Step | Hyp | Ref
| Expression |
1 | | vex 3426 |
. . . . 5
⊢ 𝑦 ∈ V |
2 | 1 | elrn2 5790 |
. . . 4
⊢ (𝑦 ∈ ran 𝐹 ↔ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐹) |
3 | | vex 3426 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
4 | 3, 1 | opeldm 5805 |
. . . . . . . 8
⊢
(〈𝑥, 𝑦〉 ∈ 𝐹 → 𝑥 ∈ dom 𝐹) |
5 | | tz7.48.1 |
. . . . . . . . 9
⊢ 𝐹 Fn On |
6 | 5 | fndmi 6521 |
. . . . . . . 8
⊢ dom 𝐹 = On |
7 | 4, 6 | eleqtrdi 2849 |
. . . . . . 7
⊢
(〈𝑥, 𝑦〉 ∈ 𝐹 → 𝑥 ∈ On) |
8 | 7 | ancri 549 |
. . . . . 6
⊢
(〈𝑥, 𝑦〉 ∈ 𝐹 → (𝑥 ∈ On ∧ 〈𝑥, 𝑦〉 ∈ 𝐹)) |
9 | | fnopfvb 6805 |
. . . . . . . 8
⊢ ((𝐹 Fn On ∧ 𝑥 ∈ On) → ((𝐹‘𝑥) = 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐹)) |
10 | 5, 9 | mpan 686 |
. . . . . . 7
⊢ (𝑥 ∈ On → ((𝐹‘𝑥) = 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐹)) |
11 | 10 | pm5.32i 574 |
. . . . . 6
⊢ ((𝑥 ∈ On ∧ (𝐹‘𝑥) = 𝑦) ↔ (𝑥 ∈ On ∧ 〈𝑥, 𝑦〉 ∈ 𝐹)) |
12 | 8, 11 | sylibr 233 |
. . . . 5
⊢
(〈𝑥, 𝑦〉 ∈ 𝐹 → (𝑥 ∈ On ∧ (𝐹‘𝑥) = 𝑦)) |
13 | 12 | eximi 1838 |
. . . 4
⊢
(∃𝑥〈𝑥, 𝑦〉 ∈ 𝐹 → ∃𝑥(𝑥 ∈ On ∧ (𝐹‘𝑥) = 𝑦)) |
14 | 2, 13 | sylbi 216 |
. . 3
⊢ (𝑦 ∈ ran 𝐹 → ∃𝑥(𝑥 ∈ On ∧ (𝐹‘𝑥) = 𝑦)) |
15 | | nfra1 3142 |
. . . 4
⊢
Ⅎ𝑥∀𝑥 ∈ On (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) |
16 | | nfv 1918 |
. . . 4
⊢
Ⅎ𝑥 𝑦 ∈ 𝐴 |
17 | | rsp 3129 |
. . . . 5
⊢
(∀𝑥 ∈ On
(𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → (𝑥 ∈ On → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) |
18 | | eldifi 4057 |
. . . . . . . 8
⊢ ((𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → (𝐹‘𝑥) ∈ 𝐴) |
19 | | eleq1 2826 |
. . . . . . . 8
⊢ ((𝐹‘𝑥) = 𝑦 → ((𝐹‘𝑥) ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
20 | 18, 19 | syl5ibcom 244 |
. . . . . . 7
⊢ ((𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐴)) |
21 | 20 | imim2i 16 |
. . . . . 6
⊢ ((𝑥 ∈ On → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥))) → (𝑥 ∈ On → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐴))) |
22 | 21 | impd 410 |
. . . . 5
⊢ ((𝑥 ∈ On → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥))) → ((𝑥 ∈ On ∧ (𝐹‘𝑥) = 𝑦) → 𝑦 ∈ 𝐴)) |
23 | 17, 22 | syl 17 |
. . . 4
⊢
(∀𝑥 ∈ On
(𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → ((𝑥 ∈ On ∧ (𝐹‘𝑥) = 𝑦) → 𝑦 ∈ 𝐴)) |
24 | 15, 16, 23 | exlimd 2214 |
. . 3
⊢
(∀𝑥 ∈ On
(𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → (∃𝑥(𝑥 ∈ On ∧ (𝐹‘𝑥) = 𝑦) → 𝑦 ∈ 𝐴)) |
25 | 14, 24 | syl5 34 |
. 2
⊢
(∀𝑥 ∈ On
(𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → (𝑦 ∈ ran 𝐹 → 𝑦 ∈ 𝐴)) |
26 | 25 | ssrdv 3923 |
1
⊢
(∀𝑥 ∈ On
(𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → ran 𝐹 ⊆ 𝐴) |