Step | Hyp | Ref
| Expression |
1 | | vex 3420 |
. . . . 5
⊢ 𝑦 ∈ V |
2 | 1 | elrn2 5669 |
. . . 4
⊢ (𝑦 ∈ ran 𝐹 ↔ ∃𝑥〈𝑥, 𝑦〉 ∈ 𝐹) |
3 | | vex 3420 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
4 | 3, 1 | opeldm 5630 |
. . . . . . . 8
⊢
(〈𝑥, 𝑦〉 ∈ 𝐹 → 𝑥 ∈ dom 𝐹) |
5 | | tz7.48.1 |
. . . . . . . . 9
⊢ 𝐹 Fn On |
6 | | fndm 6293 |
. . . . . . . . 9
⊢ (𝐹 Fn On → dom 𝐹 = On) |
7 | 5, 6 | ax-mp 5 |
. . . . . . . 8
⊢ dom 𝐹 = On |
8 | 4, 7 | syl6eleq 2878 |
. . . . . . 7
⊢
(〈𝑥, 𝑦〉 ∈ 𝐹 → 𝑥 ∈ On) |
9 | 8 | ancri 542 |
. . . . . 6
⊢
(〈𝑥, 𝑦〉 ∈ 𝐹 → (𝑥 ∈ On ∧ 〈𝑥, 𝑦〉 ∈ 𝐹)) |
10 | | fnopfvb 6554 |
. . . . . . . 8
⊢ ((𝐹 Fn On ∧ 𝑥 ∈ On) → ((𝐹‘𝑥) = 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐹)) |
11 | 5, 10 | mpan 678 |
. . . . . . 7
⊢ (𝑥 ∈ On → ((𝐹‘𝑥) = 𝑦 ↔ 〈𝑥, 𝑦〉 ∈ 𝐹)) |
12 | 11 | pm5.32i 567 |
. . . . . 6
⊢ ((𝑥 ∈ On ∧ (𝐹‘𝑥) = 𝑦) ↔ (𝑥 ∈ On ∧ 〈𝑥, 𝑦〉 ∈ 𝐹)) |
13 | 9, 12 | sylibr 226 |
. . . . 5
⊢
(〈𝑥, 𝑦〉 ∈ 𝐹 → (𝑥 ∈ On ∧ (𝐹‘𝑥) = 𝑦)) |
14 | 13 | eximi 1798 |
. . . 4
⊢
(∃𝑥〈𝑥, 𝑦〉 ∈ 𝐹 → ∃𝑥(𝑥 ∈ On ∧ (𝐹‘𝑥) = 𝑦)) |
15 | 2, 14 | sylbi 209 |
. . 3
⊢ (𝑦 ∈ ran 𝐹 → ∃𝑥(𝑥 ∈ On ∧ (𝐹‘𝑥) = 𝑦)) |
16 | | nfra1 3171 |
. . . 4
⊢
Ⅎ𝑥∀𝑥 ∈ On (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) |
17 | | nfv 1874 |
. . . 4
⊢
Ⅎ𝑥 𝑦 ∈ 𝐴 |
18 | | rsp 3157 |
. . . . 5
⊢
(∀𝑥 ∈ On
(𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → (𝑥 ∈ On → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)))) |
19 | | eldifi 3995 |
. . . . . . . 8
⊢ ((𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → (𝐹‘𝑥) ∈ 𝐴) |
20 | | eleq1 2855 |
. . . . . . . 8
⊢ ((𝐹‘𝑥) = 𝑦 → ((𝐹‘𝑥) ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
21 | 19, 20 | syl5ibcom 237 |
. . . . . . 7
⊢ ((𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐴)) |
22 | 21 | imim2i 16 |
. . . . . 6
⊢ ((𝑥 ∈ On → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥))) → (𝑥 ∈ On → ((𝐹‘𝑥) = 𝑦 → 𝑦 ∈ 𝐴))) |
23 | 22 | impd 402 |
. . . . 5
⊢ ((𝑥 ∈ On → (𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥))) → ((𝑥 ∈ On ∧ (𝐹‘𝑥) = 𝑦) → 𝑦 ∈ 𝐴)) |
24 | 18, 23 | syl 17 |
. . . 4
⊢
(∀𝑥 ∈ On
(𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → ((𝑥 ∈ On ∧ (𝐹‘𝑥) = 𝑦) → 𝑦 ∈ 𝐴)) |
25 | 16, 17, 24 | exlimd 2149 |
. . 3
⊢
(∀𝑥 ∈ On
(𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → (∃𝑥(𝑥 ∈ On ∧ (𝐹‘𝑥) = 𝑦) → 𝑦 ∈ 𝐴)) |
26 | 15, 25 | syl5 34 |
. 2
⊢
(∀𝑥 ∈ On
(𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → (𝑦 ∈ ran 𝐹 → 𝑦 ∈ 𝐴)) |
27 | 26 | ssrdv 3866 |
1
⊢
(∀𝑥 ∈ On
(𝐹‘𝑥) ∈ (𝐴 ∖ (𝐹 “ 𝑥)) → ran 𝐹 ⊆ 𝐴) |