Step | Hyp | Ref
| Expression |
1 | | simpr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝜓) → 𝜓) |
2 | | fsum2d.7 |
. . . 4
⊢ (𝜓 ↔ Σ𝑗 ∈ 𝑥 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷) |
3 | 1, 2 | sylib 217 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → Σ𝑗 ∈ 𝑥 Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷) |
4 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑚Σ𝑘 ∈ 𝐵 𝐶 |
5 | | nfcsb1v 3853 |
. . . . . . 7
⊢
Ⅎ𝑗⦋𝑚 / 𝑗⦌𝐵 |
6 | | nfcsb1v 3853 |
. . . . . . 7
⊢
Ⅎ𝑗⦋𝑚 / 𝑗⦌𝐶 |
7 | 5, 6 | nfsum 15330 |
. . . . . 6
⊢
Ⅎ𝑗Σ𝑘 ∈ ⦋ 𝑚 / 𝑗⦌𝐵⦋𝑚 / 𝑗⦌𝐶 |
8 | | csbeq1a 3842 |
. . . . . . 7
⊢ (𝑗 = 𝑚 → 𝐵 = ⦋𝑚 / 𝑗⦌𝐵) |
9 | | csbeq1a 3842 |
. . . . . . . 8
⊢ (𝑗 = 𝑚 → 𝐶 = ⦋𝑚 / 𝑗⦌𝐶) |
10 | 9 | adantr 480 |
. . . . . . 7
⊢ ((𝑗 = 𝑚 ∧ 𝑘 ∈ 𝐵) → 𝐶 = ⦋𝑚 / 𝑗⦌𝐶) |
11 | 8, 10 | sumeq12dv 15346 |
. . . . . 6
⊢ (𝑗 = 𝑚 → Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑘 ∈ ⦋ 𝑚 / 𝑗⦌𝐵⦋𝑚 / 𝑗⦌𝐶) |
12 | 4, 7, 11 | cbvsumi 15337 |
. . . . 5
⊢
Σ𝑗 ∈
{𝑦}Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑚 ∈ {𝑦}Σ𝑘 ∈ ⦋ 𝑚 / 𝑗⦌𝐵⦋𝑚 / 𝑗⦌𝐶 |
13 | | fsum2d.6 |
. . . . . . . . 9
⊢ (𝜑 → (𝑥 ∪ {𝑦}) ⊆ 𝐴) |
14 | 13 | unssbd 4118 |
. . . . . . . 8
⊢ (𝜑 → {𝑦} ⊆ 𝐴) |
15 | | vex 3426 |
. . . . . . . . 9
⊢ 𝑦 ∈ V |
16 | 15 | snss 4716 |
. . . . . . . 8
⊢ (𝑦 ∈ 𝐴 ↔ {𝑦} ⊆ 𝐴) |
17 | 14, 16 | sylibr 233 |
. . . . . . 7
⊢ (𝜑 → 𝑦 ∈ 𝐴) |
18 | | fsum2d.3 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → 𝐵 ∈ Fin) |
19 | 18 | ralrimiva 3107 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑗 ∈ 𝐴 𝐵 ∈ Fin) |
20 | | nfcsb1v 3853 |
. . . . . . . . . . 11
⊢
Ⅎ𝑗⦋𝑦 / 𝑗⦌𝐵 |
21 | 20 | nfel1 2922 |
. . . . . . . . . 10
⊢
Ⅎ𝑗⦋𝑦 / 𝑗⦌𝐵 ∈ Fin |
22 | | csbeq1a 3842 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑗⦌𝐵) |
23 | 22 | eleq1d 2823 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑦 → (𝐵 ∈ Fin ↔ ⦋𝑦 / 𝑗⦌𝐵 ∈ Fin)) |
24 | 21, 23 | rspc 3539 |
. . . . . . . . 9
⊢ (𝑦 ∈ 𝐴 → (∀𝑗 ∈ 𝐴 𝐵 ∈ Fin → ⦋𝑦 / 𝑗⦌𝐵 ∈ Fin)) |
25 | 17, 19, 24 | sylc 65 |
. . . . . . . 8
⊢ (𝜑 → ⦋𝑦 / 𝑗⦌𝐵 ∈ Fin) |
26 | | fsum2d.4 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵)) → 𝐶 ∈ ℂ) |
27 | 26 | ralrimivva 3114 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐵 𝐶 ∈ ℂ) |
28 | | nfcsb1v 3853 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗⦋𝑦 / 𝑗⦌𝐶 |
29 | 28 | nfel1 2922 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ |
30 | 20, 29 | nfralw 3149 |
. . . . . . . . . . 11
⊢
Ⅎ𝑗∀𝑘 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ |
31 | | csbeq1a 3842 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑦 → 𝐶 = ⦋𝑦 / 𝑗⦌𝐶) |
32 | 31 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑦 → (𝐶 ∈ ℂ ↔ ⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ)) |
33 | 22, 32 | raleqbidv 3327 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑦 → (∀𝑘 ∈ 𝐵 𝐶 ∈ ℂ ↔ ∀𝑘 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ)) |
34 | 30, 33 | rspc 3539 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐴 → (∀𝑗 ∈ 𝐴 ∀𝑘 ∈ 𝐵 𝐶 ∈ ℂ → ∀𝑘 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ)) |
35 | 17, 27, 34 | sylc 65 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑘 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ) |
36 | 35 | r19.21bi 3132 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵) → ⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ) |
37 | 25, 36 | fsumcl 15373 |
. . . . . . 7
⊢ (𝜑 → Σ𝑘 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ) |
38 | | csbeq1 3831 |
. . . . . . . . 9
⊢ (𝑚 = 𝑦 → ⦋𝑚 / 𝑗⦌𝐵 = ⦋𝑦 / 𝑗⦌𝐵) |
39 | | csbeq1 3831 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑦 → ⦋𝑚 / 𝑗⦌𝐶 = ⦋𝑦 / 𝑗⦌𝐶) |
40 | 39 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑚 = 𝑦 ∧ 𝑘 ∈ ⦋𝑚 / 𝑗⦌𝐵) → ⦋𝑚 / 𝑗⦌𝐶 = ⦋𝑦 / 𝑗⦌𝐶) |
41 | 38, 40 | sumeq12dv 15346 |
. . . . . . . 8
⊢ (𝑚 = 𝑦 → Σ𝑘 ∈ ⦋ 𝑚 / 𝑗⦌𝐵⦋𝑚 / 𝑗⦌𝐶 = Σ𝑘 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶) |
42 | 41 | sumsn 15386 |
. . . . . . 7
⊢ ((𝑦 ∈ 𝐴 ∧ Σ𝑘 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ) → Σ𝑚 ∈ {𝑦}Σ𝑘 ∈ ⦋ 𝑚 / 𝑗⦌𝐵⦋𝑚 / 𝑗⦌𝐶 = Σ𝑘 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶) |
43 | 17, 37, 42 | syl2anc 583 |
. . . . . 6
⊢ (𝜑 → Σ𝑚 ∈ {𝑦}Σ𝑘 ∈ ⦋ 𝑚 / 𝑗⦌𝐵⦋𝑚 / 𝑗⦌𝐶 = Σ𝑘 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶) |
44 | | nfcv 2906 |
. . . . . . . 8
⊢
Ⅎ𝑚⦋𝑦 / 𝑗⦌𝐶 |
45 | | nfcsb1v 3853 |
. . . . . . . 8
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 |
46 | | csbeq1a 3842 |
. . . . . . . 8
⊢ (𝑘 = 𝑚 → ⦋𝑦 / 𝑗⦌𝐶 = ⦋𝑚 / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶) |
47 | 44, 45, 46 | cbvsumi 15337 |
. . . . . . 7
⊢
Σ𝑘 ∈
⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶 = Σ𝑚 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑚 / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 |
48 | | csbeq1 3831 |
. . . . . . . . 9
⊢ (𝑚 = (2nd ‘𝑧) → ⦋𝑚 / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 = ⦋(2nd
‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶) |
49 | | snfi 8788 |
. . . . . . . . . 10
⊢ {𝑦} ∈ Fin |
50 | | xpfi 9015 |
. . . . . . . . . 10
⊢ (({𝑦} ∈ Fin ∧
⦋𝑦 / 𝑗⦌𝐵 ∈ Fin) → ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵) ∈ Fin) |
51 | 49, 25, 50 | sylancr 586 |
. . . . . . . . 9
⊢ (𝜑 → ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵) ∈ Fin) |
52 | | 2ndconst 7912 |
. . . . . . . . . 10
⊢ (𝑦 ∈ 𝐴 → (2nd ↾ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)):({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)–1-1-onto→⦋𝑦 / 𝑗⦌𝐵) |
53 | 17, 52 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (2nd ↾
({𝑦} ×
⦋𝑦 / 𝑗⦌𝐵)):({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)–1-1-onto→⦋𝑦 / 𝑗⦌𝐵) |
54 | | fvres 6775 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵) → ((2nd ↾ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵))‘𝑧) = (2nd ‘𝑧)) |
55 | 54 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) → ((2nd ↾ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵))‘𝑧) = (2nd ‘𝑧)) |
56 | 45 | nfel1 2922 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘⦋𝑚 / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ |
57 | 46 | eleq1d 2823 |
. . . . . . . . . . 11
⊢ (𝑘 = 𝑚 → (⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ ↔ ⦋𝑚 / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ)) |
58 | 56, 57 | rspc 3539 |
. . . . . . . . . 10
⊢ (𝑚 ∈ ⦋𝑦 / 𝑗⦌𝐵 → (∀𝑘 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ → ⦋𝑚 / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ)) |
59 | 35, 58 | mpan9 506 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑚 ∈ ⦋𝑦 / 𝑗⦌𝐵) → ⦋𝑚 / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 ∈ ℂ) |
60 | 48, 51, 53, 55, 59 | fsumf1o 15363 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑚 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑚 / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 = Σ𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)⦋(2nd ‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶) |
61 | | elxp 5603 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵) ↔ ∃𝑚∃𝑘(𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑦} ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵))) |
62 | | nfv 1918 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑗 𝑧 = 〈𝑚, 𝑘〉 |
63 | | nfv 1918 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑗 𝑚 ∈ {𝑦} |
64 | 20 | nfcri 2893 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑗 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵 |
65 | 63, 64 | nfan 1903 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑗(𝑚 ∈ {𝑦} ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵) |
66 | 62, 65 | nfan 1903 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑗(𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑦} ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵)) |
67 | 66 | nfex 2322 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗∃𝑘(𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑦} ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵)) |
68 | | nfv 1918 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑚∃𝑘(𝑧 = 〈𝑗, 𝑘〉 ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵)) |
69 | | opeq1 4801 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑗 → 〈𝑚, 𝑘〉 = 〈𝑗, 𝑘〉) |
70 | 69 | eqeq2d 2749 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑗 → (𝑧 = 〈𝑚, 𝑘〉 ↔ 𝑧 = 〈𝑗, 𝑘〉)) |
71 | | velsn 4574 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈ {𝑦} ↔ 𝑚 = 𝑦) |
72 | 71 | anbi1i 623 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈ {𝑦} ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵) ↔ (𝑚 = 𝑦 ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵)) |
73 | | eqtr2 2762 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑚 = 𝑗 ∧ 𝑚 = 𝑦) → 𝑗 = 𝑦) |
74 | 73, 22 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑚 = 𝑗 ∧ 𝑚 = 𝑦) → 𝐵 = ⦋𝑦 / 𝑗⦌𝐵) |
75 | 74 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 = 𝑗 ∧ 𝑚 = 𝑦) → (𝑘 ∈ 𝐵 ↔ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵)) |
76 | 75 | pm5.32da 578 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑗 → ((𝑚 = 𝑦 ∧ 𝑘 ∈ 𝐵) ↔ (𝑚 = 𝑦 ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵))) |
77 | 72, 76 | bitr4id 289 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑗 → ((𝑚 ∈ {𝑦} ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵) ↔ (𝑚 = 𝑦 ∧ 𝑘 ∈ 𝐵))) |
78 | | equequ1 2029 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = 𝑗 → (𝑚 = 𝑦 ↔ 𝑗 = 𝑦)) |
79 | 78 | anbi1d 629 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = 𝑗 → ((𝑚 = 𝑦 ∧ 𝑘 ∈ 𝐵) ↔ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵))) |
80 | 77, 79 | bitrd 278 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = 𝑗 → ((𝑚 ∈ {𝑦} ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵) ↔ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵))) |
81 | 70, 80 | anbi12d 630 |
. . . . . . . . . . . . . 14
⊢ (𝑚 = 𝑗 → ((𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑦} ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵)) ↔ (𝑧 = 〈𝑗, 𝑘〉 ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵)))) |
82 | 81 | exbidv 1925 |
. . . . . . . . . . . . 13
⊢ (𝑚 = 𝑗 → (∃𝑘(𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑦} ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵)) ↔ ∃𝑘(𝑧 = 〈𝑗, 𝑘〉 ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵)))) |
83 | 67, 68, 82 | cbvexv1 2341 |
. . . . . . . . . . . 12
⊢
(∃𝑚∃𝑘(𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑦} ∧ 𝑘 ∈ ⦋𝑦 / 𝑗⦌𝐵)) ↔ ∃𝑗∃𝑘(𝑧 = 〈𝑗, 𝑘〉 ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵))) |
84 | 61, 83 | bitri 274 |
. . . . . . . . . . 11
⊢ (𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵) ↔ ∃𝑗∃𝑘(𝑧 = 〈𝑗, 𝑘〉 ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵))) |
85 | | nfv 1918 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗𝜑 |
86 | | nfcv 2906 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑗(2nd ‘𝑧) |
87 | 86, 28 | nfcsbw 3855 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑗⦋(2nd ‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 |
88 | 87 | nfeq2 2923 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗 𝐷 =
⦋(2nd ‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 |
89 | | nfv 1918 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘𝜑 |
90 | | nfcsb1v 3853 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘⦋(2nd ‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 |
91 | 90 | nfeq2 2923 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘 𝐷 =
⦋(2nd ‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 |
92 | | fsum2d.1 |
. . . . . . . . . . . . . . . 16
⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐷 = 𝐶) |
93 | 92 | ad2antlr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 = 〈𝑗, 𝑘〉) ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵)) → 𝐷 = 𝐶) |
94 | 31 | ad2antrl 724 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 = 〈𝑗, 𝑘〉) ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵)) → 𝐶 = ⦋𝑦 / 𝑗⦌𝐶) |
95 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑧 = 〈𝑗, 𝑘〉 → (2nd ‘𝑧) = (2nd
‘〈𝑗, 𝑘〉)) |
96 | | vex 3426 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑗 ∈ V |
97 | | vex 3426 |
. . . . . . . . . . . . . . . . . . 19
⊢ 𝑘 ∈ V |
98 | 96, 97 | op2nd 7813 |
. . . . . . . . . . . . . . . . . 18
⊢
(2nd ‘〈𝑗, 𝑘〉) = 𝑘 |
99 | 95, 98 | eqtr2di 2796 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝑘 = (2nd ‘𝑧)) |
100 | 99 | ad2antlr 723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑧 = 〈𝑗, 𝑘〉) ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵)) → 𝑘 = (2nd ‘𝑧)) |
101 | | csbeq1a 3842 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = (2nd ‘𝑧) → ⦋𝑦 / 𝑗⦌𝐶 = ⦋(2nd
‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶) |
102 | 100, 101 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑧 = 〈𝑗, 𝑘〉) ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵)) → ⦋𝑦 / 𝑗⦌𝐶 = ⦋(2nd
‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶) |
103 | 93, 94, 102 | 3eqtrd 2782 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑧 = 〈𝑗, 𝑘〉) ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵)) → 𝐷 = ⦋(2nd
‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶) |
104 | 103 | expl 457 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((𝑧 = 〈𝑗, 𝑘〉 ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵)) → 𝐷 = ⦋(2nd
‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶)) |
105 | 89, 91, 104 | exlimd 2214 |
. . . . . . . . . . . 12
⊢ (𝜑 → (∃𝑘(𝑧 = 〈𝑗, 𝑘〉 ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵)) → 𝐷 = ⦋(2nd
‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶)) |
106 | 85, 88, 105 | exlimd 2214 |
. . . . . . . . . . 11
⊢ (𝜑 → (∃𝑗∃𝑘(𝑧 = 〈𝑗, 𝑘〉 ∧ (𝑗 = 𝑦 ∧ 𝑘 ∈ 𝐵)) → 𝐷 = ⦋(2nd
‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶)) |
107 | 84, 106 | syl5bi 241 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵) → 𝐷 = ⦋(2nd
‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶)) |
108 | 107 | imp 406 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) → 𝐷 = ⦋(2nd
‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶) |
109 | 108 | sumeq2dv 15343 |
. . . . . . . 8
⊢ (𝜑 → Σ𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)𝐷 = Σ𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)⦋(2nd ‘𝑧) / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶) |
110 | 60, 109 | eqtr4d 2781 |
. . . . . . 7
⊢ (𝜑 → Σ𝑚 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑚 / 𝑘⦌⦋𝑦 / 𝑗⦌𝐶 = Σ𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)𝐷) |
111 | 47, 110 | eqtrid 2790 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ ⦋ 𝑦 / 𝑗⦌𝐵⦋𝑦 / 𝑗⦌𝐶 = Σ𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)𝐷) |
112 | 43, 111 | eqtrd 2778 |
. . . . 5
⊢ (𝜑 → Σ𝑚 ∈ {𝑦}Σ𝑘 ∈ ⦋ 𝑚 / 𝑗⦌𝐵⦋𝑚 / 𝑗⦌𝐶 = Σ𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)𝐷) |
113 | 12, 112 | eqtrid 2790 |
. . . 4
⊢ (𝜑 → Σ𝑗 ∈ {𝑦}Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)𝐷) |
114 | 113 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ 𝜓) → Σ𝑗 ∈ {𝑦}Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)𝐷) |
115 | 3, 114 | oveq12d 7273 |
. 2
⊢ ((𝜑 ∧ 𝜓) → (Σ𝑗 ∈ 𝑥 Σ𝑘 ∈ 𝐵 𝐶 + Σ𝑗 ∈ {𝑦}Σ𝑘 ∈ 𝐵 𝐶) = (Σ𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷 + Σ𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)𝐷)) |
116 | | fsum2d.5 |
. . . . 5
⊢ (𝜑 → ¬ 𝑦 ∈ 𝑥) |
117 | | disjsn 4644 |
. . . . 5
⊢ ((𝑥 ∩ {𝑦}) = ∅ ↔ ¬ 𝑦 ∈ 𝑥) |
118 | 116, 117 | sylibr 233 |
. . . 4
⊢ (𝜑 → (𝑥 ∩ {𝑦}) = ∅) |
119 | | eqidd 2739 |
. . . 4
⊢ (𝜑 → (𝑥 ∪ {𝑦}) = (𝑥 ∪ {𝑦})) |
120 | | fsum2d.2 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ Fin) |
121 | 120, 13 | ssfid 8971 |
. . . 4
⊢ (𝜑 → (𝑥 ∪ {𝑦}) ∈ Fin) |
122 | 13 | sselda 3917 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) → 𝑗 ∈ 𝐴) |
123 | 26 | anassrs 467 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑗 ∈ 𝐴) ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ ℂ) |
124 | 18, 123 | fsumcl 15373 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴) → Σ𝑘 ∈ 𝐵 𝐶 ∈ ℂ) |
125 | 122, 124 | syldan 590 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) → Σ𝑘 ∈ 𝐵 𝐶 ∈ ℂ) |
126 | 118, 119,
121, 125 | fsumsplit 15381 |
. . 3
⊢ (𝜑 → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘 ∈ 𝐵 𝐶 = (Σ𝑗 ∈ 𝑥 Σ𝑘 ∈ 𝐵 𝐶 + Σ𝑗 ∈ {𝑦}Σ𝑘 ∈ 𝐵 𝐶)) |
127 | 126 | adantr 480 |
. 2
⊢ ((𝜑 ∧ 𝜓) → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘 ∈ 𝐵 𝐶 = (Σ𝑗 ∈ 𝑥 Σ𝑘 ∈ 𝐵 𝐶 + Σ𝑗 ∈ {𝑦}Σ𝑘 ∈ 𝐵 𝐶)) |
128 | | eliun 4925 |
. . . . . . . . . 10
⊢ (𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ↔ ∃𝑗 ∈ 𝑥 𝑧 ∈ ({𝑗} × 𝐵)) |
129 | | xp1st 7836 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ ({𝑗} × 𝐵) → (1st ‘𝑧) ∈ {𝑗}) |
130 | | elsni 4575 |
. . . . . . . . . . . . . 14
⊢
((1st ‘𝑧) ∈ {𝑗} → (1st ‘𝑧) = 𝑗) |
131 | 129, 130 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ({𝑗} × 𝐵) → (1st ‘𝑧) = 𝑗) |
132 | 131 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ 𝑥 ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → (1st ‘𝑧) = 𝑗) |
133 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝑗 ∈ 𝑥 ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → 𝑗 ∈ 𝑥) |
134 | 132, 133 | eqeltrd 2839 |
. . . . . . . . . . 11
⊢ ((𝑗 ∈ 𝑥 ∧ 𝑧 ∈ ({𝑗} × 𝐵)) → (1st ‘𝑧) ∈ 𝑥) |
135 | 134 | rexlimiva 3209 |
. . . . . . . . . 10
⊢
(∃𝑗 ∈
𝑥 𝑧 ∈ ({𝑗} × 𝐵) → (1st ‘𝑧) ∈ 𝑥) |
136 | 128, 135 | sylbi 216 |
. . . . . . . . 9
⊢ (𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ({𝑗} × 𝐵) → (1st ‘𝑧) ∈ 𝑥) |
137 | | xp1st 7836 |
. . . . . . . . 9
⊢ (𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵) → (1st ‘𝑧) ∈ {𝑦}) |
138 | 136, 137 | anim12i 612 |
. . . . . . . 8
⊢ ((𝑧 ∈ ∪ 𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∧ 𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) → ((1st ‘𝑧) ∈ 𝑥 ∧ (1st ‘𝑧) ∈ {𝑦})) |
139 | | elin 3899 |
. . . . . . . 8
⊢ (𝑧 ∈ (∪ 𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∩ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) ↔ (𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∧ 𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵))) |
140 | | elin 3899 |
. . . . . . . 8
⊢
((1st ‘𝑧) ∈ (𝑥 ∩ {𝑦}) ↔ ((1st ‘𝑧) ∈ 𝑥 ∧ (1st ‘𝑧) ∈ {𝑦})) |
141 | 138, 139,
140 | 3imtr4i 291 |
. . . . . . 7
⊢ (𝑧 ∈ (∪ 𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∩ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) → (1st ‘𝑧) ∈ (𝑥 ∩ {𝑦})) |
142 | 118 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝜑 → ((1st
‘𝑧) ∈ (𝑥 ∩ {𝑦}) ↔ (1st ‘𝑧) ∈
∅)) |
143 | | noel 4261 |
. . . . . . . . 9
⊢ ¬
(1st ‘𝑧)
∈ ∅ |
144 | 143 | pm2.21i 119 |
. . . . . . . 8
⊢
((1st ‘𝑧) ∈ ∅ → 𝑧 ∈ ∅) |
145 | 142, 144 | syl6bi 252 |
. . . . . . 7
⊢ (𝜑 → ((1st
‘𝑧) ∈ (𝑥 ∩ {𝑦}) → 𝑧 ∈ ∅)) |
146 | 141, 145 | syl5 34 |
. . . . . 6
⊢ (𝜑 → (𝑧 ∈ (∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∩ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) → 𝑧 ∈ ∅)) |
147 | 146 | ssrdv 3923 |
. . . . 5
⊢ (𝜑 → (∪ 𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∩ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) ⊆ ∅) |
148 | | ss0 4329 |
. . . . 5
⊢
((∪ 𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∩ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) ⊆ ∅ → (∪ 𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∩ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) = ∅) |
149 | 147, 148 | syl 17 |
. . . 4
⊢ (𝜑 → (∪ 𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∩ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) = ∅) |
150 | | iunxun 5019 |
. . . . . 6
⊢ ∪ 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) = (∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∪ ∪
𝑗 ∈ {𝑦} ({𝑗} × 𝐵)) |
151 | | nfcv 2906 |
. . . . . . . . 9
⊢
Ⅎ𝑚({𝑗} × 𝐵) |
152 | | nfcv 2906 |
. . . . . . . . . 10
⊢
Ⅎ𝑗{𝑚} |
153 | 152, 5 | nfxp 5613 |
. . . . . . . . 9
⊢
Ⅎ𝑗({𝑚} × ⦋𝑚 / 𝑗⦌𝐵) |
154 | | sneq 4568 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑚 → {𝑗} = {𝑚}) |
155 | 154, 8 | xpeq12d 5611 |
. . . . . . . . 9
⊢ (𝑗 = 𝑚 → ({𝑗} × 𝐵) = ({𝑚} × ⦋𝑚 / 𝑗⦌𝐵)) |
156 | 151, 153,
155 | cbviun 4962 |
. . . . . . . 8
⊢ ∪ 𝑗 ∈ {𝑦} ({𝑗} × 𝐵) = ∪
𝑚 ∈ {𝑦} ({𝑚} × ⦋𝑚 / 𝑗⦌𝐵) |
157 | | sneq 4568 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑦 → {𝑚} = {𝑦}) |
158 | 157, 38 | xpeq12d 5611 |
. . . . . . . . 9
⊢ (𝑚 = 𝑦 → ({𝑚} × ⦋𝑚 / 𝑗⦌𝐵) = ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) |
159 | 15, 158 | iunxsn 5016 |
. . . . . . . 8
⊢ ∪ 𝑚 ∈ {𝑦} ({𝑚} × ⦋𝑚 / 𝑗⦌𝐵) = ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵) |
160 | 156, 159 | eqtri 2766 |
. . . . . . 7
⊢ ∪ 𝑗 ∈ {𝑦} ({𝑗} × 𝐵) = ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵) |
161 | 160 | uneq2i 4090 |
. . . . . 6
⊢ (∪ 𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∪ ∪
𝑗 ∈ {𝑦} ({𝑗} × 𝐵)) = (∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∪ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) |
162 | 150, 161 | eqtri 2766 |
. . . . 5
⊢ ∪ 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) = (∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∪ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)) |
163 | 162 | a1i 11 |
. . . 4
⊢ (𝜑 → ∪ 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) = (∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵) ∪ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵))) |
164 | | snfi 8788 |
. . . . . . 7
⊢ {𝑗} ∈ Fin |
165 | 122, 18 | syldan 590 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) → 𝐵 ∈ Fin) |
166 | | xpfi 9015 |
. . . . . . 7
⊢ (({𝑗} ∈ Fin ∧ 𝐵 ∈ Fin) → ({𝑗} × 𝐵) ∈ Fin) |
167 | 164, 165,
166 | sylancr 586 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) → ({𝑗} × 𝐵) ∈ Fin) |
168 | 167 | ralrimiva 3107 |
. . . . 5
⊢ (𝜑 → ∀𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) ∈ Fin) |
169 | | iunfi 9037 |
. . . . 5
⊢ (((𝑥 ∪ {𝑦}) ∈ Fin ∧ ∀𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) ∈ Fin) → ∪ 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) ∈ Fin) |
170 | 121, 168,
169 | syl2anc 583 |
. . . 4
⊢ (𝜑 → ∪ 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) ∈ Fin) |
171 | | eliun 4925 |
. . . . . 6
⊢ (𝑧 ∈ ∪ 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) ↔ ∃𝑗 ∈ (𝑥 ∪ {𝑦})𝑧 ∈ ({𝑗} × 𝐵)) |
172 | | elxp 5603 |
. . . . . . . 8
⊢ (𝑧 ∈ ({𝑗} × 𝐵) ↔ ∃𝑚∃𝑘(𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) |
173 | | simprl 767 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) → 𝑧 = 〈𝑚, 𝑘〉) |
174 | | simprrl 777 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) → 𝑚 ∈ {𝑗}) |
175 | | elsni 4575 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ {𝑗} → 𝑚 = 𝑗) |
176 | 174, 175 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) → 𝑚 = 𝑗) |
177 | 176 | opeq1d 4807 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) → 〈𝑚, 𝑘〉 = 〈𝑗, 𝑘〉) |
178 | 173, 177 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) → 𝑧 = 〈𝑗, 𝑘〉) |
179 | 178, 92 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) → 𝐷 = 𝐶) |
180 | | simpll 763 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) → 𝜑) |
181 | 122 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) → 𝑗 ∈ 𝐴) |
182 | | simprrr 778 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) → 𝑘 ∈ 𝐵) |
183 | 180, 181,
182, 26 | syl12anc 833 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) → 𝐶 ∈ ℂ) |
184 | 179, 183 | eqeltrd 2839 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵))) → 𝐷 ∈ ℂ) |
185 | 184 | ex 412 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) → ((𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵)) → 𝐷 ∈ ℂ)) |
186 | 185 | exlimdvv 1938 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) → (∃𝑚∃𝑘(𝑧 = 〈𝑚, 𝑘〉 ∧ (𝑚 ∈ {𝑗} ∧ 𝑘 ∈ 𝐵)) → 𝐷 ∈ ℂ)) |
187 | 172, 186 | syl5bi 241 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑥 ∪ {𝑦})) → (𝑧 ∈ ({𝑗} × 𝐵) → 𝐷 ∈ ℂ)) |
188 | 187 | rexlimdva 3212 |
. . . . . 6
⊢ (𝜑 → (∃𝑗 ∈ (𝑥 ∪ {𝑦})𝑧 ∈ ({𝑗} × 𝐵) → 𝐷 ∈ ℂ)) |
189 | 171, 188 | syl5bi 241 |
. . . . 5
⊢ (𝜑 → (𝑧 ∈ ∪
𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) → 𝐷 ∈ ℂ)) |
190 | 189 | imp 406 |
. . . 4
⊢ ((𝜑 ∧ 𝑧 ∈ ∪
𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)) → 𝐷 ∈ ℂ) |
191 | 149, 163,
170, 190 | fsumsplit 15381 |
. . 3
⊢ (𝜑 → Σ𝑧 ∈ ∪
𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷 = (Σ𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷 + Σ𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)𝐷)) |
192 | 191 | adantr 480 |
. 2
⊢ ((𝜑 ∧ 𝜓) → Σ𝑧 ∈ ∪
𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷 = (Σ𝑧 ∈ ∪
𝑗 ∈ 𝑥 ({𝑗} × 𝐵)𝐷 + Σ𝑧 ∈ ({𝑦} × ⦋𝑦 / 𝑗⦌𝐵)𝐷)) |
193 | 115, 127,
192 | 3eqtr4d 2788 |
1
⊢ ((𝜑 ∧ 𝜓) → Σ𝑗 ∈ (𝑥 ∪ {𝑦})Σ𝑘 ∈ 𝐵 𝐶 = Σ𝑧 ∈ ∪
𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷) |