Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem31 Structured version   Visualization version   GIF version

Theorem fourierdlem31 40866
Description: If 𝐴 is finite and for any element in 𝐴 there is a number 𝑚 such that a property holds for all numbers larger than 𝑚, then there is a number 𝑛 such that the property holds for all numbers larger than 𝑛 and for all elements in 𝐴. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 29-Sep-2020.)
Hypotheses
Ref Expression
fourierdlem31.i 𝑖𝜑
fourierdlem31.r 𝑟𝜑
fourierdlem31.iv 𝑖𝑉
fourierdlem31.a (𝜑𝐴 ∈ Fin)
fourierdlem31.exm (𝜑 → ∀𝑖𝐴𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)𝜒)
fourierdlem31.m 𝑀 = {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}
fourierdlem31.v 𝑉 = (𝑖𝐴 ↦ inf(𝑀, ℝ, < ))
fourierdlem31.n 𝑁 = sup(ran 𝑉, ℝ, < )
Assertion
Ref Expression
fourierdlem31 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒)
Distinct variable groups:   𝐴,𝑖,𝑚,𝑟   𝐴,𝑛,𝑖,𝑟   𝑛,𝑁   𝜒,𝑚   𝜒,𝑛
Allowed substitution hints:   𝜑(𝑖,𝑚,𝑛,𝑟)   𝜒(𝑖,𝑟)   𝑀(𝑖,𝑚,𝑛,𝑟)   𝑁(𝑖,𝑚,𝑟)   𝑉(𝑖,𝑚,𝑛,𝑟)

Proof of Theorem fourierdlem31
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn 11232 . . . 4 1 ∈ ℕ
2 rzal 4212 . . . . 5 (𝐴 = ∅ → ∀𝑖𝐴 𝜒)
32ralrimivw 3115 . . . 4 (𝐴 = ∅ → ∀𝑟 ∈ (1(,)+∞)∀𝑖𝐴 𝜒)
4 oveq1 6799 . . . . . 6 (𝑛 = 1 → (𝑛(,)+∞) = (1(,)+∞))
54raleqdv 3292 . . . . 5 (𝑛 = 1 → (∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒 ↔ ∀𝑟 ∈ (1(,)+∞)∀𝑖𝐴 𝜒))
65rspcev 3458 . . . 4 ((1 ∈ ℕ ∧ ∀𝑟 ∈ (1(,)+∞)∀𝑖𝐴 𝜒) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒)
71, 3, 6sylancr 567 . . 3 (𝐴 = ∅ → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒)
87adantl 467 . 2 ((𝜑𝐴 = ∅) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒)
9 fourierdlem31.n . . . 4 𝑁 = sup(ran 𝑉, ℝ, < )
10 fourierdlem31.i . . . . . . . 8 𝑖𝜑
11 fourierdlem31.m . . . . . . . . . . . 12 𝑀 = {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}
1211a1i 11 . . . . . . . . . . 11 ((𝜑𝑖𝐴) → 𝑀 = {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒})
1312infeq1d 8538 . . . . . . . . . 10 ((𝜑𝑖𝐴) → inf(𝑀, ℝ, < ) = inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}, ℝ, < ))
14 ssrab2 3834 . . . . . . . . . . 11 {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ⊆ ℕ
15 nnuz 11924 . . . . . . . . . . . . 13 ℕ = (ℤ‘1)
1614, 15sseqtri 3784 . . . . . . . . . . . 12 {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ⊆ (ℤ‘1)
17 fourierdlem31.exm . . . . . . . . . . . . . 14 (𝜑 → ∀𝑖𝐴𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)𝜒)
1817r19.21bi 3080 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)𝜒)
19 rabn0 4102 . . . . . . . . . . . . 13 ({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ≠ ∅ ↔ ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)𝜒)
2018, 19sylibr 224 . . . . . . . . . . . 12 ((𝜑𝑖𝐴) → {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ≠ ∅)
21 infssuzcl 11974 . . . . . . . . . . . 12 (({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ⊆ (ℤ‘1) ∧ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ≠ ∅) → inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}, ℝ, < ) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒})
2216, 20, 21sylancr 567 . . . . . . . . . . 11 ((𝜑𝑖𝐴) → inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}, ℝ, < ) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒})
2314, 22sseldi 3748 . . . . . . . . . 10 ((𝜑𝑖𝐴) → inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}, ℝ, < ) ∈ ℕ)
2413, 23eqeltrd 2849 . . . . . . . . 9 ((𝜑𝑖𝐴) → inf(𝑀, ℝ, < ) ∈ ℕ)
2524ex 397 . . . . . . . 8 (𝜑 → (𝑖𝐴 → inf(𝑀, ℝ, < ) ∈ ℕ))
2610, 25ralrimi 3105 . . . . . . 7 (𝜑 → ∀𝑖𝐴 inf(𝑀, ℝ, < ) ∈ ℕ)
27 fourierdlem31.v . . . . . . . 8 𝑉 = (𝑖𝐴 ↦ inf(𝑀, ℝ, < ))
2827rnmptss 6534 . . . . . . 7 (∀𝑖𝐴 inf(𝑀, ℝ, < ) ∈ ℕ → ran 𝑉 ⊆ ℕ)
2926, 28syl 17 . . . . . 6 (𝜑 → ran 𝑉 ⊆ ℕ)
3029adantr 466 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = ∅) → ran 𝑉 ⊆ ℕ)
31 ltso 10319 . . . . . . 7 < Or ℝ
3231a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = ∅) → < Or ℝ)
33 fourierdlem31.a . . . . . . . . . 10 (𝜑𝐴 ∈ Fin)
34 mptfi 8420 . . . . . . . . . 10 (𝐴 ∈ Fin → (𝑖𝐴 ↦ inf(𝑀, ℝ, < )) ∈ Fin)
3533, 34syl 17 . . . . . . . . 9 (𝜑 → (𝑖𝐴 ↦ inf(𝑀, ℝ, < )) ∈ Fin)
3627, 35syl5eqel 2853 . . . . . . . 8 (𝜑𝑉 ∈ Fin)
37 rnfi 8404 . . . . . . . 8 (𝑉 ∈ Fin → ran 𝑉 ∈ Fin)
3836, 37syl 17 . . . . . . 7 (𝜑 → ran 𝑉 ∈ Fin)
3938adantr 466 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = ∅) → ran 𝑉 ∈ Fin)
40 neqne 2950 . . . . . . . . 9 𝐴 = ∅ → 𝐴 ≠ ∅)
41 n0 4076 . . . . . . . . 9 (𝐴 ≠ ∅ ↔ ∃𝑖 𝑖𝐴)
4240, 41sylib 208 . . . . . . . 8 𝐴 = ∅ → ∃𝑖 𝑖𝐴)
4342adantl 467 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 = ∅) → ∃𝑖 𝑖𝐴)
44 nfv 1994 . . . . . . . . 9 𝑖 ¬ 𝐴 = ∅
4510, 44nfan 1979 . . . . . . . 8 𝑖(𝜑 ∧ ¬ 𝐴 = ∅)
46 fourierdlem31.iv . . . . . . . . . 10 𝑖𝑉
4746nfrn 5506 . . . . . . . . 9 𝑖ran 𝑉
48 nfcv 2912 . . . . . . . . 9 𝑖
4947, 48nfne 3042 . . . . . . . 8 𝑖ran 𝑉 ≠ ∅
50 simpr 471 . . . . . . . . . . . 12 ((𝜑𝑖𝐴) → 𝑖𝐴)
5127elrnmpt1 5512 . . . . . . . . . . . 12 ((𝑖𝐴 ∧ inf(𝑀, ℝ, < ) ∈ ℕ) → inf(𝑀, ℝ, < ) ∈ ran 𝑉)
5250, 24, 51syl2anc 565 . . . . . . . . . . 11 ((𝜑𝑖𝐴) → inf(𝑀, ℝ, < ) ∈ ran 𝑉)
53 ne0i 4067 . . . . . . . . . . 11 (inf(𝑀, ℝ, < ) ∈ ran 𝑉 → ran 𝑉 ≠ ∅)
5452, 53syl 17 . . . . . . . . . 10 ((𝜑𝑖𝐴) → ran 𝑉 ≠ ∅)
5554ex 397 . . . . . . . . 9 (𝜑 → (𝑖𝐴 → ran 𝑉 ≠ ∅))
5655adantr 466 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 = ∅) → (𝑖𝐴 → ran 𝑉 ≠ ∅))
5745, 49, 56exlimd 2242 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 = ∅) → (∃𝑖 𝑖𝐴 → ran 𝑉 ≠ ∅))
5843, 57mpd 15 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = ∅) → ran 𝑉 ≠ ∅)
59 nnssre 11225 . . . . . . 7 ℕ ⊆ ℝ
6030, 59syl6ss 3762 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = ∅) → ran 𝑉 ⊆ ℝ)
61 fisupcl 8530 . . . . . 6 (( < Or ℝ ∧ (ran 𝑉 ∈ Fin ∧ ran 𝑉 ≠ ∅ ∧ ran 𝑉 ⊆ ℝ)) → sup(ran 𝑉, ℝ, < ) ∈ ran 𝑉)
6232, 39, 58, 60, 61syl13anc 1477 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = ∅) → sup(ran 𝑉, ℝ, < ) ∈ ran 𝑉)
6330, 62sseldd 3751 . . . 4 ((𝜑 ∧ ¬ 𝐴 = ∅) → sup(ran 𝑉, ℝ, < ) ∈ ℕ)
649, 63syl5eqel 2853 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝑁 ∈ ℕ)
65 fourierdlem31.r . . . . 5 𝑟𝜑
66 nfcv 2912 . . . . . . . . . . . 12 𝑖
67 nfcv 2912 . . . . . . . . . . . 12 𝑖 <
6847, 66, 67nfsup 8512 . . . . . . . . . . 11 𝑖sup(ran 𝑉, ℝ, < )
699, 68nfcxfr 2910 . . . . . . . . . 10 𝑖𝑁
70 nfcv 2912 . . . . . . . . . 10 𝑖(,)
71 nfcv 2912 . . . . . . . . . 10 𝑖+∞
7269, 70, 71nfov 6820 . . . . . . . . 9 𝑖(𝑁(,)+∞)
7372nfcri 2906 . . . . . . . 8 𝑖 𝑟 ∈ (𝑁(,)+∞)
7410, 73nfan 1979 . . . . . . 7 𝑖(𝜑𝑟 ∈ (𝑁(,)+∞))
7527fvmpt2 6433 . . . . . . . . . . . . . 14 ((𝑖𝐴 ∧ inf(𝑀, ℝ, < ) ∈ ℕ) → (𝑉𝑖) = inf(𝑀, ℝ, < ))
7650, 24, 75syl2anc 565 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → (𝑉𝑖) = inf(𝑀, ℝ, < ))
7724nnxrd 39717 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → inf(𝑀, ℝ, < ) ∈ ℝ*)
7876, 77eqeltrd 2849 . . . . . . . . . . . 12 ((𝜑𝑖𝐴) → (𝑉𝑖) ∈ ℝ*)
7978adantr 466 . . . . . . . . . . 11 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → (𝑉𝑖) ∈ ℝ*)
80 pnfxr 10293 . . . . . . . . . . . 12 +∞ ∈ ℝ*
8180a1i 11 . . . . . . . . . . 11 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → +∞ ∈ ℝ*)
82 elioore 12409 . . . . . . . . . . . 12 (𝑟 ∈ (𝑁(,)+∞) → 𝑟 ∈ ℝ)
8382adantl 467 . . . . . . . . . . 11 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑟 ∈ ℝ)
8476, 24eqeltrd 2849 . . . . . . . . . . . . . 14 ((𝜑𝑖𝐴) → (𝑉𝑖) ∈ ℕ)
8584nnred 11236 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → (𝑉𝑖) ∈ ℝ)
8685adantr 466 . . . . . . . . . . . 12 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → (𝑉𝑖) ∈ ℝ)
87 ne0i 4067 . . . . . . . . . . . . . . . . 17 (𝑖𝐴𝐴 ≠ ∅)
8887adantl 467 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝐴) → 𝐴 ≠ ∅)
8988neneqd 2947 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐴) → ¬ 𝐴 = ∅)
9089, 64syldan 571 . . . . . . . . . . . . . 14 ((𝜑𝑖𝐴) → 𝑁 ∈ ℕ)
9190nnred 11236 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → 𝑁 ∈ ℝ)
9291adantr 466 . . . . . . . . . . . 12 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑁 ∈ ℝ)
9389, 60syldan 571 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐴) → ran 𝑉 ⊆ ℝ)
9429, 59syl6ss 3762 . . . . . . . . . . . . . . . . 17 (𝜑 → ran 𝑉 ⊆ ℝ)
95 fimaxre2 11170 . . . . . . . . . . . . . . . . 17 ((ran 𝑉 ⊆ ℝ ∧ ran 𝑉 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑉 𝑦𝑥)
9694, 38, 95syl2anc 565 . . . . . . . . . . . . . . . 16 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑉 𝑦𝑥)
9796adantr 466 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐴) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑉 𝑦𝑥)
9876, 52eqeltrd 2849 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐴) → (𝑉𝑖) ∈ ran 𝑉)
99 suprub 11185 . . . . . . . . . . . . . . 15 (((ran 𝑉 ⊆ ℝ ∧ ran 𝑉 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑉 𝑦𝑥) ∧ (𝑉𝑖) ∈ ran 𝑉) → (𝑉𝑖) ≤ sup(ran 𝑉, ℝ, < ))
10093, 54, 97, 98, 99syl31anc 1478 . . . . . . . . . . . . . 14 ((𝜑𝑖𝐴) → (𝑉𝑖) ≤ sup(ran 𝑉, ℝ, < ))
101100, 9syl6breqr 4826 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → (𝑉𝑖) ≤ 𝑁)
102101adantr 466 . . . . . . . . . . . 12 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → (𝑉𝑖) ≤ 𝑁)
10392rexrd 10290 . . . . . . . . . . . . 13 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑁 ∈ ℝ*)
104 simpr 471 . . . . . . . . . . . . 13 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑟 ∈ (𝑁(,)+∞))
105 ioogtlb 40232 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑟 ∈ (𝑁(,)+∞)) → 𝑁 < 𝑟)
106103, 81, 104, 105syl3anc 1475 . . . . . . . . . . . 12 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑁 < 𝑟)
10786, 92, 83, 102, 106lelttrd 10396 . . . . . . . . . . 11 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → (𝑉𝑖) < 𝑟)
10883ltpnfd 12159 . . . . . . . . . . 11 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑟 < +∞)
10979, 81, 83, 107, 108eliood 40235 . . . . . . . . . 10 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑟 ∈ ((𝑉𝑖)(,)+∞))
11013, 22eqeltrd 2849 . . . . . . . . . . . . . 14 ((𝜑𝑖𝐴) → inf(𝑀, ℝ, < ) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒})
11176, 110eqeltrd 2849 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → (𝑉𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒})
112 nfcv 2912 . . . . . . . . . . . . . . . . . 18 𝑚𝐴
113 nfrab1 3270 . . . . . . . . . . . . . . . . . . . 20 𝑚{𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}
11411, 113nfcxfr 2910 . . . . . . . . . . . . . . . . . . 19 𝑚𝑀
115 nfcv 2912 . . . . . . . . . . . . . . . . . . 19 𝑚
116 nfcv 2912 . . . . . . . . . . . . . . . . . . 19 𝑚 <
117114, 115, 116nfinf 8543 . . . . . . . . . . . . . . . . . 18 𝑚inf(𝑀, ℝ, < )
118112, 117nfmpt 4878 . . . . . . . . . . . . . . . . 17 𝑚(𝑖𝐴 ↦ inf(𝑀, ℝ, < ))
11927, 118nfcxfr 2910 . . . . . . . . . . . . . . . 16 𝑚𝑉
120 nfcv 2912 . . . . . . . . . . . . . . . 16 𝑚𝑖
121119, 120nffv 6339 . . . . . . . . . . . . . . 15 𝑚(𝑉𝑖)
122121, 113nfel 2925 . . . . . . . . . . . . . . . 16 𝑚(𝑉𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}
123121nfel1 2927 . . . . . . . . . . . . . . . . 17 𝑚(𝑉𝑖) ∈ ℕ
124 nfcv 2912 . . . . . . . . . . . . . . . . . . 19 𝑚(,)
125 nfcv 2912 . . . . . . . . . . . . . . . . . . 19 𝑚+∞
126121, 124, 125nfov 6820 . . . . . . . . . . . . . . . . . 18 𝑚((𝑉𝑖)(,)+∞)
127 nfv 1994 . . . . . . . . . . . . . . . . . 18 𝑚𝜒
128126, 127nfral 3093 . . . . . . . . . . . . . . . . 17 𝑚𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒
129123, 128nfan 1979 . . . . . . . . . . . . . . . 16 𝑚((𝑉𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒)
130122, 129nfbi 1984 . . . . . . . . . . . . . . 15 𝑚((𝑉𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ ((𝑉𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒))
131 eleq1 2837 . . . . . . . . . . . . . . . 16 (𝑚 = (𝑉𝑖) → (𝑚 ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ (𝑉𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}))
132 eleq1 2837 . . . . . . . . . . . . . . . . 17 (𝑚 = (𝑉𝑖) → (𝑚 ∈ ℕ ↔ (𝑉𝑖) ∈ ℕ))
133 oveq1 6799 . . . . . . . . . . . . . . . . . 18 (𝑚 = (𝑉𝑖) → (𝑚(,)+∞) = ((𝑉𝑖)(,)+∞))
134 nfcv 2912 . . . . . . . . . . . . . . . . . . 19 𝑟(𝑚(,)+∞)
135 nfcv 2912 . . . . . . . . . . . . . . . . . . . . . . 23 𝑟𝐴
136 nfra1 3089 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑟𝑟 ∈ (𝑚(,)+∞)𝜒
137 nfcv 2912 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑟
138136, 137nfrab 3271 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑟{𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}
13911, 138nfcxfr 2910 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑟𝑀
140 nfcv 2912 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑟
141 nfcv 2912 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑟 <
142139, 140, 141nfinf 8543 . . . . . . . . . . . . . . . . . . . . . . 23 𝑟inf(𝑀, ℝ, < )
143135, 142nfmpt 4878 . . . . . . . . . . . . . . . . . . . . . 22 𝑟(𝑖𝐴 ↦ inf(𝑀, ℝ, < ))
14427, 143nfcxfr 2910 . . . . . . . . . . . . . . . . . . . . 21 𝑟𝑉
145 nfcv 2912 . . . . . . . . . . . . . . . . . . . . 21 𝑟𝑖
146144, 145nffv 6339 . . . . . . . . . . . . . . . . . . . 20 𝑟(𝑉𝑖)
147 nfcv 2912 . . . . . . . . . . . . . . . . . . . 20 𝑟(,)
148 nfcv 2912 . . . . . . . . . . . . . . . . . . . 20 𝑟+∞
149146, 147, 148nfov 6820 . . . . . . . . . . . . . . . . . . 19 𝑟((𝑉𝑖)(,)+∞)
150134, 149raleqf 3282 . . . . . . . . . . . . . . . . . 18 ((𝑚(,)+∞) = ((𝑉𝑖)(,)+∞) → (∀𝑟 ∈ (𝑚(,)+∞)𝜒 ↔ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒))
151133, 150syl 17 . . . . . . . . . . . . . . . . 17 (𝑚 = (𝑉𝑖) → (∀𝑟 ∈ (𝑚(,)+∞)𝜒 ↔ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒))
152132, 151anbi12d 608 . . . . . . . . . . . . . . . 16 (𝑚 = (𝑉𝑖) → ((𝑚 ∈ ℕ ∧ ∀𝑟 ∈ (𝑚(,)+∞)𝜒) ↔ ((𝑉𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒)))
153131, 152bibi12d 334 . . . . . . . . . . . . . . 15 (𝑚 = (𝑉𝑖) → ((𝑚 ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ (𝑚 ∈ ℕ ∧ ∀𝑟 ∈ (𝑚(,)+∞)𝜒)) ↔ ((𝑉𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ ((𝑉𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒))))
154 rabid 3263 . . . . . . . . . . . . . . 15 (𝑚 ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ (𝑚 ∈ ℕ ∧ ∀𝑟 ∈ (𝑚(,)+∞)𝜒))
155121, 130, 153, 154vtoclgf 3413 . . . . . . . . . . . . . 14 ((𝑉𝑖) ∈ ℕ → ((𝑉𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ ((𝑉𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒)))
15684, 155syl 17 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → ((𝑉𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ ((𝑉𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒)))
157111, 156mpbid 222 . . . . . . . . . . . 12 ((𝜑𝑖𝐴) → ((𝑉𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒))
158157simprd 477 . . . . . . . . . . 11 ((𝜑𝑖𝐴) → ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒)
159158r19.21bi 3080 . . . . . . . . . 10 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ ((𝑉𝑖)(,)+∞)) → 𝜒)
160109, 159syldan 571 . . . . . . . . 9 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝜒)
161160an32s 623 . . . . . . . 8 (((𝜑𝑟 ∈ (𝑁(,)+∞)) ∧ 𝑖𝐴) → 𝜒)
162161ex 397 . . . . . . 7 ((𝜑𝑟 ∈ (𝑁(,)+∞)) → (𝑖𝐴𝜒))
16374, 162ralrimi 3105 . . . . . 6 ((𝜑𝑟 ∈ (𝑁(,)+∞)) → ∀𝑖𝐴 𝜒)
164163ex 397 . . . . 5 (𝜑 → (𝑟 ∈ (𝑁(,)+∞) → ∀𝑖𝐴 𝜒))
16565, 164ralrimi 3105 . . . 4 (𝜑 → ∀𝑟 ∈ (𝑁(,)+∞)∀𝑖𝐴 𝜒)
166165adantr 466 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → ∀𝑟 ∈ (𝑁(,)+∞)∀𝑖𝐴 𝜒)
167 oveq1 6799 . . . . 5 (𝑛 = 𝑁 → (𝑛(,)+∞) = (𝑁(,)+∞))
168 nfcv 2912 . . . . . 6 𝑟(𝑛(,)+∞)
169144nfrn 5506 . . . . . . . . 9 𝑟ran 𝑉
170169, 140, 141nfsup 8512 . . . . . . . 8 𝑟sup(ran 𝑉, ℝ, < )
1719, 170nfcxfr 2910 . . . . . . 7 𝑟𝑁
172171, 147, 148nfov 6820 . . . . . 6 𝑟(𝑁(,)+∞)
173168, 172raleqf 3282 . . . . 5 ((𝑛(,)+∞) = (𝑁(,)+∞) → (∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒 ↔ ∀𝑟 ∈ (𝑁(,)+∞)∀𝑖𝐴 𝜒))
174167, 173syl 17 . . . 4 (𝑛 = 𝑁 → (∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒 ↔ ∀𝑟 ∈ (𝑁(,)+∞)∀𝑖𝐴 𝜒))
175174rspcev 3458 . . 3 ((𝑁 ∈ ℕ ∧ ∀𝑟 ∈ (𝑁(,)+∞)∀𝑖𝐴 𝜒) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒)
17664, 166, 175syl2anc 565 . 2 ((𝜑 ∧ ¬ 𝐴 = ∅) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒)
1778, 176pm2.61dan 796 1 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382   = wceq 1630  wex 1851  wnf 1855  wcel 2144  wnfc 2899  wne 2942  wral 3060  wrex 3061  {crab 3064  wss 3721  c0 4061   class class class wbr 4784  cmpt 4861   Or wor 5169  ran crn 5250  cfv 6031  (class class class)co 6792  Fincfn 8108  supcsup 8501  infcinf 8502  cr 10136  1c1 10138  +∞cpnf 10272  *cxr 10274   < clt 10275  cle 10276  cn 11221  cuz 11887  (,)cioo 12379
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-1st 7314  df-2nd 7315  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-sup 8503  df-inf 8504  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-n0 11494  df-z 11579  df-uz 11888  df-ioo 12383
This theorem is referenced by:  fourierdlem73  40907
  Copyright terms: Public domain W3C validator