . . 12 ((𝐴𝑘) ∈ ℕ0 ↔ ((𝐴𝑘) ∈ ℕ ∨ (𝐴𝑘) = 0))
2523, 24sylib 218 . . . . . . . . . . 11 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ((𝐴𝑘) ∈ ℕ ∨ (𝐴𝑘) = 0))
26 orel1 888 . . . . . . . . . . 11 (¬ (𝐴𝑘) ∈ ℕ → (((𝐴𝑘) ∈ ℕ ∨ (𝐴𝑘) = 0) → (𝐴𝑘) = 0))
2722, 25, 26sylc 65 . . . . . . . . . 10 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (𝐴𝑘) = 0)
2827oveq1d 7405 . . . . . . . . 9 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ((𝐴𝑘) · 𝑘) = (0 · 𝑘))
2913nncnd 12209 . . . . . . . . . 10 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → 𝑘 ∈ ℂ)
3029mul02d 11379 . . . . . . . . 9 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (0 · 𝑘) = 0)
3128, 30eqtrd 2765 . . . . . . . 8 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ((𝐴𝑘) · 𝑘) = 0)
32 nnuz 12843 . . . . . . . . . 10 ℕ = (ℤ‘1)
3332eqimssi 4010 . . . . . . . . 9 ℕ ⊆ (ℤ‘1)
3433a1i 11 . . . . . . . 8 (𝐴:ℕ⟶ℕ0 → ℕ ⊆ (ℤ‘1))
355, 11, 31, 34sumss 15697 . . . . . . 7 (𝐴:ℕ⟶ℕ0 → Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘))
3635eqcomd 2736 . . . . . 6 (𝐴:ℕ⟶ℕ0 → Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘))
3736adantr 480 . . . . 5 ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin) → Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘))
3837eqeq1d 2732 . . . 4 ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin) → (Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁 ↔ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁))
3938pm5.32i 574 . . 3 (((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin) ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁) ↔ ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin) ∧ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁))
40 df-3an 1088 . . 3 ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁) ↔ ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin) ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁))
41 df-3an 1088 . . 3 ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁) ↔ ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin) ∧ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁))
4239, 40, 413bitr4i 303 . 2 ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁) ↔ (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁))
432, 42bitri 275 1 (𝐴𝑃 ↔ (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  {crab 3408  cdif 3914  wss 3917  ccnv 5640  dom cdm 5641  cima 5644   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  m cmap 8802  Fincfn 8921  0cc0 11075  1c1 11076   · cmul 11080  cn 12193  0cn0 12449  cuz 12800  Σcsu 15659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator