MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz7.48-1 Structured version   Visualization version   GIF version

Theorem tz7.48-1 8482
Description: Proposition 7.48(1) of [TakeutiZaring] p. 51. (Contributed by NM, 9-Feb-1997.)
Hypothesis
Ref Expression
tz7.48.1 𝐹 Fn On
Assertion
Ref Expression
tz7.48-1 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ran 𝐹𝐴)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem tz7.48-1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 vex 3482 . . . . 5 𝑦 ∈ V
21elrn2 5906 . . . 4 (𝑦 ∈ ran 𝐹 ↔ ∃𝑥𝑥, 𝑦⟩ ∈ 𝐹)
3 vex 3482 . . . . . . . . 9 𝑥 ∈ V
43, 1opeldm 5921 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥 ∈ dom 𝐹)
5 tz7.48.1 . . . . . . . . 9 𝐹 Fn On
65fndmi 6673 . . . . . . . 8 dom 𝐹 = On
74, 6eleqtrdi 2849 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ 𝐹𝑥 ∈ On)
87ancri 549 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (𝑥 ∈ On ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
9 fnopfvb 6961 . . . . . . . 8 ((𝐹 Fn On ∧ 𝑥 ∈ On) → ((𝐹𝑥) = 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
105, 9mpan 690 . . . . . . 7 (𝑥 ∈ On → ((𝐹𝑥) = 𝑦 ↔ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
1110pm5.32i 574 . . . . . 6 ((𝑥 ∈ On ∧ (𝐹𝑥) = 𝑦) ↔ (𝑥 ∈ On ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐹))
128, 11sylibr 234 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ 𝐹 → (𝑥 ∈ On ∧ (𝐹𝑥) = 𝑦))
1312eximi 1832 . . . 4 (∃𝑥𝑥, 𝑦⟩ ∈ 𝐹 → ∃𝑥(𝑥 ∈ On ∧ (𝐹𝑥) = 𝑦))
142, 13sylbi 217 . . 3 (𝑦 ∈ ran 𝐹 → ∃𝑥(𝑥 ∈ On ∧ (𝐹𝑥) = 𝑦))
15 nfra1 3282 . . . 4 𝑥𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))
16 nfv 1912 . . . 4 𝑥 𝑦𝐴
17 rsp 3245 . . . . 5 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → (𝑥 ∈ On → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))))
18 eldifi 4141 . . . . . . . 8 ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → (𝐹𝑥) ∈ 𝐴)
19 eleq1 2827 . . . . . . . 8 ((𝐹𝑥) = 𝑦 → ((𝐹𝑥) ∈ 𝐴𝑦𝐴))
2018, 19syl5ibcom 245 . . . . . . 7 ((𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ((𝐹𝑥) = 𝑦𝑦𝐴))
2120imim2i 16 . . . . . 6 ((𝑥 ∈ On → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) → (𝑥 ∈ On → ((𝐹𝑥) = 𝑦𝑦𝐴)))
2221impd 410 . . . . 5 ((𝑥 ∈ On → (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥))) → ((𝑥 ∈ On ∧ (𝐹𝑥) = 𝑦) → 𝑦𝐴))
2317, 22syl 17 . . . 4 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ((𝑥 ∈ On ∧ (𝐹𝑥) = 𝑦) → 𝑦𝐴))
2415, 16, 23exlimd 2216 . . 3 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → (∃𝑥(𝑥 ∈ On ∧ (𝐹𝑥) = 𝑦) → 𝑦𝐴))
2514, 24syl5 34 . 2 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → (𝑦 ∈ ran 𝐹𝑦𝐴))
2625ssrdv 4001 1 (∀𝑥 ∈ On (𝐹𝑥) ∈ (𝐴 ∖ (𝐹𝑥)) → ran 𝐹𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  wral 3059  cdif 3960  wss 3963  cop 4637  dom cdm 5689  ran crn 5690  cima 5692  Oncon0 6386   Fn wfn 6558  cfv 6563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-iota 6516  df-fun 6565  df-fn 6566  df-fv 6571
This theorem is referenced by:  tz7.48-3  8483
  Copyright terms: Public domain W3C validator