Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemv Structured version   Visualization version   GIF version

Theorem eulerpartlemv 34367
Description: Lemma for eulerpart 34385. (Contributed by Thierry Arnoux, 19-Aug-2018.)
Hypothesis
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
Assertion
Ref Expression
eulerpartlemv (𝐴𝑃 ↔ (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁))
Distinct variable groups:   𝑓,𝑘,𝐴   𝑓,𝑁,𝑘   𝑃,𝑘
Allowed substitution hint:   𝑃(𝑓)

Proof of Theorem eulerpartlemv
StepHypRef Expression
1 eulerpart.p . . 3 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
21eulerpartleme 34366 . 2 (𝐴𝑃 ↔ (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁))
3 cnvimass 6028 . . . . . . . . 9 (𝐴 “ ℕ) ⊆ dom 𝐴
4 fdm 6656 . . . . . . . . 9 (𝐴:ℕ⟶ℕ0 → dom 𝐴 = ℕ)
53, 4sseqtrid 3975 . . . . . . . 8 (𝐴:ℕ⟶ℕ0 → (𝐴 “ ℕ) ⊆ ℕ)
6 simpl 482 . . . . . . . . . . 11 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (𝐴 “ ℕ)) → 𝐴:ℕ⟶ℕ0)
75sselda 3932 . . . . . . . . . . 11 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (𝐴 “ ℕ)) → 𝑘 ∈ ℕ)
86, 7ffvelcdmd 7013 . . . . . . . . . 10 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (𝐴 “ ℕ)) → (𝐴𝑘) ∈ ℕ0)
97nnnn0d 12434 . . . . . . . . . 10 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (𝐴 “ ℕ)) → 𝑘 ∈ ℕ0)
108, 9nn0mulcld 12439 . . . . . . . . 9 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (𝐴 “ ℕ)) → ((𝐴𝑘) · 𝑘) ∈ ℕ0)
1110nn0cnd 12436 . . . . . . . 8 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (𝐴 “ ℕ)) → ((𝐴𝑘) · 𝑘) ∈ ℂ)
12 simpr 484 . . . . . . . . . . . . 13 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ)))
1312eldifad 3912 . . . . . . . . . . . 12 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → 𝑘 ∈ ℕ)
1412eldifbd 3913 . . . . . . . . . . . . . 14 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ¬ 𝑘 ∈ (𝐴 “ ℕ))
15 simpl 482 . . . . . . . . . . . . . . 15 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → 𝐴:ℕ⟶ℕ0)
16 ffn 6647 . . . . . . . . . . . . . . 15 (𝐴:ℕ⟶ℕ0𝐴 Fn ℕ)
17 elpreima 6986 . . . . . . . . . . . . . . 15 (𝐴 Fn ℕ → (𝑘 ∈ (𝐴 “ ℕ) ↔ (𝑘 ∈ ℕ ∧ (𝐴𝑘) ∈ ℕ)))
1815, 16, 173syl 18 . . . . . . . . . . . . . 14 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (𝑘 ∈ (𝐴 “ ℕ) ↔ (𝑘 ∈ ℕ ∧ (𝐴𝑘) ∈ ℕ)))
1914, 18mtbid 324 . . . . . . . . . . . . 13 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ¬ (𝑘 ∈ ℕ ∧ (𝐴𝑘) ∈ ℕ))
20 imnan 399 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ → ¬ (𝐴𝑘) ∈ ℕ) ↔ ¬ (𝑘 ∈ ℕ ∧ (𝐴𝑘) ∈ ℕ))
2119, 20sylibr 234 . . . . . . . . . . . 12 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (𝑘 ∈ ℕ → ¬ (𝐴𝑘) ∈ ℕ))
2213, 21mpd 15 . . . . . . . . . . 11 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ¬ (𝐴𝑘) ∈ ℕ)
2315, 13ffvelcdmd 7013 . . . . . . . . . . . 12 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (𝐴𝑘) ∈ ℕ0)
24 elnn0 12375 . . . . . . . . . . . 12 ((𝐴𝑘) ∈ ℕ0 ↔ ((𝐴𝑘) ∈ ℕ ∨ (𝐴𝑘) = 0))
2523, 24sylib 218 . . . . . . . . . . 11 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ((𝐴𝑘) ∈ ℕ ∨ (𝐴𝑘) = 0))
26 orel1 888 . . . . . . . . . . 11 (¬ (𝐴𝑘) ∈ ℕ → (((𝐴𝑘) ∈ ℕ ∨ (𝐴𝑘) = 0) → (𝐴𝑘) = 0))
2722, 25, 26sylc 65 . . . . . . . . . 10 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (𝐴𝑘) = 0)
2827oveq1d 7356 . . . . . . . . 9 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ((𝐴𝑘) · 𝑘) = (0 · 𝑘))
2913nncnd 12133 . . . . . . . . . 10 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → 𝑘 ∈ ℂ)
3029mul02d 11303 . . . . . . . . 9 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (0 · 𝑘) = 0)
3128, 30eqtrd 2765 . . . . . . . 8 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ((𝐴𝑘) · 𝑘) = 0)
32 nnuz 12767 . . . . . . . . . 10 ℕ = (ℤ‘1)
3332eqimssi 3993 . . . . . . . . 9 ℕ ⊆ (ℤ‘1)
3433a1i 11 . . . . . . . 8 (𝐴:ℕ⟶ℕ0 → ℕ ⊆ (ℤ‘1))
355, 11, 31, 34sumss 15623 . . . . . . 7 (𝐴:ℕ⟶ℕ0 → Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘))
3635eqcomd 2736 . . . . . 6 (𝐴:ℕ⟶ℕ0 → Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘))
3736adantr 480 . . . . 5 ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin) → Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘))
3837eqeq1d 2732 . . . 4 ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin) → (Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁 ↔ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁))
3938pm5.32i 574 . . 3 (((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin) ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁) ↔ ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin) ∧ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁))
40 df-3an 1088 . . 3 ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁) ↔ ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin) ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁))
41 df-3an 1088 . . 3 ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁) ↔ ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin) ∧ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁))
4239, 40, 413bitr4i 303 . 2 ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁) ↔ (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁))
432, 42bitri 275 1 (𝐴𝑃 ↔ (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2110  {crab 3393  cdif 3897  wss 3900  ccnv 5613  dom cdm 5614  cima 5617   Fn wfn 6472  wf 6473  cfv 6477  (class class class)co 7341  m cmap 8745  Fincfn 8864  0cc0 10998  1c1 10999   · cmul 11003  cn 12117  0cn0 12373  cuz 12724  Σcsu 15585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-oi 9391  df-card 9824  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-2 12180  df-n0 12374  df-z 12461  df-uz 12725  df-rp 12883  df-fz 13400  df-fzo 13547  df-seq 13901  df-exp 13961  df-hash 14230  df-cj 14998  df-re 14999  df-im 15000  df-sqrt 15134  df-abs 15135  df-clim 15387  df-sum 15586
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator