MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ac6c4 Structured version   Visualization version   GIF version

Theorem ac6c4 10495
Description: Equivalent of Axiom of Choice. 𝐵 is a collection 𝐵(𝑥) of nonempty sets. (Contributed by Mario Carneiro, 22-Mar-2013.)
Hypotheses
Ref Expression
ac6c4.1 𝐴 ∈ V
ac6c4.2 𝐵 ∈ V
Assertion
Ref Expression
ac6c4 (∀𝑥𝐴 𝐵 ≠ ∅ → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
Distinct variable groups:   𝐴,𝑓,𝑥   𝐵,𝑓
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem ac6c4
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . 4 𝑧 𝐵 ≠ ∅
2 nfcsb1v 3898 . . . . 5 𝑥𝑧 / 𝑥𝐵
3 nfcv 2898 . . . . 5 𝑥
42, 3nfne 3033 . . . 4 𝑥𝑧 / 𝑥𝐵 ≠ ∅
5 csbeq1a 3888 . . . . 5 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
65neeq1d 2991 . . . 4 (𝑥 = 𝑧 → (𝐵 ≠ ∅ ↔ 𝑧 / 𝑥𝐵 ≠ ∅))
71, 4, 6cbvralw 3286 . . 3 (∀𝑥𝐴 𝐵 ≠ ∅ ↔ ∀𝑧𝐴 𝑧 / 𝑥𝐵 ≠ ∅)
8 n0 4328 . . . . 5 (𝑧 / 𝑥𝐵 ≠ ∅ ↔ ∃𝑦 𝑦𝑧 / 𝑥𝐵)
9 nfv 1914 . . . . . 6 𝑦 𝑧𝐴
10 nfre1 3267 . . . . . 6 𝑦𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵
112nfel2 2917 . . . . . . . . . 10 𝑥 𝑦𝑧 / 𝑥𝐵
125eleq2d 2820 . . . . . . . . . 10 (𝑥 = 𝑧 → (𝑦𝐵𝑦𝑧 / 𝑥𝐵))
1311, 12rspce 3590 . . . . . . . . 9 ((𝑧𝐴𝑦𝑧 / 𝑥𝐵) → ∃𝑥𝐴 𝑦𝐵)
14 eliun 4971 . . . . . . . . 9 (𝑦 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝑦𝐵)
1513, 14sylibr 234 . . . . . . . 8 ((𝑧𝐴𝑦𝑧 / 𝑥𝐵) → 𝑦 𝑥𝐴 𝐵)
16 rspe 3232 . . . . . . . 8 ((𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵) → ∃𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵)
1715, 16sylancom 588 . . . . . . 7 ((𝑧𝐴𝑦𝑧 / 𝑥𝐵) → ∃𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵)
1817ex 412 . . . . . 6 (𝑧𝐴 → (𝑦𝑧 / 𝑥𝐵 → ∃𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵))
199, 10, 18exlimd 2218 . . . . 5 (𝑧𝐴 → (∃𝑦 𝑦𝑧 / 𝑥𝐵 → ∃𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵))
208, 19biimtrid 242 . . . 4 (𝑧𝐴 → (𝑧 / 𝑥𝐵 ≠ ∅ → ∃𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵))
2120ralimia 3070 . . 3 (∀𝑧𝐴 𝑧 / 𝑥𝐵 ≠ ∅ → ∀𝑧𝐴𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵)
227, 21sylbi 217 . 2 (∀𝑥𝐴 𝐵 ≠ ∅ → ∀𝑧𝐴𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵)
23 ac6c4.1 . . 3 𝐴 ∈ V
24 ac6c4.2 . . . 4 𝐵 ∈ V
2523, 24iunex 7967 . . 3 𝑥𝐴 𝐵 ∈ V
26 eleq1 2822 . . 3 (𝑦 = (𝑓𝑧) → (𝑦𝑧 / 𝑥𝐵 ↔ (𝑓𝑧) ∈ 𝑧 / 𝑥𝐵))
2723, 25, 26ac6 10494 . 2 (∀𝑧𝐴𝑦 𝑥𝐴 𝐵𝑦𝑧 / 𝑥𝐵 → ∃𝑓(𝑓:𝐴 𝑥𝐴 𝐵 ∧ ∀𝑧𝐴 (𝑓𝑧) ∈ 𝑧 / 𝑥𝐵))
28 ffn 6706 . . . 4 (𝑓:𝐴 𝑥𝐴 𝐵𝑓 Fn 𝐴)
29 nfv 1914 . . . . . 6 𝑧(𝑓𝑥) ∈ 𝐵
302nfel2 2917 . . . . . 6 𝑥(𝑓𝑧) ∈ 𝑧 / 𝑥𝐵
31 fveq2 6876 . . . . . . 7 (𝑥 = 𝑧 → (𝑓𝑥) = (𝑓𝑧))
3231, 5eleq12d 2828 . . . . . 6 (𝑥 = 𝑧 → ((𝑓𝑥) ∈ 𝐵 ↔ (𝑓𝑧) ∈ 𝑧 / 𝑥𝐵))
3329, 30, 32cbvralw 3286 . . . . 5 (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 ↔ ∀𝑧𝐴 (𝑓𝑧) ∈ 𝑧 / 𝑥𝐵)
3433biimpri 228 . . . 4 (∀𝑧𝐴 (𝑓𝑧) ∈ 𝑧 / 𝑥𝐵 → ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)
3528, 34anim12i 613 . . 3 ((𝑓:𝐴 𝑥𝐴 𝐵 ∧ ∀𝑧𝐴 (𝑓𝑧) ∈ 𝑧 / 𝑥𝐵) → (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
3635eximi 1835 . 2 (∃𝑓(𝑓:𝐴 𝑥𝐴 𝐵 ∧ ∀𝑧𝐴 (𝑓𝑧) ∈ 𝑧 / 𝑥𝐵) → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
3722, 27, 363syl 18 1 (∀𝑥𝐴 𝐵 ≠ ∅ → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1779  wcel 2108  wne 2932  wral 3051  wrex 3060  Vcvv 3459  csb 3874  c0 4308   ciun 4967   Fn wfn 6526  wf 6527  cfv 6531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-ac2 10477
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-en 8960  df-card 9953  df-ac 10130
This theorem is referenced by:  ac6c5  10496  ac9  10497
  Copyright terms: Public domain W3C validator