Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eulerpartlemr Structured version   Visualization version   GIF version

Theorem eulerpartlemr 32974
Description: Lemma for eulerpart 32982. (Contributed by Thierry Arnoux, 13-Nov-2017.)
Hypotheses
Ref Expression
eulerpart.p 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
eulerpart.o 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
eulerpart.d 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
eulerpart.j 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
eulerpart.f 𝐹 = (𝑥𝐽, 𝑦 ∈ ℕ0 ↦ ((2↑𝑦) · 𝑥))
eulerpart.h 𝐻 = {𝑟 ∈ ((𝒫 ℕ0 ∩ Fin) ↑m 𝐽) ∣ (𝑟 supp ∅) ∈ Fin}
eulerpart.m 𝑀 = (𝑟𝐻 ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐽𝑦 ∈ (𝑟𝑥))})
eulerpart.r 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
eulerpart.t 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
eulerpart.g 𝐺 = (𝑜 ∈ (𝑇𝑅) ↦ ((𝟭‘ℕ)‘(𝐹 “ (𝑀‘(bits ∘ (𝑜𝐽))))))
Assertion
Ref Expression
eulerpartlemr 𝑂 = ((𝑇𝑅) ∩ 𝑃)
Distinct variable groups:   𝑓,𝑘,𝑛,𝑧   𝑓,𝐽,𝑛   𝑓,𝑁   𝑔,𝑛,𝑃
Allowed substitution hints:   𝐷(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝑃(𝑥,𝑦,𝑧,𝑓,𝑘,𝑜,𝑟)   𝑅(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝑇(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝐹(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝐺(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝐻(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝐽(𝑥,𝑦,𝑧,𝑔,𝑘,𝑜,𝑟)   𝑀(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)   𝑁(𝑥,𝑦,𝑧,𝑔,𝑘,𝑛,𝑜,𝑟)   𝑂(𝑥,𝑦,𝑧,𝑓,𝑔,𝑘,𝑛,𝑜,𝑟)

Proof of Theorem eulerpartlemr
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 elin 3926 . . . 4 ( ∈ (𝑇𝑅) ↔ (𝑇𝑅))
21anbi1i 624 . . 3 (( ∈ (𝑇𝑅) ∧ 𝑃) ↔ ((𝑇𝑅) ∧ 𝑃))
3 elin 3926 . . 3 ( ∈ ((𝑇𝑅) ∩ 𝑃) ↔ ( ∈ (𝑇𝑅) ∧ 𝑃))
4 eulerpart.p . . . . 5 𝑃 = {𝑓 ∈ (ℕ0m ℕ) ∣ ((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁)}
5 eulerpart.o . . . . 5 𝑂 = {𝑔𝑃 ∣ ∀𝑛 ∈ (𝑔 “ ℕ) ¬ 2 ∥ 𝑛}
6 eulerpart.d . . . . 5 𝐷 = {𝑔𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔𝑛) ≤ 1}
74, 5, 6eulerpartlemo 32965 . . . 4 (𝑂 ↔ (𝑃 ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛))
8 cnveq 5829 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝑓 = )
98imaeq1d 6012 . . . . . . . . . . . . . . . 16 (𝑓 = → (𝑓 “ ℕ) = ( “ ℕ))
109eleq1d 2822 . . . . . . . . . . . . . . 15 (𝑓 = → ((𝑓 “ ℕ) ∈ Fin ↔ ( “ ℕ) ∈ Fin))
11 fveq1 6841 . . . . . . . . . . . . . . . . . 18 (𝑓 = → (𝑓𝑘) = (𝑘))
1211oveq1d 7372 . . . . . . . . . . . . . . . . 17 (𝑓 = → ((𝑓𝑘) · 𝑘) = ((𝑘) · 𝑘))
1312sumeq2sdv 15589 . . . . . . . . . . . . . . . 16 (𝑓 = → Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((𝑘) · 𝑘))
1413eqeq1d 2738 . . . . . . . . . . . . . . 15 (𝑓 = → (Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁 ↔ Σ𝑘 ∈ ℕ ((𝑘) · 𝑘) = 𝑁))
1510, 14anbi12d 631 . . . . . . . . . . . . . 14 (𝑓 = → (((𝑓 “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑓𝑘) · 𝑘) = 𝑁) ↔ (( “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑘) · 𝑘) = 𝑁)))
1615, 4elrab2 3648 . . . . . . . . . . . . 13 (𝑃 ↔ ( ∈ (ℕ0m ℕ) ∧ (( “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑘) · 𝑘) = 𝑁)))
1716simplbi 498 . . . . . . . . . . . 12 (𝑃 ∈ (ℕ0m ℕ))
18 cnvimass 6033 . . . . . . . . . . . . 13 ( “ ℕ) ⊆ dom
19 nn0ex 12419 . . . . . . . . . . . . . . 15 0 ∈ V
20 nnex 12159 . . . . . . . . . . . . . . 15 ℕ ∈ V
2119, 20elmap 8809 . . . . . . . . . . . . . 14 ( ∈ (ℕ0m ℕ) ↔ :ℕ⟶ℕ0)
22 fdm 6677 . . . . . . . . . . . . . 14 (:ℕ⟶ℕ0 → dom = ℕ)
2321, 22sylbi 216 . . . . . . . . . . . . 13 ( ∈ (ℕ0m ℕ) → dom = ℕ)
2418, 23sseqtrid 3996 . . . . . . . . . . . 12 ( ∈ (ℕ0m ℕ) → ( “ ℕ) ⊆ ℕ)
2517, 24syl 17 . . . . . . . . . . 11 (𝑃 → ( “ ℕ) ⊆ ℕ)
2625sselda 3944 . . . . . . . . . 10 ((𝑃𝑛 ∈ ( “ ℕ)) → 𝑛 ∈ ℕ)
2726ralrimiva 3143 . . . . . . . . 9 (𝑃 → ∀𝑛 ∈ ( “ ℕ)𝑛 ∈ ℕ)
2827biantrurd 533 . . . . . . . 8 (𝑃 → (∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛 ↔ (∀𝑛 ∈ ( “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛)))
2917biantrurd 533 . . . . . . . 8 (𝑃 → ((∀𝑛 ∈ ( “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛) ↔ ( ∈ (ℕ0m ℕ) ∧ (∀𝑛 ∈ ( “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛))))
3016simprbi 497 . . . . . . . . . 10 (𝑃 → (( “ ℕ) ∈ Fin ∧ Σ𝑘 ∈ ℕ ((𝑘) · 𝑘) = 𝑁))
3130simpld 495 . . . . . . . . 9 (𝑃 → ( “ ℕ) ∈ Fin)
3231biantrud 532 . . . . . . . 8 (𝑃 → (( ∈ (ℕ0m ℕ) ∧ (∀𝑛 ∈ ( “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛)) ↔ (( ∈ (ℕ0m ℕ) ∧ (∀𝑛 ∈ ( “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛)) ∧ ( “ ℕ) ∈ Fin)))
3328, 29, 323bitrd 304 . . . . . . 7 (𝑃 → (∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛 ↔ (( ∈ (ℕ0m ℕ) ∧ (∀𝑛 ∈ ( “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛)) ∧ ( “ ℕ) ∈ Fin)))
34 dfss3 3932 . . . . . . . . . 10 (( “ ℕ) ⊆ 𝐽 ↔ ∀𝑛 ∈ ( “ ℕ)𝑛𝐽)
35 breq2 5109 . . . . . . . . . . . . 13 (𝑧 = 𝑛 → (2 ∥ 𝑧 ↔ 2 ∥ 𝑛))
3635notbid 317 . . . . . . . . . . . 12 (𝑧 = 𝑛 → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑛))
37 eulerpart.j . . . . . . . . . . . 12 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧}
3836, 37elrab2 3648 . . . . . . . . . . 11 (𝑛𝐽 ↔ (𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛))
3938ralbii 3096 . . . . . . . . . 10 (∀𝑛 ∈ ( “ ℕ)𝑛𝐽 ↔ ∀𝑛 ∈ ( “ ℕ)(𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛))
40 r19.26 3114 . . . . . . . . . 10 (∀𝑛 ∈ ( “ ℕ)(𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛) ↔ (∀𝑛 ∈ ( “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛))
4134, 39, 403bitri 296 . . . . . . . . 9 (( “ ℕ) ⊆ 𝐽 ↔ (∀𝑛 ∈ ( “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛))
4241anbi2i 623 . . . . . . . 8 (( ∈ (ℕ0m ℕ) ∧ ( “ ℕ) ⊆ 𝐽) ↔ ( ∈ (ℕ0m ℕ) ∧ (∀𝑛 ∈ ( “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛)))
4342anbi1i 624 . . . . . . 7 ((( ∈ (ℕ0m ℕ) ∧ ( “ ℕ) ⊆ 𝐽) ∧ ( “ ℕ) ∈ Fin) ↔ (( ∈ (ℕ0m ℕ) ∧ (∀𝑛 ∈ ( “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛)) ∧ ( “ ℕ) ∈ Fin))
4433, 43bitr4di 288 . . . . . 6 (𝑃 → (∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛 ↔ (( ∈ (ℕ0m ℕ) ∧ ( “ ℕ) ⊆ 𝐽) ∧ ( “ ℕ) ∈ Fin)))
459sseq1d 3975 . . . . . . . 8 (𝑓 = → ((𝑓 “ ℕ) ⊆ 𝐽 ↔ ( “ ℕ) ⊆ 𝐽))
46 eulerpart.t . . . . . . . 8 𝑇 = {𝑓 ∈ (ℕ0m ℕ) ∣ (𝑓 “ ℕ) ⊆ 𝐽}
4745, 46elrab2 3648 . . . . . . 7 (𝑇 ↔ ( ∈ (ℕ0m ℕ) ∧ ( “ ℕ) ⊆ 𝐽))
48 vex 3449 . . . . . . . 8 ∈ V
49 eulerpart.r . . . . . . . 8 𝑅 = {𝑓 ∣ (𝑓 “ ℕ) ∈ Fin}
5048, 10, 49elab2 3634 . . . . . . 7 (𝑅 ↔ ( “ ℕ) ∈ Fin)
5147, 50anbi12i 627 . . . . . 6 ((𝑇𝑅) ↔ (( ∈ (ℕ0m ℕ) ∧ ( “ ℕ) ⊆ 𝐽) ∧ ( “ ℕ) ∈ Fin))
5244, 51bitr4di 288 . . . . 5 (𝑃 → (∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛 ↔ (𝑇𝑅)))
5352pm5.32i 575 . . . 4 ((𝑃 ∧ ∀𝑛 ∈ ( “ ℕ) ¬ 2 ∥ 𝑛) ↔ (𝑃 ∧ (𝑇𝑅)))
54 ancom 461 . . . 4 ((𝑃 ∧ (𝑇𝑅)) ↔ ((𝑇𝑅) ∧ 𝑃))
557, 53, 543bitri 296 . . 3 (𝑂 ↔ ((𝑇𝑅) ∧ 𝑃))
562, 3, 553bitr4ri 303 . 2 (𝑂 ∈ ((𝑇𝑅) ∩ 𝑃))
5756eqriv 2733 1 𝑂 = ((𝑇𝑅) ∩ 𝑃)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396   = wceq 1541  wcel 2106  {cab 2713  wral 3064  {crab 3407  cin 3909  wss 3910  c0 4282  𝒫 cpw 4560   class class class wbr 5105  {copab 5167  cmpt 5188  ccnv 5632  dom cdm 5633  cres 5635  cima 5636  ccom 5637  wf 6492  cfv 6496  (class class class)co 7357  cmpo 7359   supp csupp 8092  m cmap 8765  Fincfn 8883  1c1 11052   · cmul 11056  cle 11190  cn 12153  2c2 12208  0cn0 12413  cexp 13967  Σcsu 15570  cdvds 16136  bitscbits 16299  𝟭cind 32609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-seq 13907  df-sum 15571
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator