Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemr Structured version   Visualization version   GIF version

Theorem eulerpartlemr 34377
Description: Lemma for eulerpart 34385. (Contributed by Thierry Arnoux, 13-Nov-2017.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
eulerpart.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpart.t 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
eulerpart.g 𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))
Assertion
Ref Expression
eulerpartlemr 𝑂 = ((𝑇𝑅) ∩ 𝑃)
Distinct variable groups:   𝑓,𝑘,𝑛,𝑧   𝑓,𝐽,𝑛   𝑓,𝑁   𝑔,𝑛,𝑃
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑘,𝑜,𝑟)   𝑅(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝑇(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝐺(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝐽(𝑥,𝑦,𝑧,𝑔,𝑘,𝑜,𝑟)   𝑀(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝑁(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛,𝑜,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)

Proof of Theorem eulerpartlemr
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 elin 3916 . . . 4 ( ∈ (𝑇𝑅) ↔ (𝑇𝑅))
21anbi1i 624 . . 3 (( ∈ (𝑇𝑅) ∧ 𝑃) ↔ ((𝑇𝑅) ∧ 𝑃))
3 elin 3916 . . 3 ( ∈ ((𝑇𝑅) ∩ 𝑃) ↔ ( ∈ (𝑇𝑅) ∧ 𝑃))
4 eulerpart.p . . . . 5 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
5 eulerpart.o . . . . 5 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
6 eulerpart.d . . . . 5 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
74, 5, 6eulerpartlemo 34368 . . . 4 (𝑂 ↔ (𝑃 ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛))
8 cnveq 5811 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑓 = )
98imaeq1d 6005 . . . . . . . . . . . . . . . 16 (𝑓 = → (𝑓 “ ℕ) = ( “ ℕ))
109eleq1d 2814 . . . . . . . . . . . . . . 15 (𝑓 = → ((𝑓 “ ℕ) ∈ Fin ↔ ( “ ℕ) ∈ Fin))
11 fveq1 6816 . . . . . . . . . . . . . . . . . 18 (𝑓 = → (𝑓𝑘) = (𝑘))
1211oveq1d 7356 . . . . . . . . . . . . . . . . 17 (𝑓 = → ((𝑓𝑘) · 𝑘) = ((𝑘) · 𝑘))
1312sumeq2sdv 15602 . . . . . . . . . . . . . . . 16 (𝑓 = → Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝑘) · 𝑘))
1413eqeq1d 2732 . . . . . . . . . . . . . . 15 (𝑓 = → (Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁 ↔ Σ𝑘 ∈ ℕ ((𝑘) · 𝑘) = 𝑁))
1510, 14anbi12d 632 . . . . . . . . . . . . . 14 (𝑓 = → (((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁) ↔ (( “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑘) · 𝑘) = 𝑁)))
1615, 4elrab2 3648 . . . . . . . . . . . . 13 (𝑃 ↔ ( ∈ (ℕ0m ℕ) ∧ (( “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑘) · 𝑘) = 𝑁)))
1716simplbi 497 . . . . . . . . . . . 12 (𝑃 ∈ (ℕ0m ℕ))
18 cnvimass 6028 . . . . . . . . . . . . 13 ( “ ℕ) ⊆ dom
19 nn0ex 12379 . . . . . . . . . . . . . . 15 0 ∈ V
20 nnex 12123 . . . . . . . . . . . . . . 15 ℕ ∈ V
2119, 20elmap 8790 . . . . . . . . . . . . . 14 ( ∈ (ℕ0m ℕ) ↔ :ℕ⟶ℕ0)
22 fdm 6656 . . . . . . . . . . . . . 14 (:ℕ⟶ℕ0 → dom = ℕ)
2321, 22sylbi 217 . . . . . . . . . . . . 13 ( ∈ (ℕ0m ℕ) → dom = ℕ)
2418, 23sseqtrid 3975 . . . . . . . . . . . 12 ( ∈ (ℕ0m ℕ) → ( “ ℕ) ⊆ ℕ)
2517, 24syl 17 . . . . . . . . . . 11 (𝑃 → ( “ ℕ) ⊆ ℕ)
2625sselda 3932 . . . . . . . . . 10 ((𝑃𝑛 ∈ ( “ ℕ)) → 𝑛 ∈ ℕ)
2726ralrimiva 3122 . . . . . . . . 9 (𝑃 → ∀𝑛 ∈ ( “ ℕ)𝑛 ∈ ℕ)
2827biantrurd 532 . . . . . . . 8 (𝑃 → (∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛 ↔ (∀𝑛 ∈ ( “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛)))
2917biantrurd 532 . . . . . . . 8 (𝑃 → ((∀𝑛 ∈ ( “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛) ↔ ( ∈ (ℕ0m ℕ) ∧ (∀𝑛 ∈ ( “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛))))
3016simprbi 496 . . . . . . . . . 10 (𝑃 → (( “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑘) · 𝑘) = 𝑁))
3130simpld 494 . . . . . . . . 9 (𝑃 → ( “ ℕ) ∈ Fin)
3231biantrud 531 . . . . . . . 8 (𝑃 → (( ∈ (ℕ0m ℕ) ∧ (∀𝑛 ∈ ( “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛)) ↔ (( ∈ (ℕ0m ℕ) ∧ (∀𝑛 ∈ ( “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛)) ∧ ( “ ℕ) ∈ Fin)))
3328, 29, 323bitrd 305 . . . . . . 7 (𝑃 → (∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛 ↔ (( ∈ (ℕ0m ℕ) ∧ (∀𝑛 ∈ ( “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛)) ∧ ( “ ℕ) ∈ Fin)))
34 dfss3 3921 . . . . . . . . . 10 (( “ ℕ) ⊆ 𝐽 ↔ ∀𝑛 ∈ ( “ ℕ)𝑛𝐽)
35 breq2 5093 . . . . . . . . . . . . 13 (𝑧 = 𝑛 → (2 ∥ 𝑧 ↔ 2 ∥ 𝑛))
3635notbid 318 . . . . . . . . . . . 12 (𝑧 = 𝑛 → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑛))
37 eulerpart.j . . . . . . . . . . . 12 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
3836, 37elrab2 3648 . . . . . . . . . . 11 (𝑛𝐽 ↔ (𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛))
3938ralbii 3076 . . . . . . . . . 10 (∀𝑛 ∈ ( “ ℕ)𝑛𝐽 ↔ ∀𝑛 ∈ ( “ ℕ)(𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛))
40 r19.26 3090 . . . . . . . . . 10 (∀𝑛 ∈ ( “ ℕ)(𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛) ↔ (∀𝑛 ∈ ( “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛))
4134, 39, 403bitri 297 . . . . . . . . 9 (( “ ℕ) ⊆ 𝐽 ↔ (∀𝑛 ∈ ( “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛))
4241anbi2i 623 . . . . . . . 8 (( ∈ (ℕ0m ℕ) ∧ ( “ ℕ) ⊆ 𝐽) ↔ ( ∈ (ℕ0m ℕ) ∧ (∀𝑛 ∈ ( “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛)))
4342anbi1i 624 . . . . . . 7 ((( ∈ (ℕ0m ℕ) ∧ ( “ ℕ) ⊆ 𝐽) ∧ ( “ ℕ) ∈ Fin) ↔ (( ∈ (ℕ0m ℕ) ∧ (∀𝑛 ∈ ( “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛)) ∧ ( “ ℕ) ∈ Fin))
4433, 43bitr4di 289 . . . . . 6 (𝑃 → (∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛 ↔ (( ∈ (ℕ0m ℕ) ∧ ( “ ℕ) ⊆ 𝐽) ∧ ( “ ℕ) ∈ Fin)))
459sseq1d 3964 . . . . . . . 8 (𝑓 = → ((𝑓 “ ℕ) ⊆ 𝐽 ↔ ( “ ℕ) ⊆ 𝐽))
46 eulerpart.t . . . . . . . 8 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
4745, 46elrab2 3648 . . . . . . 7 (𝑇 ↔ ( ∈ (ℕ0m ℕ) ∧ ( “ ℕ) ⊆ 𝐽))
48 vex 3438 . . . . . . . 8 ∈ V
49 eulerpart.r . . . . . . . 8 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
5048, 10, 49elab2 3636 . . . . . . 7 (𝑅 ↔ ( “ ℕ) ∈ Fin)
5147, 50anbi12i 628 . . . . . 6 ((𝑇𝑅) ↔ (( ∈ (ℕ0m ℕ) ∧ ( “ ℕ) ⊆ 𝐽) ∧ ( “ ℕ) ∈ Fin))
5244, 51bitr4di 289 . . . . 5 (𝑃 → (∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛 ↔ (𝑇𝑅)))
5352pm5.32i 574 . . . 4 ((𝑃 ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛) ↔ (𝑃 ∧ (𝑇𝑅)))
54 ancom 460 . . . 4 ((𝑃 ∧ (𝑇𝑅)) ↔ ((𝑇𝑅) ∧ 𝑃))
557, 53, 543bitri 297 . . 3 (𝑂 ↔ ((𝑇𝑅) ∧ 𝑃))
562, 3, 553bitr4ri 304 . 2 (𝑂 ∈ ((𝑇𝑅) ∩ 𝑃))
5756eqriv 2727 1 𝑂 = ((𝑇𝑅) ∩ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1541  wcel 2110  {cab 2708  wral 3045  {crab 3393  cin 3899  wss 3900  c0 4281  𝒫 cpw 4548   class class class wbr 5089  {copab 5151  cmpt 5170  ccnv 5613  dom cdm 5614  cres 5616  cima 5617  ccom 5618  wf 6473  cfv 6477  (class class class)co 7341  cmpo 7343   supp csupp 8085  m cmap 8745  Fincfn 8864  1c1 10999   · cmul 11003  cle 11139  cn 12117  2c2 12172  0cn0 12373  cexp 13960  Σcsu 15585  cdvds 16155  bitscbits 16322  𝟭cind 32821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-cnex 11054  ax-1cn 11056  ax-addcl 11058
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-map 8747  df-nn 12118  df-n0 12374  df-seq 13901  df-sum 15586
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator