Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemv Structured version   Visualization version   GIF version

Theorem eulerpartlemv 33300
Description: Lemma for eulerpart 33318. (Contributed by Thierry Arnoux, 19-Aug-2018.)
Hypothesis
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
Assertion
Ref Expression
eulerpartlemv (𝐴𝑃 ↔ (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁))
Distinct variable groups:   𝑓,𝑘,𝐴   𝑓,𝑁,𝑘   𝑃,𝑘
Allowed substitution hint:   𝑃(𝑓)

Proof of Theorem eulerpartlemv
StepHypRef Expression
1 eulerpart.p . . 3 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
21eulerpartleme 33299 . 2 (𝐴𝑃 ↔ (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁))
3 cnvimass 6076 . . . . . . . . 9 (𝐴 “ ℕ) ⊆ dom 𝐴
4 fdm 6722 . . . . . . . . 9 (𝐴:ℕ⟶ℕ0 → dom 𝐴 = ℕ)
53, 4sseqtrid 4032 . . . . . . . 8 (𝐴:ℕ⟶ℕ0 → (𝐴 “ ℕ) ⊆ ℕ)
6 simpl 484 . . . . . . . . . . 11 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (𝐴 “ ℕ)) → 𝐴:ℕ⟶ℕ0)
75sselda 3980 . . . . . . . . . . 11 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (𝐴 “ ℕ)) → 𝑘 ∈ ℕ)
86, 7ffvelcdmd 7082 . . . . . . . . . 10 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (𝐴 “ ℕ)) → (𝐴𝑘) ∈ ℕ0)
97nnnn0d 12527 . . . . . . . . . 10 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (𝐴 “ ℕ)) → 𝑘 ∈ ℕ0)
108, 9nn0mulcld 12532 . . . . . . . . 9 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (𝐴 “ ℕ)) → ((𝐴𝑘) · 𝑘) ∈ ℕ0)
1110nn0cnd 12529 . . . . . . . 8 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (𝐴 “ ℕ)) → ((𝐴𝑘) · 𝑘) ∈ ℂ)
12 simpr 486 . . . . . . . . . . . . 13 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → 𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ)))
1312eldifad 3958 . . . . . . . . . . . 12 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → 𝑘 ∈ ℕ)
1412eldifbd 3959 . . . . . . . . . . . . . 14 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ¬ 𝑘 ∈ (𝐴 “ ℕ))
15 simpl 484 . . . . . . . . . . . . . . 15 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → 𝐴:ℕ⟶ℕ0)
16 ffn 6713 . . . . . . . . . . . . . . 15 (𝐴:ℕ⟶ℕ0𝐴 Fn ℕ)
17 elpreima 7054 . . . . . . . . . . . . . . 15 (𝐴 Fn ℕ → (𝑘 ∈ (𝐴 “ ℕ) ↔ (𝑘 ∈ ℕ ∧ (𝐴𝑘) ∈ ℕ)))
1815, 16, 173syl 18 . . . . . . . . . . . . . 14 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (𝑘 ∈ (𝐴 “ ℕ) ↔ (𝑘 ∈ ℕ ∧ (𝐴𝑘) ∈ ℕ)))
1914, 18mtbid 324 . . . . . . . . . . . . 13 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ¬ (𝑘 ∈ ℕ ∧ (𝐴𝑘) ∈ ℕ))
20 imnan 401 . . . . . . . . . . . . 13 ((𝑘 ∈ ℕ → ¬ (𝐴𝑘) ∈ ℕ) ↔ ¬ (𝑘 ∈ ℕ ∧ (𝐴𝑘) ∈ ℕ))
2119, 20sylibr 233 . . . . . . . . . . . 12 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (𝑘 ∈ ℕ → ¬ (𝐴𝑘) ∈ ℕ))
2213, 21mpd 15 . . . . . . . . . . 11 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ¬ (𝐴𝑘) ∈ ℕ)
2315, 13ffvelcdmd 7082 . . . . . . . . . . . 12 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (𝐴𝑘) ∈ ℕ0)
24 elnn0 12469 . . . . . . . . . . . 12 ((𝐴𝑘) ∈ ℕ0 ↔ ((𝐴𝑘) ∈ ℕ ∨ (𝐴𝑘) = 0))
2523, 24sylib 217 . . . . . . . . . . 11 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ((𝐴𝑘) ∈ ℕ ∨ (𝐴𝑘) = 0))
26 orel1 888 . . . . . . . . . . 11 (¬ (𝐴𝑘) ∈ ℕ → (((𝐴𝑘) ∈ ℕ ∨ (𝐴𝑘) = 0) → (𝐴𝑘) = 0))
2722, 25, 26sylc 65 . . . . . . . . . 10 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (𝐴𝑘) = 0)
2827oveq1d 7418 . . . . . . . . 9 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ((𝐴𝑘) · 𝑘) = (0 · 𝑘))
