| Step | Hyp | Ref
| Expression |
| 1 | | elin 3947 |
. . . 4
⊢ (ℎ ∈ (𝑇 ∩ 𝑅) ↔ (ℎ ∈ 𝑇 ∧ ℎ ∈ 𝑅)) |
| 2 | 1 | anbi1i 624 |
. . 3
⊢ ((ℎ ∈ (𝑇 ∩ 𝑅) ∧ ℎ ∈ 𝑃) ↔ ((ℎ ∈ 𝑇 ∧ ℎ ∈ 𝑅) ∧ ℎ ∈ 𝑃)) |
| 3 | | elin 3947 |
. . 3
⊢ (ℎ ∈ ((𝑇 ∩ 𝑅) ∩ 𝑃) ↔ (ℎ ∈ (𝑇 ∩ 𝑅) ∧ ℎ ∈ 𝑃)) |
| 4 | | eulerpart.p |
. . . . 5
⊢ 𝑃 = {𝑓 ∈ (ℕ0
↑m ℕ) ∣ ((◡𝑓 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑓‘𝑘) · 𝑘) = 𝑁)} |
| 5 | | eulerpart.o |
. . . . 5
⊢ 𝑂 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ (◡𝑔 “ ℕ) ¬ 2 ∥ 𝑛} |
| 6 | | eulerpart.d |
. . . . 5
⊢ 𝐷 = {𝑔 ∈ 𝑃 ∣ ∀𝑛 ∈ ℕ (𝑔‘𝑛) ≤ 1} |
| 7 | 4, 5, 6 | eulerpartlemo 34402 |
. . . 4
⊢ (ℎ ∈ 𝑂 ↔ (ℎ ∈ 𝑃 ∧ ∀𝑛 ∈ (◡ℎ “ ℕ) ¬ 2 ∥ 𝑛)) |
| 8 | | cnveq 5858 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = ℎ → ◡𝑓 = ◡ℎ) |
| 9 | 8 | imaeq1d 6051 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = ℎ → (◡𝑓 “ ℕ) = (◡ℎ “ ℕ)) |
| 10 | 9 | eleq1d 2820 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = ℎ → ((◡𝑓 “ ℕ) ∈ Fin ↔ (◡ℎ “ ℕ) ∈
Fin)) |
| 11 | | fveq1 6880 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑓 = ℎ → (𝑓‘𝑘) = (ℎ‘𝑘)) |
| 12 | 11 | oveq1d 7425 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = ℎ → ((𝑓‘𝑘) · 𝑘) = ((ℎ‘𝑘) · 𝑘)) |
| 13 | 12 | sumeq2sdv 15724 |
. . . . . . . . . . . . . . . 16
⊢ (𝑓 = ℎ → Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = Σ𝑘 ∈ ℕ ((ℎ‘𝑘) · 𝑘)) |
| 14 | 13 | eqeq1d 2738 |
. . . . . . . . . . . . . . 15
⊢ (𝑓 = ℎ → (Σ𝑘 ∈ ℕ ((𝑓‘𝑘) · 𝑘) = 𝑁 ↔ Σ𝑘 ∈ ℕ ((ℎ‘𝑘) · 𝑘) = 𝑁)) |
| 15 | 10, 14 | anbi12d 632 |
. . . . . . . . . . . . . 14
⊢ (𝑓 = ℎ → (((◡𝑓 “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((𝑓‘𝑘) · 𝑘) = 𝑁) ↔ ((◡ℎ “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((ℎ‘𝑘) · 𝑘) = 𝑁))) |
| 16 | 15, 4 | elrab2 3679 |
. . . . . . . . . . . . 13
⊢ (ℎ ∈ 𝑃 ↔ (ℎ ∈ (ℕ0
↑m ℕ) ∧ ((◡ℎ “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((ℎ‘𝑘) · 𝑘) = 𝑁))) |
| 17 | 16 | simplbi 497 |
. . . . . . . . . . . 12
⊢ (ℎ ∈ 𝑃 → ℎ ∈ (ℕ0
↑m ℕ)) |
| 18 | | cnvimass 6074 |
. . . . . . . . . . . . 13
⊢ (◡ℎ “ ℕ) ⊆ dom ℎ |
| 19 | | nn0ex 12512 |
. . . . . . . . . . . . . . 15
⊢
ℕ0 ∈ V |
| 20 | | nnex 12251 |
. . . . . . . . . . . . . . 15
⊢ ℕ
∈ V |
| 21 | 19, 20 | elmap 8890 |
. . . . . . . . . . . . . 14
⊢ (ℎ ∈ (ℕ0
↑m ℕ) ↔ ℎ:ℕ⟶ℕ0) |
| 22 | | fdm 6720 |
. . . . . . . . . . . . . 14
⊢ (ℎ:ℕ⟶ℕ0 → dom
ℎ =
ℕ) |
| 23 | 21, 22 | sylbi 217 |
. . . . . . . . . . . . 13
⊢ (ℎ ∈ (ℕ0
↑m ℕ) → dom ℎ = ℕ) |
| 24 | 18, 23 | sseqtrid 4006 |
. . . . . . . . . . . 12
⊢ (ℎ ∈ (ℕ0
↑m ℕ) → (◡ℎ “ ℕ) ⊆
ℕ) |
| 25 | 17, 24 | syl 17 |
. . . . . . . . . . 11
⊢ (ℎ ∈ 𝑃 → (◡ℎ “ ℕ) ⊆
ℕ) |
| 26 | 25 | sselda 3963 |
. . . . . . . . . 10
⊢ ((ℎ ∈ 𝑃 ∧ 𝑛 ∈ (◡ℎ “ ℕ)) → 𝑛 ∈ ℕ) |
| 27 | 26 | ralrimiva 3133 |
. . . . . . . . 9
⊢ (ℎ ∈ 𝑃 → ∀𝑛 ∈ (◡ℎ “ ℕ)𝑛 ∈ ℕ) |
| 28 | 27 | biantrurd 532 |
. . . . . . . 8
⊢ (ℎ ∈ 𝑃 → (∀𝑛 ∈ (◡ℎ “ ℕ) ¬ 2 ∥ 𝑛 ↔ (∀𝑛 ∈ (◡ℎ “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ (◡ℎ “ ℕ) ¬ 2 ∥ 𝑛))) |
| 29 | 17 | biantrurd 532 |
. . . . . . . 8
⊢ (ℎ ∈ 𝑃 → ((∀𝑛 ∈ (◡ℎ “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ (◡ℎ “ ℕ) ¬ 2 ∥ 𝑛) ↔ (ℎ ∈ (ℕ0
↑m ℕ) ∧ (∀𝑛 ∈ (◡ℎ “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ (◡ℎ “ ℕ) ¬ 2 ∥ 𝑛)))) |
| 30 | 16 | simprbi 496 |
. . . . . . . . . 10
⊢ (ℎ ∈ 𝑃 → ((◡ℎ “ ℕ) ∈ Fin ∧
Σ𝑘 ∈ ℕ
((ℎ‘𝑘) · 𝑘) = 𝑁)) |
| 31 | 30 | simpld 494 |
. . . . . . . . 9
⊢ (ℎ ∈ 𝑃 → (◡ℎ “ ℕ) ∈ Fin) |
| 32 | 31 | biantrud 531 |
. . . . . . . 8
⊢ (ℎ ∈ 𝑃 → ((ℎ ∈ (ℕ0
↑m ℕ) ∧ (∀𝑛 ∈ (◡ℎ “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ (◡ℎ “ ℕ) ¬ 2 ∥ 𝑛)) ↔ ((ℎ ∈ (ℕ0
↑m ℕ) ∧ (∀𝑛 ∈ (◡ℎ “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ (◡ℎ “ ℕ) ¬ 2 ∥ 𝑛)) ∧ (◡ℎ “ ℕ) ∈
Fin))) |
| 33 | 28, 29, 32 | 3bitrd 305 |
. . . . . . 7
⊢ (ℎ ∈ 𝑃 → (∀𝑛 ∈ (◡ℎ “ ℕ) ¬ 2 ∥ 𝑛 ↔ ((ℎ ∈ (ℕ0
↑m ℕ) ∧ (∀𝑛 ∈ (◡ℎ “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ (◡ℎ “ ℕ) ¬ 2 ∥ 𝑛)) ∧ (◡ℎ “ ℕ) ∈
Fin))) |
| 34 | | dfss3 3952 |
. . . . . . . . . 10
⊢ ((◡ℎ “ ℕ) ⊆ 𝐽 ↔ ∀𝑛 ∈ (◡ℎ “ ℕ)𝑛 ∈ 𝐽) |
| 35 | | breq2 5128 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑛 → (2 ∥ 𝑧 ↔ 2 ∥ 𝑛)) |
| 36 | 35 | notbid 318 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑛 → (¬ 2 ∥ 𝑧 ↔ ¬ 2 ∥ 𝑛)) |
| 37 | | eulerpart.j |
. . . . . . . . . . . 12
⊢ 𝐽 = {𝑧 ∈ ℕ ∣ ¬ 2 ∥ 𝑧} |
| 38 | 36, 37 | elrab2 3679 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ 𝐽 ↔ (𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛)) |
| 39 | 38 | ralbii 3083 |
. . . . . . . . . 10
⊢
(∀𝑛 ∈
(◡ℎ “ ℕ)𝑛 ∈ 𝐽 ↔ ∀𝑛 ∈ (◡ℎ “ ℕ)(𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛)) |
| 40 | | r19.26 3099 |
. . . . . . . . . 10
⊢
(∀𝑛 ∈
(◡ℎ “ ℕ)(𝑛 ∈ ℕ ∧ ¬ 2 ∥ 𝑛) ↔ (∀𝑛 ∈ (◡ℎ “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ (◡ℎ “ ℕ) ¬ 2 ∥ 𝑛)) |
| 41 | 34, 39, 40 | 3bitri 297 |
. . . . . . . . 9
⊢ ((◡ℎ “ ℕ) ⊆ 𝐽 ↔ (∀𝑛 ∈ (◡ℎ “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ (◡ℎ “ ℕ) ¬ 2 ∥ 𝑛)) |
| 42 | 41 | anbi2i 623 |
. . . . . . . 8
⊢ ((ℎ ∈ (ℕ0
↑m ℕ) ∧ (◡ℎ “ ℕ) ⊆ 𝐽) ↔ (ℎ ∈ (ℕ0
↑m ℕ) ∧ (∀𝑛 ∈ (◡ℎ “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ (◡ℎ “ ℕ) ¬ 2 ∥ 𝑛))) |
| 43 | 42 | anbi1i 624 |
. . . . . . 7
⊢ (((ℎ ∈ (ℕ0
↑m ℕ) ∧ (◡ℎ “ ℕ) ⊆ 𝐽) ∧ (◡ℎ “ ℕ) ∈ Fin) ↔ ((ℎ ∈ (ℕ0
↑m ℕ) ∧ (∀𝑛 ∈ (◡ℎ “ ℕ)𝑛 ∈ ℕ ∧ ∀𝑛 ∈ (◡ℎ “ ℕ) ¬ 2 ∥ 𝑛)) ∧ (◡ℎ “ ℕ) ∈
Fin)) |
| 44 | 33, 43 | bitr4di 289 |
. . . . . 6
⊢ (ℎ ∈ 𝑃 → (∀𝑛 ∈ (◡ℎ “ ℕ) ¬ 2 ∥ 𝑛 ↔ ((ℎ ∈ (ℕ0
↑m ℕ) ∧ (◡ℎ “ ℕ) ⊆ 𝐽) ∧ (◡ℎ “ ℕ) ∈
Fin))) |
| 45 | 9 | sseq1d 3995 |
. . . . . . . 8
⊢ (𝑓 = ℎ → ((◡𝑓 “ ℕ) ⊆ 𝐽 ↔ (◡ℎ “ ℕ) ⊆ 𝐽)) |
| 46 | | eulerpart.t |
. . . . . . . 8
⊢ 𝑇 = {𝑓 ∈ (ℕ0
↑m ℕ) ∣ (◡𝑓 “ ℕ) ⊆ 𝐽} |
| 47 | 45, 46 | elrab2 3679 |
. . . . . . 7
⊢ (ℎ ∈ 𝑇 ↔ (ℎ ∈ (ℕ0
↑m ℕ) ∧ (◡ℎ “ ℕ) ⊆ 𝐽)) |
| 48 | | vex 3468 |
. . . . . . . 8
⊢ ℎ ∈ V |
| 49 | | eulerpart.r |
. . . . . . . 8
⊢ 𝑅 = {𝑓 ∣ (◡𝑓 “ ℕ) ∈
Fin} |
| 50 | 48, 10, 49 | elab2 3666 |
. . . . . . 7
⊢ (ℎ ∈ 𝑅 ↔ (◡ℎ “ ℕ) ∈ Fin) |
| 51 | 47, 50 | anbi12i 628 |
. . . . . 6
⊢ ((ℎ ∈ 𝑇 ∧ ℎ ∈ 𝑅) ↔ ((ℎ ∈ (ℕ0
↑m ℕ) ∧ (◡ℎ “ ℕ) ⊆ 𝐽) ∧ (◡ℎ “ ℕ) ∈
Fin)) |
| 52 | 44, 51 | bitr4di 289 |
. . . . 5
⊢ (ℎ ∈ 𝑃 → (∀𝑛 ∈ (◡ℎ “ ℕ) ¬ 2 ∥ 𝑛 ↔ (ℎ ∈ 𝑇 ∧ ℎ ∈ 𝑅))) |
| 53 | 52 | pm5.32i 574 |
. . . 4
⊢ ((ℎ ∈ 𝑃 ∧ ∀𝑛 ∈ (◡ℎ “ ℕ) ¬ 2 ∥ 𝑛) ↔ (ℎ ∈ 𝑃 ∧ (ℎ ∈ 𝑇 ∧ ℎ ∈ 𝑅))) |
| 54 | | ancom 460 |
. . . 4
⊢ ((ℎ ∈ 𝑃 ∧ (ℎ ∈ 𝑇 ∧ ℎ ∈ 𝑅)) ↔ ((ℎ ∈ 𝑇 ∧ ℎ ∈ 𝑅) ∧ ℎ ∈ 𝑃)) |
| 55 | 7, 53, 54 | 3bitri 297 |
. . 3
⊢ (ℎ ∈ 𝑂 ↔ ((ℎ ∈ 𝑇 ∧ ℎ ∈ 𝑅) ∧ ℎ ∈ 𝑃)) |
| 56 | 2, 3, 55 | 3bitr4ri 304 |
. 2
⊢ (ℎ ∈ 𝑂 ↔ ℎ ∈ ((𝑇 ∩ 𝑅) ∩ 𝑃)) |
| 57 | 56 | eqriv 2733 |
1
⊢ 𝑂 = ((𝑇 ∩ 𝑅) ∩ 𝑃) |