MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.48-1 Structured version   Visualization version   GIF version

Theorem tz7.48-1 8411
Description: Proposition 7.48(1) of [TakeutiZaring] p. 51. (Contributed by NM, 9-Feb-1997.)
Hypothesis
Ref Expression
tz7.48.1 𝐹 Fn On
Assertion
Ref Expression
tz7.48-1 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ran 𝐹𝐴)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem tz7.48-1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 3451 . . . . 5 𝑦 ∈ V
21elrn2 5856 . . . 4 (𝑦 ∈ ran 𝐹 ↔ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐹)
3 vex 3451 . . . . . . . . 9 𝑥 ∈ V
43, 1opeldm 5871 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥 ∈ dom 𝐹)
5 tz7.48.1 . . . . . . . . 9 𝐹 Fn On
65fndmi 6622 . . . . . . . 8 dom 𝐹 = On
74, 6eleqtrdi 2838 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥 ∈ On)
87ancri 549 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (𝑥 ∈ On ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
9 fnopfvb 6912 . . . . . . . 8 ((𝐹 Fn On ∧ 𝑥 ∈ On) → ((𝐹𝑥) = 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
105, 9mpan 690 . . . . . . 7 (𝑥 ∈ On → ((𝐹𝑥) = 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
1110pm5.32i 574 . . . . . 6 ((𝑥 ∈ On ∧ (𝐹𝑥) = 𝑦) ↔ (𝑥 ∈ On ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
128, 11sylibr 234 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (𝑥 ∈ On ∧ (𝐹𝑥) = 𝑦))
1312eximi 1835 . . . 4 (∃𝑥𝑥, 𝑦⟩ ∈ 𝐹 → ∃𝑥(𝑥 ∈ On ∧ (𝐹𝑥) = 𝑦))
142, 13sylbi 217 . . 3 (𝑦 ∈ ran 𝐹 → ∃𝑥(𝑥 ∈ On ∧ (𝐹𝑥) = 𝑦))
15 nfra1 3261 . . . 4 𝑥𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))
16 nfv 1914 . . . 4 𝑥 𝑦𝐴
17 rsp 3225 . . . . 5 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → (𝑥 ∈ On → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
18 eldifi 4094 . . . . . . . 8 ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → (𝐹𝑥) ∈ 𝐴)
19 eleq1 2816 . . . . . . . 8 ((𝐹𝑥) = 𝑦 → ((𝐹𝑥) ∈ 𝐴𝑦𝐴))
2018, 19syl5ibcom 245 . . . . . . 7 ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ((𝐹𝑥) = 𝑦𝑦𝐴))
2120imim2i 16 . . . . . 6 ((𝑥 ∈ On → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) → (𝑥 ∈ On → ((𝐹𝑥) = 𝑦𝑦𝐴)))
2221impd 410 . . . . 5 ((𝑥 ∈ On → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) → ((𝑥 ∈ On ∧ (𝐹𝑥) = 𝑦) → 𝑦𝐴))
2317, 22syl 17 . . . 4 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ((𝑥 ∈ On ∧ (𝐹𝑥) = 𝑦) → 𝑦𝐴))
2415, 16, 23exlimd 2219 . . 3 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → (∃𝑥(𝑥 ∈ On ∧ (𝐹𝑥) = 𝑦) → 𝑦𝐴))
2514, 24syl5 34 . 2 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → (𝑦 ∈ ran 𝐹𝑦𝐴))
2625ssrdv 3952 1 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ran 𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  cdif 3911  wss 3914  cop 4595  dom cdm 5638  ran crn 5639  cima 5641  Oncon0 6332   Fn wfn 6506  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-fv 6519
This theorem is referenced by:  tz7.48-3  8412
  Copyright terms: Public domain W3C validator