MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6c4 Structured version   Visualization version   GIF version

Theorem ac6c4 10168
Description: Equivalent of Axiom of Choice. 𝐵 is a collection 𝐵(𝑥) of nonempty sets. (Contributed by Mario Carneiro, 22-Mar-2013.)
Hypotheses
Ref Expression
ac6c4.1 𝐴 ∈ V
ac6c4.2 𝐵 ∈ V
Assertion
Ref Expression
ac6c4 (∀𝑥𝐴 𝐵 ≠ ∅ → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
Distinct variable groups:   𝐴,𝑓,𝑥   𝐵,𝑓
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ac6c4
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1918 . . . 4 𝑧 𝐵 ≠ ∅
2 nfcsb1v 3853 . . . . 5 𝑥𝑧 / 𝑥𝐵
3 nfcv 2906 . . . . 5 𝑥
42, 3nfne 3044 . . . 4 𝑥𝑧 / 𝑥𝐵 ≠ ∅
5 csbeq1a 3842 . . . . 5 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
65neeq1d 3002 . . . 4 (𝑥 = 𝑧 → (𝐵 ≠ ∅ ↔ 𝑧 / 𝑥𝐵 ≠ ∅))
71, 4, 6cbvralw 3363 . . 3 (∀𝑥𝐴 𝐵 ≠ ∅ ↔ ∀𝑧𝐴 𝑧 / 𝑥𝐵 ≠ ∅)
8 n0 4277 . . . . 5 (𝑧 / 𝑥𝐵 ≠ ∅ ↔ ∃𝑦 𝑦𝑧 / 𝑥𝐵)
9 nfv 1918 . . . . . 6 𝑦 𝑧𝐴
10 nfre1 3234 . . . . . 6 𝑦𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵
112nfel2 2924 . . . . . . . . . 10 𝑥 𝑦𝑧 / 𝑥𝐵
125eleq2d 2824 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑦𝐵𝑦𝑧 / 𝑥𝐵))
1311, 12rspce 3540 . . . . . . . . 9 ((𝑧𝐴𝑦𝑧 / 𝑥𝐵) → ∃𝑥𝐴 𝑦𝐵)
14 eliun 4925 . . . . . . . . 9 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
1513, 14sylibr 233 . . . . . . . 8 ((𝑧𝐴𝑦𝑧 / 𝑥𝐵) → 𝑦 𝑥𝐴 𝐵)
16 rspe 3232 . . . . . . . 8 ((𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵) → ∃𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵)
1715, 16sylancom 587 . . . . . . 7 ((𝑧𝐴𝑦𝑧 / 𝑥𝐵) → ∃𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵)
1817ex 412 . . . . . 6 (𝑧𝐴 → (𝑦𝑧 / 𝑥𝐵 → ∃𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵))
199, 10, 18exlimd 2214 . . . . 5 (𝑧𝐴 → (∃𝑦 𝑦𝑧 / 𝑥𝐵 → ∃𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵))
208, 19syl5bi 241 . . . 4 (𝑧𝐴 → (𝑧 / 𝑥𝐵 ≠ ∅ → ∃𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵))
2120ralimia 3084 . . 3 (∀𝑧𝐴 𝑧 / 𝑥𝐵 ≠ ∅ → ∀𝑧𝐴𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵)
227, 21sylbi 216 . 2 (∀𝑥𝐴 𝐵 ≠ ∅ → ∀𝑧𝐴𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵)
23 ac6c4.1 . . 3 𝐴 ∈ V
24 ac6c4.2 . . . 4 𝐵 ∈ V
2523, 24iunex 7784 . . 3 𝑥𝐴 𝐵 ∈ V
26 eleq1 2826 . . 3 (𝑦 = (𝑓𝑧) → (𝑦𝑧 / 𝑥𝐵 ↔ (𝑓𝑧) ∈ 𝑧 / 𝑥𝐵))
2723, 25, 26ac6 10167 . 2 (∀𝑧𝐴𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵 → ∃𝑓(𝑓:𝐴 𝑥𝐴 𝐵 ∧ ∀𝑧𝐴 (𝑓𝑧) ∈ 𝑧 / 𝑥𝐵))
28 ffn 6584 . . . 4 (𝑓:𝐴 𝑥𝐴 𝐵𝑓 Fn 𝐴)
29 nfv 1918 . . . . . 6 𝑧(𝑓𝑥) ∈ 𝐵
302nfel2 2924 . . . . . 6 𝑥(𝑓𝑧) ∈ 𝑧 / 𝑥𝐵
31 fveq2 6756 . . . . . . 7 (𝑥 = 𝑧 → (𝑓𝑥) = (𝑓𝑧))
3231, 5eleq12d 2833 . . . . . 6 (𝑥 = 𝑧 → ((𝑓𝑥) ∈ 𝐵 ↔ (𝑓𝑧) ∈ 𝑧 / 𝑥𝐵))
3329, 30, 32cbvralw 3363 . . . . 5 (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ↔ ∀𝑧𝐴 (𝑓𝑧) ∈ 𝑧 / 𝑥𝐵)
3433biimpri 227 . . . 4 (∀𝑧𝐴 (𝑓𝑧) ∈ 𝑧 / 𝑥𝐵 → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)
3528, 34anim12i 612 . . 3 ((𝑓:𝐴 𝑥𝐴 𝐵 ∧ ∀𝑧𝐴 (𝑓𝑧) ∈ 𝑧 / 𝑥𝐵) → (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
3635eximi 1838 . 2 (∃𝑓(𝑓:𝐴 𝑥𝐴 𝐵 ∧ ∀𝑧𝐴 (𝑓𝑧) ∈ 𝑧 / 𝑥𝐵) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
3722, 27, 363syl 18 1 (∀𝑥𝐴 𝐵 ≠ ∅ → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1783  wcel 2108  wne 2942  wral 3063  wrex 3064  Vcvv 3422  csb 3828  c0 4253   ciun 4921   Fn wfn 6413  wf 6414  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-ac2 10150
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-en 8692  df-card 9628  df-ac 9803
This theorem is referenced by:  ac6c5  10169  ac9  10170
  Copyright terms: Public domain W3C validator