| Step | Hyp | Ref
| Expression |
| 1 | | vex 3468 |
. . . . 5
⊢ 𝑦 ∈ V |
| 2 | 1 | elrn2 5885 |
. . . 4
⊢ (𝑦 ∈ ran 𝐹 ↔ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐹) |
| 3 | | vex 3468 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
| 4 | 3, 1 | opeldm 5900 |
. . . . . . . 8
⊢
(〈𝑥, 𝑦〉 ∈ 𝐹 → 𝑥 ∈ dom 𝐹) |
| 5 | | tz7.48.1 |
. . . . . . . . 9
⊢ 𝐹 Fn On |
| 6 | 5 | fndmi 6653 |
. . . . . . . 8
⊢ dom 𝐹 = On |
| 7 | 4, 6 | eleqtrdi 2843 |
. . . . . . 7
⊢
(〈𝑥, 𝑦〉 ∈ 𝐹 → 𝑥 ∈ On) |
| 8 | 7 | ancri 549 |
. . . . . 6
⊢
(〈𝑥, 𝑦〉 ∈ 𝐹 → (𝑥 ∈ On ∧ 〈𝑥, 𝑦〉 ∈ 𝐹)) |
| 9 | | fnopfvb 6941 |
. . . . . . . 8
⊢ ((𝐹 Fn On ∧ 𝑥 ∈ On) → ((𝐹‘𝑥) = 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐹)) |
| 10 | 5, 9 | mpan 690 |
. . . . . . 7
⊢ (𝑥 ∈ On → ((𝐹‘𝑥) = 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐹)) |
| 11 | 10 | pm5.32i 574 |
. . . . . 6
⊢ ((𝑥 ∈ On ∧ (𝐹‘𝑥) = 𝑦) ↔ (𝑥 ∈ On ∧ 〈𝑥, 𝑦〉 ∈ 𝐹)) |
| 12 | 8, 11 | sylibr 234 |
. . . . 5
⊢
(〈𝑥, 𝑦〉 ∈ 𝐹 → (𝑥 ∈ On ∧ (𝐹‘𝑥) = 𝑦)) |
| 13 | 12 | eximi 1834 |
. . . 4
⊢
(∃𝑥〈𝑥, 𝑦〉 ∈ 𝐹 → ∃𝑥(𝑥 ∈ On ∧ (𝐹‘𝑥) = 𝑦)) |
| 14 | 2, 13 | sylbi 217 |
. . 3
⊢ (𝑦 ∈ ran 𝐹 → ∃𝑥(𝑥 ∈ On ∧ (𝐹‘𝑥) = 𝑦)) |
| 15 | | nfra1 3270 |
. . . 4
⊢
Ⅎ𝑥∀𝑥 ∈ On (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) |
| 16 | | nfv 1913 |
. . . 4
⊢
Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 17 | | rsp 3234 |
. . . . 5
⊢
(∀𝑥 ∈ On
(𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → (𝑥 ∈ On → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) |
| 18 | | eldifi 4113 |
. . . . . . . 8
⊢ ((𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → (𝐹‘𝑥) ∈ 𝐴) |
| 19 | | eleq1 2821 |
. . . . . . . 8
⊢ ((𝐹‘𝑥) = 𝑦 → ((𝐹‘𝑥) ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
| 20 | 18, 19 | syl5ibcom 245 |
. . . . . . 7
⊢ ((𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐴)) |
| 21 | 20 | imim2i 16 |
. . . . . 6
⊢ ((𝑥 ∈ On → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥))) → (𝑥 ∈ On → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐴))) |
| 22 | 21 | impd 410 |
. . . . 5
⊢ ((𝑥 ∈ On → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥))) → ((𝑥 ∈ On ∧ (𝐹‘𝑥) = 𝑦) → 𝑦 ∈ 𝐴)) |
| 23 | 17, 22 | syl 17 |
. . . 4
⊢
(∀𝑥 ∈ On
(𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → ((𝑥 ∈ On ∧ (𝐹‘𝑥) = 𝑦) → 𝑦 ∈ 𝐴)) |
| 24 | 15, 16, 23 | exlimd 2217 |
. . 3
⊢
(∀𝑥 ∈ On
(𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → (∃𝑥(𝑥 ∈ On ∧ (𝐹‘𝑥) = 𝑦) → 𝑦 ∈ 𝐴)) |
| 25 | 14, 24 | syl5 34 |
. 2
⊢
(∀𝑥 ∈ On
(𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → (𝑦 ∈ ran 𝐹 → 𝑦 ∈ 𝐴)) |
| 26 | 25 | ssrdv 3971 |
1
⊢
(∀𝑥 ∈ On
(𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → ran 𝐹 ⊆ 𝐴) |