Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemv Structured version   Visualization version   GIF version

Theorem eulerpartlemv 32331
Description: Lemma for eulerpart 32349. (Contributed by Thierry Arnoux, 19-Aug-2018.)
Hypothesis
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
Assertion
Ref Expression
eulerpartlemv (𝐴𝑃 ↔ (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁))
Distinct variable groups:   𝑓,𝑘,𝐴   𝑓,𝑁,𝑘   𝑃,𝑘
Allowed substitution hint:   𝑃(𝑓)

Proof of Theorem eulerpartlemv
StepHypRef Expression
1 eulerpart.p . . 3 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
21eulerpartleme 32330 . 2 (𝐴𝑃 ↔ (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁))
3 cnvimass 5989 . . . . . . . . 9 (𝐴 “ ℕ) ⊆ dom 𝐴
4 fdm 6609 . . . . . . . . 9 (𝐴:ℕ⟶ℕ0 → dom 𝐴 = ℕ)
53, 4sseqtrid 3973 . . . . . . . 8 (𝐴:ℕ⟶ℕ0 → (𝐴 “ ℕ) ⊆ ℕ)
6 simpl 483 . . . . . . . . . . 11 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (𝐴 “ ℕ)) → 𝐴:ℕ⟶ℕ0)
75sselda 3921 . . . . . . . . . . 11 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (𝐴 “ ℕ)) → 𝑘 ∈ ℕ)
86, 7ffvelrnd 6962 . . . . . . . . . 10 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (𝐴 “ ℕ)) → (𝐴𝑘) ∈ ℕ0)
97nnnn0d 12293 . . . . . . . . . 10 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (𝐴 “ ℕ)) → 𝑘 ∈ ℕ0)
108, 9nn0mulcld 12298 . . . . . . . . 9 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (𝐴 “ ℕ)) → ((𝐴𝑘) · 𝑘) ∈ ℕ0)
1110nn0cnd 12295 . . . . . . . 8 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (𝐴 “ ℕ)) → ((𝐴𝑘) · 𝑘) ∈ ℂ)
12 simpr 485 . . . . . . . . . . . . 13 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ)))
1312eldifad 3899 . . . . . . . . . . . 12 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → 𝑘 ∈ ℕ)
1412eldifbd 3900 . . . . . . . . . . . . . 14 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ¬ 𝑘 ∈ (𝐴 “ ℕ))
15 simpl 483 . . . . . . . . . . . . . . 15 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → 𝐴:ℕ⟶ℕ0)
16 ffn 6600 . . . . . . . . . . . . . . 15 (𝐴:ℕ⟶ℕ0𝐴 Fn ℕ)
17 elpreima 6935 . . . . . . . . . . . . . . 15 (𝐴 Fn ℕ → (𝑘 ∈ (𝐴 “ ℕ) ↔ (𝑘 ∈ ℕ ∧ (𝐴𝑘) ∈ ℕ)))
1815, 16, 173syl 18 . . . . . . . . . . . . . 14 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (𝑘 ∈ (𝐴 “ ℕ) ↔ (𝑘 ∈ ℕ ∧ (𝐴𝑘) ∈ ℕ)))
1914, 18mtbid 324 . . . . . . . . . . . . 13 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ¬ (𝑘 ∈ ℕ ∧ (𝐴𝑘) ∈ ℕ))
20 imnan 400 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ → ¬ (𝐴𝑘) ∈ ℕ) ↔ ¬ (𝑘 ∈ ℕ ∧ (𝐴𝑘) ∈ ℕ))
2119, 20sylibr 233 . . . . . . . . . . . 12 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (𝑘 ∈ ℕ → ¬ (𝐴𝑘) ∈ ℕ))
2213, 21mpd 15 . . . . . . . . . . 11 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ¬ (𝐴𝑘) ∈ ℕ)
2315, 13ffvelrnd 6962 . . . . . . . . . . . 12 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (𝐴𝑘) ∈ ℕ0)
24 elnn0 12235 . . . . . . . . . . . 12 ((𝐴𝑘) ∈ ℕ0 ↔ ((𝐴𝑘) ∈ ℕ ∨ (𝐴𝑘) = 0))
2523, 24sylib 217 . . . . . . . . . . 11 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ((𝐴𝑘) ∈ ℕ ∨ (𝐴𝑘) = 0))
26 orel1 886 . . . . . . . . . . 11 (¬ (𝐴𝑘) ∈ ℕ → (((𝐴𝑘) ∈ ℕ ∨ (𝐴𝑘) = 0) → (𝐴𝑘) = 0))
2722, 25, 26sylc 65 . . . . . . . . . 10 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (𝐴𝑘) = 0)
2827oveq1d 7290 . . . . . . . . 9 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ((𝐴𝑘) · 𝑘) = (0 · 𝑘))
2913nncnd 11989 . . . . . . . . . 10 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → 𝑘 ∈ ℂ)
3029mul02d 11173 . . . . . . . . 9 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (0 · 𝑘) = 0)
3128, 30eqtrd 2778 . . . . . . . 8 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ((𝐴𝑘) · 𝑘) = 0)
32 nnuz 12621 . . . . . . . . . 10 ℕ = (ℤ‘1)
3332eqimssi 3979 . . . . . . . . 9 ℕ ⊆ (ℤ‘1)
3433a1i 11 . . . . . . . 8 (𝐴:ℕ⟶ℕ0 → ℕ ⊆ (ℤ‘1))
355, 11, 31, 34sumss 15436 . . . . . . 7 (𝐴:ℕ⟶ℕ0 → Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘))
3635eqcomd 2744 . . . . . 6 (𝐴:ℕ⟶ℕ0 → Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘))
3736adantr 481 . . . . 5 ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin) → Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘))
3837eqeq1d 2740 . . . 4 ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin) → (Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁 ↔ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁))
3938pm5.32i 575 . . 3 (((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin) ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁) ↔ ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin) ∧ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁))
40 df-3an 1088 . . 3 ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁) ↔ ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin) ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁))
41 df-3an 1088 . . 3 ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁) ↔ ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin) ∧ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁))
4239, 40, 413bitr4i 303 . 2 ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁) ↔ (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁))
432, 42bitri 274 1 (𝐴𝑃 ↔ (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  {crab 3068  cdif 3884  wss 3887  ccnv 5588  dom cdm 5589  cima 5592   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  m cmap 8615  Fincfn 8733  0cc0 10871  1c1 10872   · cmul 10876  cn 11973  0cn0 12233  cuz 12582  Σcsu 15397
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator