MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fprod2dlem Structured version   Visualization version   GIF version

Theorem fprod2dlem 16012
Description: Lemma for fprod2d 16013- induction step. (Contributed by Scott Fenton, 30-Jan-2018.)
Hypotheses
Ref Expression
fprod2d.1 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)
fprod2d.2 (𝜑𝐴 ∈ Fin)
fprod2d.3 ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)
fprod2d.4 ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
fprod2d.5 (𝜑 → ¬ 𝑦𝑥)
fprod2d.6 (𝜑 → (𝑥 ∪ {𝑦}) ⊆ 𝐴)
fprod2d.7 (𝜓 ↔ ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)
Assertion
Ref Expression
fprod2dlem ((𝜑𝜓) → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)
Distinct variable groups:   𝐴,𝑗,𝑘   𝐵,𝑘,𝑧   𝑧,𝐶   𝐷,𝑗,𝑘   𝜑,𝑗   𝑥,𝑗   𝑦,𝑗,𝑧   𝜑,𝑘   𝑥,𝑘   𝑦,𝑘,𝑧   𝜑,𝑧   𝑥,𝑧   𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦,𝑧,𝑗,𝑘)   𝐴(𝑥,𝑦,𝑧)   𝐵(𝑥,𝑦,𝑗)   𝐶(𝑥,𝑦,𝑗,𝑘)   𝐷(𝑥,𝑦,𝑧)

Proof of Theorem fprod2dlem
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((𝜑𝜓) → 𝜓)
2 fprod2d.7 . . . 4 (𝜓 ↔ ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)
31, 2sylib 218 . . 3 ((𝜑𝜓) → ∏𝑗𝑥𝑘𝐵 𝐶 = ∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷)
4 nfcv 2902 . . . . . 6 𝑚𝑘𝐵 𝐶
5 nfcsb1v 3932 . . . . . . 7 𝑗𝑚 / 𝑗𝐵
6 nfcsb1v 3932 . . . . . . 7 𝑗𝑚 / 𝑗𝐶
75, 6nfcprod 15941 . . . . . 6 𝑗𝑘 𝑚 / 𝑗𝐵𝑚 / 𝑗𝐶
8 csbeq1a 3921 . . . . . . 7 (𝑗 = 𝑚𝐵 = 𝑚 / 𝑗𝐵)
9 csbeq1a 3921 . . . . . . . 8 (𝑗 = 𝑚𝐶 = 𝑚 / 𝑗𝐶)
109adantr 480 . . . . . . 7 ((𝑗 = 𝑚𝑘𝐵) → 𝐶 = 𝑚 / 𝑗𝐶)
118, 10prodeq12dv 15958 . . . . . 6 (𝑗 = 𝑚 → ∏𝑘𝐵 𝐶 = ∏𝑘 𝑚 / 𝑗𝐵𝑚 / 𝑗𝐶)
124, 7, 11cbvprodi 15947 . . . . 5 𝑗 ∈ {𝑦}∏𝑘𝐵 𝐶 = ∏𝑚 ∈ {𝑦}∏𝑘 𝑚 / 𝑗𝐵𝑚 / 𝑗𝐶
13 fprod2d.6 . . . . . . . . 9 (𝜑 → (𝑥 ∪ {𝑦}) ⊆ 𝐴)
1413unssbd 4203 . . . . . . . 8 (𝜑 → {𝑦} ⊆ 𝐴)
15 vex 3481 . . . . . . . . 9 𝑦 ∈ V
1615snss 4789 . . . . . . . 8 (𝑦𝐴 ↔ {𝑦} ⊆ 𝐴)
1714, 16sylibr 234 . . . . . . 7 (𝜑𝑦𝐴)
18 fprod2d.3 . . . . . . . . . 10 ((𝜑𝑗𝐴) → 𝐵 ∈ Fin)
1918ralrimiva 3143 . . . . . . . . 9 (𝜑 → ∀𝑗𝐴 𝐵 ∈ Fin)
20 nfcsb1v 3932 . . . . . . . . . . 11 𝑗𝑦 / 𝑗𝐵
2120nfel1 2919 . . . . . . . . . 10 𝑗𝑦 / 𝑗𝐵 ∈ Fin
22 csbeq1a 3921 . . . . . . . . . . 11 (𝑗 = 𝑦𝐵 = 𝑦 / 𝑗𝐵)
2322eleq1d 2823 . . . . . . . . . 10 (𝑗 = 𝑦 → (𝐵 ∈ Fin ↔ 𝑦 / 𝑗𝐵 ∈ Fin))
2421, 23rspc 3609 . . . . . . . . 9 (𝑦𝐴 → (∀𝑗𝐴 𝐵 ∈ Fin → 𝑦 / 𝑗𝐵 ∈ Fin))
2517, 19, 24sylc 65 . . . . . . . 8 (𝜑𝑦 / 𝑗𝐵 ∈ Fin)
26 fprod2d.4 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝐴𝑘𝐵)) → 𝐶 ∈ ℂ)
2726ralrimivva 3199 . . . . . . . . . 10 (𝜑 → ∀𝑗𝐴𝑘𝐵 𝐶 ∈ ℂ)
28 nfcsb1v 3932 . . . . . . . . . . . . 13 𝑗𝑦 / 𝑗𝐶
2928nfel1 2919 . . . . . . . . . . . 12 𝑗𝑦 / 𝑗𝐶 ∈ ℂ
3020, 29nfralw 3308 . . . . . . . . . . 11 𝑗𝑘 𝑦 / 𝑗𝐵𝑦 / 𝑗𝐶 ∈ ℂ
31 csbeq1a 3921 . . . . . . . . . . . . 13 (𝑗 = 𝑦𝐶 = 𝑦 / 𝑗𝐶)
3231eleq1d 2823 . . . . . . . . . . . 12 (𝑗 = 𝑦 → (𝐶 ∈ ℂ ↔ 𝑦 / 𝑗𝐶 ∈ ℂ))
3322, 32raleqbidv 3343 . . . . . . . . . . 11 (𝑗 = 𝑦 → (∀𝑘𝐵 𝐶 ∈ ℂ ↔ ∀𝑘 𝑦 / 𝑗𝐵𝑦 / 𝑗𝐶 ∈ ℂ))
3430, 33rspc 3609 . . . . . . . . . 10 (𝑦𝐴 → (∀𝑗𝐴𝑘𝐵 𝐶 ∈ ℂ → ∀𝑘 𝑦 / 𝑗𝐵𝑦 / 𝑗𝐶 ∈ ℂ))
3517, 27, 34sylc 65 . . . . . . . . 9 (𝜑 → ∀𝑘 𝑦 / 𝑗𝐵𝑦 / 𝑗𝐶 ∈ ℂ)
3635r19.21bi 3248 . . . . . . . 8 ((𝜑𝑘𝑦 / 𝑗𝐵) → 𝑦 / 𝑗𝐶 ∈ ℂ)
3725, 36fprodcl 15984 . . . . . . 7 (𝜑 → ∏𝑘 𝑦 / 𝑗𝐵𝑦 / 𝑗𝐶 ∈ ℂ)
38 csbeq1 3910 . . . . . . . . 9 (𝑚 = 𝑦𝑚 / 𝑗𝐵 = 𝑦 / 𝑗𝐵)
39 csbeq1 3910 . . . . . . . . . 10 (𝑚 = 𝑦𝑚 / 𝑗𝐶 = 𝑦 / 𝑗𝐶)
4039adantr 480 . . . . . . . . 9 ((𝑚 = 𝑦𝑘𝑚 / 𝑗𝐵) → 𝑚 / 𝑗𝐶 = 𝑦 / 𝑗𝐶)
4138, 40prodeq12dv 15958 . . . . . . . 8 (𝑚 = 𝑦 → ∏𝑘 𝑚 / 𝑗𝐵𝑚 / 𝑗𝐶 = ∏𝑘 𝑦 / 𝑗𝐵𝑦 / 𝑗𝐶)
4241prodsn 15994 . . . . . . 7 ((𝑦𝐴 ∧ ∏𝑘 𝑦 / 𝑗𝐵𝑦 / 𝑗𝐶 ∈ ℂ) → ∏𝑚 ∈ {𝑦}∏𝑘 𝑚 / 𝑗𝐵𝑚 / 𝑗𝐶 = ∏𝑘 𝑦 / 𝑗𝐵𝑦 / 𝑗𝐶)
4317, 37, 42syl2anc 584 . . . . . 6 (𝜑 → ∏𝑚 ∈ {𝑦}∏𝑘 𝑚 / 𝑗𝐵𝑚 / 𝑗𝐶 = ∏𝑘 𝑦 / 𝑗𝐵𝑦 / 𝑗𝐶)
44 nfcv 2902 . . . . . . . 8 𝑚𝑦 / 𝑗𝐶
45 nfcsb1v 3932 . . . . . . . 8 𝑘𝑚 / 𝑘𝑦 / 𝑗𝐶
46 csbeq1a 3921 . . . . . . . 8 (𝑘 = 𝑚𝑦 / 𝑗𝐶 = 𝑚 / 𝑘𝑦 / 𝑗𝐶)
4744, 45, 46cbvprodi 15947 . . . . . . 7 𝑘 𝑦 / 𝑗𝐵𝑦 / 𝑗𝐶 = ∏𝑚 𝑦 / 𝑗𝐵𝑚 / 𝑘𝑦 / 𝑗𝐶
48 csbeq1 3910 . . . . . . . . 9 (𝑚 = (2nd𝑧) → 𝑚 / 𝑘𝑦 / 𝑗𝐶 = (2nd𝑧) / 𝑘𝑦 / 𝑗𝐶)
49 snfi 9081 . . . . . . . . . 10 {𝑦} ∈ Fin
50 xpfi 9355 . . . . . . . . . 10 (({𝑦} ∈ Fin ∧ 𝑦 / 𝑗𝐵 ∈ Fin) → ({𝑦} × 𝑦 / 𝑗𝐵) ∈ Fin)
5149, 25, 50sylancr 587 . . . . . . . . 9 (𝜑 → ({𝑦} × 𝑦 / 𝑗𝐵) ∈ Fin)
52 2ndconst 8124 . . . . . . . . . 10 (𝑦𝐴 → (2nd ↾ ({𝑦} × 𝑦 / 𝑗𝐵)):({𝑦} × 𝑦 / 𝑗𝐵)–1-1-onto𝑦 / 𝑗𝐵)
5317, 52syl 17 . . . . . . . . 9 (𝜑 → (2nd ↾ ({𝑦} × 𝑦 / 𝑗𝐵)):({𝑦} × 𝑦 / 𝑗𝐵)–1-1-onto𝑦 / 𝑗𝐵)
54 fvres 6925 . . . . . . . . . 10 (𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵) → ((2nd ↾ ({𝑦} × 𝑦 / 𝑗𝐵))‘𝑧) = (2nd𝑧))
5554adantl 481 . . . . . . . . 9 ((𝜑𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵)) → ((2nd ↾ ({𝑦} × 𝑦 / 𝑗𝐵))‘𝑧) = (2nd𝑧))
5645nfel1 2919 . . . . . . . . . . 11 𝑘𝑚 / 𝑘𝑦 / 𝑗𝐶 ∈ ℂ
5746eleq1d 2823 . . . . . . . . . . 11 (𝑘 = 𝑚 → (𝑦 / 𝑗𝐶 ∈ ℂ ↔ 𝑚 / 𝑘𝑦 / 𝑗𝐶 ∈ ℂ))
5856, 57rspc 3609 . . . . . . . . . 10 (𝑚𝑦 / 𝑗𝐵 → (∀𝑘 𝑦 / 𝑗𝐵𝑦 / 𝑗𝐶 ∈ ℂ → 𝑚 / 𝑘𝑦 / 𝑗𝐶 ∈ ℂ))
5935, 58mpan9 506 . . . . . . . . 9 ((𝜑𝑚𝑦 / 𝑗𝐵) → 𝑚 / 𝑘𝑦 / 𝑗𝐶 ∈ ℂ)
6048, 51, 53, 55, 59fprodf1o 15978 . . . . . . . 8 (𝜑 → ∏𝑚 𝑦 / 𝑗𝐵𝑚 / 𝑘𝑦 / 𝑗𝐶 = ∏𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵)(2nd𝑧) / 𝑘𝑦 / 𝑗𝐶)
61 elxp 5711 . . . . . . . . . . . 12 (𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵) ↔ ∃𝑚𝑘(𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑦} ∧ 𝑘𝑦 / 𝑗𝐵)))
62 nfv 1911 . . . . . . . . . . . . . . 15 𝑗 𝑧 = ⟨𝑚, 𝑘
63 nfv 1911 . . . . . . . . . . . . . . . 16 𝑗 𝑚 ∈ {𝑦}
6420nfcri 2894 . . . . . . . . . . . . . . . 16 𝑗 𝑘𝑦 / 𝑗𝐵
6563, 64nfan 1896 . . . . . . . . . . . . . . 15 𝑗(𝑚 ∈ {𝑦} ∧ 𝑘𝑦 / 𝑗𝐵)
6662, 65nfan 1896 . . . . . . . . . . . . . 14 𝑗(𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑦} ∧ 𝑘𝑦 / 𝑗𝐵))
6766nfex 2322 . . . . . . . . . . . . 13 𝑗𝑘(𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑦} ∧ 𝑘𝑦 / 𝑗𝐵))
68 nfv 1911 . . . . . . . . . . . . 13 𝑚𝑘(𝑧 = ⟨𝑗, 𝑘⟩ ∧ (𝑗 = 𝑦𝑘𝐵))
69 opeq1 4877 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑗 → ⟨𝑚, 𝑘⟩ = ⟨𝑗, 𝑘⟩)
7069eqeq2d 2745 . . . . . . . . . . . . . . 15 (𝑚 = 𝑗 → (𝑧 = ⟨𝑚, 𝑘⟩ ↔ 𝑧 = ⟨𝑗, 𝑘⟩))
71 eleq1w 2821 . . . . . . . . . . . . . . . . . 18 (𝑚 = 𝑗 → (𝑚 ∈ {𝑦} ↔ 𝑗 ∈ {𝑦}))
72 velsn 4646 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ {𝑦} ↔ 𝑗 = 𝑦)
7371, 72bitrdi 287 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑗 → (𝑚 ∈ {𝑦} ↔ 𝑗 = 𝑦))
7473anbi1d 631 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑗 → ((𝑚 ∈ {𝑦} ∧ 𝑘𝑦 / 𝑗𝐵) ↔ (𝑗 = 𝑦𝑘𝑦 / 𝑗𝐵)))
7522eleq2d 2824 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑦 → (𝑘𝐵𝑘𝑦 / 𝑗𝐵))
7675pm5.32i 574 . . . . . . . . . . . . . . . 16 ((𝑗 = 𝑦𝑘𝐵) ↔ (𝑗 = 𝑦𝑘𝑦 / 𝑗𝐵))
7774, 76bitr4di 289 . . . . . . . . . . . . . . 15 (𝑚 = 𝑗 → ((𝑚 ∈ {𝑦} ∧ 𝑘𝑦 / 𝑗𝐵) ↔ (𝑗 = 𝑦𝑘𝐵)))
7870, 77anbi12d 632 . . . . . . . . . . . . . 14 (𝑚 = 𝑗 → ((𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑦} ∧ 𝑘𝑦 / 𝑗𝐵)) ↔ (𝑧 = ⟨𝑗, 𝑘⟩ ∧ (𝑗 = 𝑦𝑘𝐵))))
7978exbidv 1918 . . . . . . . . . . . . 13 (𝑚 = 𝑗 → (∃𝑘(𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑦} ∧ 𝑘𝑦 / 𝑗𝐵)) ↔ ∃𝑘(𝑧 = ⟨𝑗, 𝑘⟩ ∧ (𝑗 = 𝑦𝑘𝐵))))
8067, 68, 79cbvexv1 2342 . . . . . . . . . . . 12 (∃𝑚𝑘(𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑦} ∧ 𝑘𝑦 / 𝑗𝐵)) ↔ ∃𝑗𝑘(𝑧 = ⟨𝑗, 𝑘⟩ ∧ (𝑗 = 𝑦𝑘𝐵)))
8161, 80bitri 275 . . . . . . . . . . 11 (𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵) ↔ ∃𝑗𝑘(𝑧 = ⟨𝑗, 𝑘⟩ ∧ (𝑗 = 𝑦𝑘𝐵)))
82 nfv 1911 . . . . . . . . . . . 12 𝑗𝜑
83 nfcv 2902 . . . . . . . . . . . . . 14 𝑗(2nd𝑧)
8483, 28nfcsbw 3934 . . . . . . . . . . . . 13 𝑗(2nd𝑧) / 𝑘𝑦 / 𝑗𝐶
8584nfeq2 2920 . . . . . . . . . . . 12 𝑗 𝐷 = (2nd𝑧) / 𝑘𝑦 / 𝑗𝐶
86 nfv 1911 . . . . . . . . . . . . 13 𝑘𝜑
87 nfcsb1v 3932 . . . . . . . . . . . . . 14 𝑘(2nd𝑧) / 𝑘𝑦 / 𝑗𝐶
8887nfeq2 2920 . . . . . . . . . . . . 13 𝑘 𝐷 = (2nd𝑧) / 𝑘𝑦 / 𝑗𝐶
89 fprod2d.1 . . . . . . . . . . . . . . . 16 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝐷 = 𝐶)
9089ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑧 = ⟨𝑗, 𝑘⟩) ∧ (𝑗 = 𝑦𝑘𝐵)) → 𝐷 = 𝐶)
9131ad2antrl 728 . . . . . . . . . . . . . . 15 (((𝜑𝑧 = ⟨𝑗, 𝑘⟩) ∧ (𝑗 = 𝑦𝑘𝐵)) → 𝐶 = 𝑦 / 𝑗𝐶)
92 fveq2 6906 . . . . . . . . . . . . . . . . . 18 (𝑧 = ⟨𝑗, 𝑘⟩ → (2nd𝑧) = (2nd ‘⟨𝑗, 𝑘⟩))
93 vex 3481 . . . . . . . . . . . . . . . . . . 19 𝑗 ∈ V
94 vex 3481 . . . . . . . . . . . . . . . . . . 19 𝑘 ∈ V
9593, 94op2nd 8021 . . . . . . . . . . . . . . . . . 18 (2nd ‘⟨𝑗, 𝑘⟩) = 𝑘
9692, 95eqtr2di 2791 . . . . . . . . . . . . . . . . 17 (𝑧 = ⟨𝑗, 𝑘⟩ → 𝑘 = (2nd𝑧))
9796ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝜑𝑧 = ⟨𝑗, 𝑘⟩) ∧ (𝑗 = 𝑦𝑘𝐵)) → 𝑘 = (2nd𝑧))
98 csbeq1a 3921 . . . . . . . . . . . . . . . 16 (𝑘 = (2nd𝑧) → 𝑦 / 𝑗𝐶 = (2nd𝑧) / 𝑘𝑦 / 𝑗𝐶)
9997, 98syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑧 = ⟨𝑗, 𝑘⟩) ∧ (𝑗 = 𝑦𝑘𝐵)) → 𝑦 / 𝑗𝐶 = (2nd𝑧) / 𝑘𝑦 / 𝑗𝐶)
10090, 91, 993eqtrd 2778 . . . . . . . . . . . . . 14 (((𝜑𝑧 = ⟨𝑗, 𝑘⟩) ∧ (𝑗 = 𝑦𝑘𝐵)) → 𝐷 = (2nd𝑧) / 𝑘𝑦 / 𝑗𝐶)
101100expl 457 . . . . . . . . . . . . 13 (𝜑 → ((𝑧 = ⟨𝑗, 𝑘⟩ ∧ (𝑗 = 𝑦𝑘𝐵)) → 𝐷 = (2nd𝑧) / 𝑘𝑦 / 𝑗𝐶))
10286, 88, 101exlimd 2215 . . . . . . . . . . . 12 (𝜑 → (∃𝑘(𝑧 = ⟨𝑗, 𝑘⟩ ∧ (𝑗 = 𝑦𝑘𝐵)) → 𝐷 = (2nd𝑧) / 𝑘𝑦 / 𝑗𝐶))
10382, 85, 102exlimd 2215 . . . . . . . . . . 11 (𝜑 → (∃𝑗𝑘(𝑧 = ⟨𝑗, 𝑘⟩ ∧ (𝑗 = 𝑦𝑘𝐵)) → 𝐷 = (2nd𝑧) / 𝑘𝑦 / 𝑗𝐶))
10481, 103biimtrid 242 . . . . . . . . . 10 (𝜑 → (𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵) → 𝐷 = (2nd𝑧) / 𝑘𝑦 / 𝑗𝐶))
105104imp 406 . . . . . . . . 9 ((𝜑𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵)) → 𝐷 = (2nd𝑧) / 𝑘𝑦 / 𝑗𝐶)
106105prodeq2dv 15954 . . . . . . . 8 (𝜑 → ∏𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵)𝐷 = ∏𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵)(2nd𝑧) / 𝑘𝑦 / 𝑗𝐶)
10760, 106eqtr4d 2777 . . . . . . 7 (𝜑 → ∏𝑚 𝑦 / 𝑗𝐵𝑚 / 𝑘𝑦 / 𝑗𝐶 = ∏𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵)𝐷)
10847, 107eqtrid 2786 . . . . . 6 (𝜑 → ∏𝑘 𝑦 / 𝑗𝐵𝑦 / 𝑗𝐶 = ∏𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵)𝐷)
10943, 108eqtrd 2774 . . . . 5 (𝜑 → ∏𝑚 ∈ {𝑦}∏𝑘 𝑚 / 𝑗𝐵𝑚 / 𝑗𝐶 = ∏𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵)𝐷)
11012, 109eqtrid 2786 . . . 4 (𝜑 → ∏𝑗 ∈ {𝑦}∏𝑘𝐵 𝐶 = ∏𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵)𝐷)
111110adantr 480 . . 3 ((𝜑𝜓) → ∏𝑗 ∈ {𝑦}∏𝑘𝐵 𝐶 = ∏𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵)𝐷)
1123, 111oveq12d 7448 . 2 ((𝜑𝜓) → (∏𝑗𝑥𝑘𝐵 𝐶 · ∏𝑗 ∈ {𝑦}∏𝑘𝐵 𝐶) = (∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷 · ∏𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵)𝐷))
113 fprod2d.5 . . . . 5 (𝜑 → ¬ 𝑦𝑥)
114 disjsn 4715 . . . . 5 ((𝑥 ∩ {𝑦}) = ∅ ↔ ¬ 𝑦𝑥)
115113, 114sylibr 234 . . . 4 (𝜑 → (𝑥 ∩ {𝑦}) = ∅)
116 eqidd 2735 . . . 4 (𝜑 → (𝑥 ∪ {𝑦}) = (𝑥 ∪ {𝑦}))
117 fprod2d.2 . . . . 5 (𝜑𝐴 ∈ Fin)
118117, 13ssfid 9298 . . . 4 (𝜑 → (𝑥 ∪ {𝑦}) ∈ Fin)
11913sselda 3994 . . . . 5 ((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) → 𝑗𝐴)
12026anassrs 467 . . . . . 6 (((𝜑𝑗𝐴) ∧ 𝑘𝐵) → 𝐶 ∈ ℂ)
12118, 120fprodcl 15984 . . . . 5 ((𝜑𝑗𝐴) → ∏𝑘𝐵 𝐶 ∈ ℂ)
122119, 121syldan 591 . . . 4 ((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) → ∏𝑘𝐵 𝐶 ∈ ℂ)
123115, 116, 118, 122fprodsplit 15998 . . 3 (𝜑 → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = (∏𝑗𝑥𝑘𝐵 𝐶 · ∏𝑗 ∈ {𝑦}∏𝑘𝐵 𝐶))
124123adantr 480 . 2 ((𝜑𝜓) → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = (∏𝑗𝑥𝑘𝐵 𝐶 · ∏𝑗 ∈ {𝑦}∏𝑘𝐵 𝐶))
125 eliun 4999 . . . . . . . . . 10 (𝑧 𝑗𝑥 ({𝑗} × 𝐵) ↔ ∃𝑗𝑥 𝑧 ∈ ({𝑗} × 𝐵))
126 xp1st 8044 . . . . . . . . . . . . . 14 (𝑧 ∈ ({𝑗} × 𝐵) → (1st𝑧) ∈ {𝑗})
127 elsni 4647 . . . . . . . . . . . . . 14 ((1st𝑧) ∈ {𝑗} → (1st𝑧) = 𝑗)
128126, 127syl 17 . . . . . . . . . . . . 13 (𝑧 ∈ ({𝑗} × 𝐵) → (1st𝑧) = 𝑗)
129128eleq1d 2823 . . . . . . . . . . . 12 (𝑧 ∈ ({𝑗} × 𝐵) → ((1st𝑧) ∈ 𝑥𝑗𝑥))
130129biimparc 479 . . . . . . . . . . 11 ((𝑗𝑥𝑧 ∈ ({𝑗} × 𝐵)) → (1st𝑧) ∈ 𝑥)
131130rexlimiva 3144 . . . . . . . . . 10 (∃𝑗𝑥 𝑧 ∈ ({𝑗} × 𝐵) → (1st𝑧) ∈ 𝑥)
132125, 131sylbi 217 . . . . . . . . 9 (𝑧 𝑗𝑥 ({𝑗} × 𝐵) → (1st𝑧) ∈ 𝑥)
133 xp1st 8044 . . . . . . . . 9 (𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵) → (1st𝑧) ∈ {𝑦})
134132, 133anim12i 613 . . . . . . . 8 ((𝑧 𝑗𝑥 ({𝑗} × 𝐵) ∧ 𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵)) → ((1st𝑧) ∈ 𝑥 ∧ (1st𝑧) ∈ {𝑦}))
135 elin 3978 . . . . . . . 8 (𝑧 ∈ ( 𝑗𝑥 ({𝑗} × 𝐵) ∩ ({𝑦} × 𝑦 / 𝑗𝐵)) ↔ (𝑧 𝑗𝑥 ({𝑗} × 𝐵) ∧ 𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵)))
136 elin 3978 . . . . . . . 8 ((1st𝑧) ∈ (𝑥 ∩ {𝑦}) ↔ ((1st𝑧) ∈ 𝑥 ∧ (1st𝑧) ∈ {𝑦}))
137134, 135, 1363imtr4i 292 . . . . . . 7 (𝑧 ∈ ( 𝑗𝑥 ({𝑗} × 𝐵) ∩ ({𝑦} × 𝑦 / 𝑗𝐵)) → (1st𝑧) ∈ (𝑥 ∩ {𝑦}))
138115eleq2d 2824 . . . . . . . 8 (𝜑 → ((1st𝑧) ∈ (𝑥 ∩ {𝑦}) ↔ (1st𝑧) ∈ ∅))
139 noel 4343 . . . . . . . . 9 ¬ (1st𝑧) ∈ ∅
140139pm2.21i 119 . . . . . . . 8 ((1st𝑧) ∈ ∅ → 𝑧 ∈ ∅)
141138, 140biimtrdi 253 . . . . . . 7 (𝜑 → ((1st𝑧) ∈ (𝑥 ∩ {𝑦}) → 𝑧 ∈ ∅))
142137, 141syl5 34 . . . . . 6 (𝜑 → (𝑧 ∈ ( 𝑗𝑥 ({𝑗} × 𝐵) ∩ ({𝑦} × 𝑦 / 𝑗𝐵)) → 𝑧 ∈ ∅))
143142ssrdv 4000 . . . . 5 (𝜑 → ( 𝑗𝑥 ({𝑗} × 𝐵) ∩ ({𝑦} × 𝑦 / 𝑗𝐵)) ⊆ ∅)
144 ss0 4407 . . . . 5 (( 𝑗𝑥 ({𝑗} × 𝐵) ∩ ({𝑦} × 𝑦 / 𝑗𝐵)) ⊆ ∅ → ( 𝑗𝑥 ({𝑗} × 𝐵) ∩ ({𝑦} × 𝑦 / 𝑗𝐵)) = ∅)
145143, 144syl 17 . . . 4 (𝜑 → ( 𝑗𝑥 ({𝑗} × 𝐵) ∩ ({𝑦} × 𝑦 / 𝑗𝐵)) = ∅)
146 iunxun 5098 . . . . . 6 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) = ( 𝑗𝑥 ({𝑗} × 𝐵) ∪ 𝑗 ∈ {𝑦} ({𝑗} × 𝐵))
147 nfcv 2902 . . . . . . . . 9 𝑚({𝑗} × 𝐵)
148 nfcv 2902 . . . . . . . . . 10 𝑗{𝑚}
149148, 5nfxp 5721 . . . . . . . . 9 𝑗({𝑚} × 𝑚 / 𝑗𝐵)
150 sneq 4640 . . . . . . . . . 10 (𝑗 = 𝑚 → {𝑗} = {𝑚})
151150, 8xpeq12d 5719 . . . . . . . . 9 (𝑗 = 𝑚 → ({𝑗} × 𝐵) = ({𝑚} × 𝑚 / 𝑗𝐵))
152147, 149, 151cbviun 5040 . . . . . . . 8 𝑗 ∈ {𝑦} ({𝑗} × 𝐵) = 𝑚 ∈ {𝑦} ({𝑚} × 𝑚 / 𝑗𝐵)
153 sneq 4640 . . . . . . . . . 10 (𝑚 = 𝑦 → {𝑚} = {𝑦})
154153, 38xpeq12d 5719 . . . . . . . . 9 (𝑚 = 𝑦 → ({𝑚} × 𝑚 / 𝑗𝐵) = ({𝑦} × 𝑦 / 𝑗𝐵))
15515, 154iunxsn 5095 . . . . . . . 8 𝑚 ∈ {𝑦} ({𝑚} × 𝑚 / 𝑗𝐵) = ({𝑦} × 𝑦 / 𝑗𝐵)
156152, 155eqtri 2762 . . . . . . 7 𝑗 ∈ {𝑦} ({𝑗} × 𝐵) = ({𝑦} × 𝑦 / 𝑗𝐵)
157156uneq2i 4174 . . . . . 6 ( 𝑗𝑥 ({𝑗} × 𝐵) ∪ 𝑗 ∈ {𝑦} ({𝑗} × 𝐵)) = ( 𝑗𝑥 ({𝑗} × 𝐵) ∪ ({𝑦} × 𝑦 / 𝑗𝐵))
158146, 157eqtri 2762 . . . . 5 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) = ( 𝑗𝑥 ({𝑗} × 𝐵) ∪ ({𝑦} × 𝑦 / 𝑗𝐵))
159158a1i 11 . . . 4 (𝜑 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) = ( 𝑗𝑥 ({𝑗} × 𝐵) ∪ ({𝑦} × 𝑦 / 𝑗𝐵)))
160 snfi 9081 . . . . . . 7 {𝑗} ∈ Fin
161119, 18syldan 591 . . . . . . 7 ((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) → 𝐵 ∈ Fin)
162 xpfi 9355 . . . . . . 7 (({𝑗} ∈ Fin ∧ 𝐵 ∈ Fin) → ({𝑗} × 𝐵) ∈ Fin)
163160, 161, 162sylancr 587 . . . . . 6 ((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) → ({𝑗} × 𝐵) ∈ Fin)
164163ralrimiva 3143 . . . . 5 (𝜑 → ∀𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) ∈ Fin)
165 iunfi 9380 . . . . 5 (((𝑥 ∪ {𝑦}) ∈ Fin ∧ ∀𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) ∈ Fin) → 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) ∈ Fin)
166118, 164, 165syl2anc 584 . . . 4 (𝜑 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) ∈ Fin)
167 eliun 4999 . . . . . 6 (𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) ↔ ∃𝑗 ∈ (𝑥 ∪ {𝑦})𝑧 ∈ ({𝑗} × 𝐵))
168 elxp 5711 . . . . . . . 8 (𝑧 ∈ ({𝑗} × 𝐵) ↔ ∃𝑚𝑘(𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑗} ∧ 𝑘𝐵)))
169 simprl 771 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑗} ∧ 𝑘𝐵))) → 𝑧 = ⟨𝑚, 𝑘⟩)
170 simprrl 781 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑗} ∧ 𝑘𝐵))) → 𝑚 ∈ {𝑗})
171 elsni 4647 . . . . . . . . . . . . . . 15 (𝑚 ∈ {𝑗} → 𝑚 = 𝑗)
172170, 171syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑗} ∧ 𝑘𝐵))) → 𝑚 = 𝑗)
173172opeq1d 4883 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑗} ∧ 𝑘𝐵))) → ⟨𝑚, 𝑘⟩ = ⟨𝑗, 𝑘⟩)
174169, 173eqtrd 2774 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑗} ∧ 𝑘𝐵))) → 𝑧 = ⟨𝑗, 𝑘⟩)
175174, 89syl 17 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑗} ∧ 𝑘𝐵))) → 𝐷 = 𝐶)
176 simpll 767 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑗} ∧ 𝑘𝐵))) → 𝜑)
177119adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑗} ∧ 𝑘𝐵))) → 𝑗𝐴)
178 simprrr 782 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑗} ∧ 𝑘𝐵))) → 𝑘𝐵)
179176, 177, 178, 26syl12anc 837 . . . . . . . . . . 11 (((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑗} ∧ 𝑘𝐵))) → 𝐶 ∈ ℂ)
180175, 179eqeltrd 2838 . . . . . . . . . 10 (((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) ∧ (𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑗} ∧ 𝑘𝐵))) → 𝐷 ∈ ℂ)
181180ex 412 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) → ((𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑗} ∧ 𝑘𝐵)) → 𝐷 ∈ ℂ))
182181exlimdvv 1931 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) → (∃𝑚𝑘(𝑧 = ⟨𝑚, 𝑘⟩ ∧ (𝑚 ∈ {𝑗} ∧ 𝑘𝐵)) → 𝐷 ∈ ℂ))
183168, 182biimtrid 242 . . . . . . 7 ((𝜑𝑗 ∈ (𝑥 ∪ {𝑦})) → (𝑧 ∈ ({𝑗} × 𝐵) → 𝐷 ∈ ℂ))
184183rexlimdva 3152 . . . . . 6 (𝜑 → (∃𝑗 ∈ (𝑥 ∪ {𝑦})𝑧 ∈ ({𝑗} × 𝐵) → 𝐷 ∈ ℂ))
185167, 184biimtrid 242 . . . . 5 (𝜑 → (𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵) → 𝐷 ∈ ℂ))
186185imp 406 . . . 4 ((𝜑𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)) → 𝐷 ∈ ℂ)
187145, 159, 166, 186fprodsplit 15998 . . 3 (𝜑 → ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷 = (∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷 · ∏𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵)𝐷))
188187adantr 480 . 2 ((𝜑𝜓) → ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷 = (∏𝑧 𝑗𝑥 ({𝑗} × 𝐵)𝐷 · ∏𝑧 ∈ ({𝑦} × 𝑦 / 𝑗𝐵)𝐷))
189112, 124, 1883eqtr4d 2784 1 ((𝜑𝜓) → ∏𝑗 ∈ (𝑥 ∪ {𝑦})∏𝑘𝐵 𝐶 = ∏𝑧 𝑗 ∈ (𝑥 ∪ {𝑦})({𝑗} × 𝐵)𝐷)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1536  wex 1775  wcel 2105  wral 3058  wrex 3067  csb 3907  cun 3960  cin 3961  wss 3962  c0 4338  {csn 4630  cop 4636   ciun 4995   × cxp 5686  cres 5690  1-1-ontowf1o 6561  cfv 6562  (class class class)co 7430  1st c1st 8010  2nd c2nd 8011  Fincfn 8983  cc 11150   · cmul 11157  cprod 15935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-inf2 9678  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-1st 8012  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-sup 9479  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-div 11918  df-nn 12264  df-2 12326  df-3 12327  df-n0 12524  df-z 12611  df-uz 12876  df-rp 13032  df-fz 13544  df-fzo 13691  df-seq 14039  df-exp 14099  df-hash 14366  df-cj 15134  df-re 15135  df-im 15136  df-sqrt 15270  df-abs 15271  df-clim 15520  df-prod 15936
This theorem is referenced by:  fprod2d  16013
  Copyright terms: Public domain W3C validator