2913nncnd 12223 . . . . . . . . . 10 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → 𝑘 ∈ ℂ)
3029mul02d 11407 . . . . . . . . 9 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → (0 · 𝑘) = 0)
3128, 30eqtrd 2773 . . . . . . . 8 ((𝐴:ℕ⟶ℕ0𝑘 ∈ (ℕ ∖ (𝐴 “ ℕ))) → ((𝐴𝑘) · 𝑘) = 0)
32 nnuz 12860 . . . . . . . . . 10 ℕ = (ℤ‘1)
3332eqimssi 4040 . . . . . . . . 9 ℕ ⊆ (ℤ‘1)
3433a1i 11 . . . . . . . 8 (𝐴:ℕ⟶ℕ0 → ℕ ⊆ (ℤ‘1))
355, 11, 31, 34sumss 15665 . . . . . . 7 (𝐴:ℕ⟶ℕ0 → Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘))
3635eqcomd 2739 . . . . . 6 (𝐴:ℕ⟶ℕ0 → Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘))
3736adantr 482 . . . . 5 ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin) → Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘))
3837eqeq1d 2735 . . . 4 ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin) → (Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁 ↔ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁))
3938pm5.32i 576 . . 3 (((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin) ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁) ↔ ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin) ∧ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁))
40 df-3an 1090 . . 3 ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁) ↔ ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin) ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁))
41 df-3an 1090 . . 3 ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁) ↔ ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin) ∧ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁))
4239, 40, 413bitr4i 303 . 2 ((𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝐴𝑘) · 𝑘) = 𝑁) ↔ (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁))
432, 42bitri 275 1 (𝐴𝑃 ↔ (𝐴:ℕ⟶ℕ0 ∧ (𝐴 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ (𝐴 “ ℕ)((𝐴𝑘) · 𝑘) = 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  wo 846  w3a 1088   = wceq 1542  wcel 2107  {crab 3433  cdif 3943  wss 3946  ccnv 5673  dom cdm 5674  cima 5677   Fn wfn 6534  wf 6535  cfv 6539  (class class class)co 7403  m cmap 8815  Fincfn 8934  0cc0 11105  1c1 11106   · cmul 11110  cn 12207  0cn0 12467  cuz 12817  Σcsu 15627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5283  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719  ax-inf2 9631  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4907  df-int 4949  df-iun 4997  df-br 5147  df-opab 5209  df-mpt 5230  df-tr 5264  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-se 5630  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6296  df-ord 6363  df-on 6364  df-lim 6365  df-suc 6366  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-isom 6548  df-riota 7359  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8260  df-wrecs 8291  df-recs 8365  df-rdg 8404  df-1o 8460  df-er 8698  df-map 8817  df-en 8935  df-dom 8936  df-sdom 8937  df-fin 8938  df-oi 9500  df-card 9929  df-pnf 11245  df-mnf 11246  df-xr 11247  df-ltxr 11248  df-le 11249  df-sub 11441  df-neg 11442  df-div 11867  df-nn 12208  df-2 12270  df-n0 12468  df-z 12554  df-uz 12818  df-rp 12970  df-fz 13480  df-fzo 13623  df-seq 13962  df-exp 14023  df-hash 14286  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-clim 15427  df-sum 15628
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator