MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6c4 Structured version   Visualization version   GIF version

Theorem ac6c4 10237
Description: Equivalent of Axiom of Choice. 𝐵 is a collection 𝐵(𝑥) of nonempty sets. (Contributed by Mario Carneiro, 22-Mar-2013.)
Hypotheses
Ref Expression
ac6c4.1 𝐴 ∈ V
ac6c4.2 𝐵 ∈ V
Assertion
Ref Expression
ac6c4 (∀𝑥𝐴 𝐵 ≠ ∅ → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
Distinct variable groups:   𝐴,𝑓,𝑥   𝐵,𝑓
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ac6c4
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1917 . . . 4 𝑧 𝐵 ≠ ∅
2 nfcsb1v 3857 . . . . 5 𝑥𝑧 / 𝑥𝐵
3 nfcv 2907 . . . . 5 𝑥
42, 3nfne 3045 . . . 4 𝑥𝑧 / 𝑥𝐵 ≠ ∅
5 csbeq1a 3846 . . . . 5 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
65neeq1d 3003 . . . 4 (𝑥 = 𝑧 → (𝐵 ≠ ∅ ↔ 𝑧 / 𝑥𝐵 ≠ ∅))
71, 4, 6cbvralw 3373 . . 3 (∀𝑥𝐴 𝐵 ≠ ∅ ↔ ∀𝑧𝐴 𝑧 / 𝑥𝐵 ≠ ∅)
8 n0 4280 . . . . 5 (𝑧 / 𝑥𝐵 ≠ ∅ ↔ ∃𝑦 𝑦𝑧 / 𝑥𝐵)
9 nfv 1917 . . . . . 6 𝑦 𝑧𝐴
10 nfre1 3239 . . . . . 6 𝑦𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵
112nfel2 2925 . . . . . . . . . 10 𝑥 𝑦𝑧 / 𝑥𝐵
125eleq2d 2824 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑦𝐵𝑦𝑧 / 𝑥𝐵))
1311, 12rspce 3550 . . . . . . . . 9 ((𝑧𝐴𝑦𝑧 / 𝑥𝐵) → ∃𝑥𝐴 𝑦𝐵)
14 eliun 4928 . . . . . . . . 9 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
1513, 14sylibr 233 . . . . . . . 8 ((𝑧𝐴𝑦𝑧 / 𝑥𝐵) → 𝑦 𝑥𝐴 𝐵)
16 rspe 3237 . . . . . . . 8 ((𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵) → ∃𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵)
1715, 16sylancom 588 . . . . . . 7 ((𝑧𝐴𝑦𝑧 / 𝑥𝐵) → ∃𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵)
1817ex 413 . . . . . 6 (𝑧𝐴 → (𝑦𝑧 / 𝑥𝐵 → ∃𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵))
199, 10, 18exlimd 2211 . . . . 5 (𝑧𝐴 → (∃𝑦 𝑦𝑧 / 𝑥𝐵 → ∃𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵))
208, 19syl5bi 241 . . . 4 (𝑧𝐴 → (𝑧 / 𝑥𝐵 ≠ ∅ → ∃𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵))
2120ralimia 3085 . . 3 (∀𝑧𝐴 𝑧 / 𝑥𝐵 ≠ ∅ → ∀𝑧𝐴𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵)
227, 21sylbi 216 . 2 (∀𝑥𝐴 𝐵 ≠ ∅ → ∀𝑧𝐴𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵)
23 ac6c4.1 . . 3 𝐴 ∈ V
24 ac6c4.2 . . . 4 𝐵 ∈ V
2523, 24iunex 7811 . . 3 𝑥𝐴 𝐵 ∈ V
26 eleq1 2826 . . 3 (𝑦 = (𝑓𝑧) → (𝑦𝑧 / 𝑥𝐵 ↔ (𝑓𝑧) ∈ 𝑧 / 𝑥𝐵))
2723, 25, 26ac6 10236 . 2 (∀𝑧𝐴𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵 → ∃𝑓(𝑓:𝐴 𝑥𝐴 𝐵 ∧ ∀𝑧𝐴 (𝑓𝑧) ∈ 𝑧 / 𝑥𝐵))
28 ffn 6600 . . . 4 (𝑓:𝐴 𝑥𝐴 𝐵𝑓 Fn 𝐴)
29 nfv 1917 . . . . . 6 𝑧(𝑓𝑥) ∈ 𝐵
302nfel2 2925 . . . . . 6 𝑥(𝑓𝑧) ∈ 𝑧 / 𝑥𝐵
31 fveq2 6774 . . . . . . 7 (𝑥 = 𝑧 → (𝑓𝑥) = (𝑓𝑧))
3231, 5eleq12d 2833 . . . . . 6 (𝑥 = 𝑧 → ((𝑓𝑥) ∈ 𝐵 ↔ (𝑓𝑧) ∈ 𝑧 / 𝑥𝐵))
3329, 30, 32cbvralw 3373 . . . . 5 (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ↔ ∀𝑧𝐴 (𝑓𝑧) ∈ 𝑧 / 𝑥𝐵)
3433biimpri 227 . . . 4 (∀𝑧𝐴 (𝑓𝑧) ∈ 𝑧 / 𝑥𝐵 → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)
3528, 34anim12i 613 . . 3 ((𝑓:𝐴 𝑥𝐴 𝐵 ∧ ∀𝑧𝐴 (𝑓𝑧) ∈ 𝑧 / 𝑥𝐵) → (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
3635eximi 1837 . 2 (∃𝑓(𝑓:𝐴 𝑥𝐴 𝐵 ∧ ∀𝑧𝐴 (𝑓𝑧) ∈ 𝑧 / 𝑥𝐵) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
3722, 27, 363syl 18 1 (∀𝑥𝐴 𝐵 ≠ ∅ → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wex 1782  wcel 2106  wne 2943  wral 3064  wrex 3065  Vcvv 3432  csb 3832  c0 4256   ciun 4924   Fn wfn 6428  wf 6429  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-ac2 10219
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-en 8734  df-card 9697  df-ac 9872
This theorem is referenced by:  ac6c5  10238  ac9  10239
  Copyright terms: Public domain W3C validator