Step | Hyp | Ref
| Expression |
1 | | 1nn 11984 |
. . . 4
⊢ 1 ∈
ℕ |
2 | | rzal 4445 |
. . . . 5
⊢ (𝐴 = ∅ → ∀𝑖 ∈ 𝐴 𝜒) |
3 | 2 | ralrimivw 3111 |
. . . 4
⊢ (𝐴 = ∅ → ∀𝑟 ∈
(1(,)+∞)∀𝑖
∈ 𝐴 𝜒) |
4 | | oveq1 7278 |
. . . . . 6
⊢ (𝑛 = 1 → (𝑛(,)+∞) =
(1(,)+∞)) |
5 | 4 | raleqdv 3347 |
. . . . 5
⊢ (𝑛 = 1 → (∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ 𝐴 𝜒 ↔ ∀𝑟 ∈ (1(,)+∞)∀𝑖 ∈ 𝐴 𝜒)) |
6 | 5 | rspcev 3561 |
. . . 4
⊢ ((1
∈ ℕ ∧ ∀𝑟 ∈ (1(,)+∞)∀𝑖 ∈ 𝐴 𝜒) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ 𝐴 𝜒) |
7 | 1, 3, 6 | sylancr 587 |
. . 3
⊢ (𝐴 = ∅ → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ 𝐴 𝜒) |
8 | 7 | adantl 482 |
. 2
⊢ ((𝜑 ∧ 𝐴 = ∅) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ 𝐴 𝜒) |
9 | | fourierdlem31.n |
. . . 4
⊢ 𝑁 = sup(ran 𝑉, ℝ, < ) |
10 | | fourierdlem31.i |
. . . . . . 7
⊢
Ⅎ𝑖𝜑 |
11 | | fourierdlem31.v |
. . . . . . 7
⊢ 𝑉 = (𝑖 ∈ 𝐴 ↦ inf(𝑀, ℝ, < )) |
12 | | fourierdlem31.m |
. . . . . . . . . 10
⊢ 𝑀 = {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} |
13 | 12 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → 𝑀 = {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}) |
14 | 13 | infeq1d 9214 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → inf(𝑀, ℝ, < ) = inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}, ℝ, < )) |
15 | | ssrab2 4018 |
. . . . . . . . 9
⊢ {𝑚 ∈ ℕ ∣
∀𝑟 ∈ (𝑚(,)+∞)𝜒} ⊆ ℕ |
16 | | nnuz 12620 |
. . . . . . . . . . 11
⊢ ℕ =
(ℤ≥‘1) |
17 | 15, 16 | sseqtri 3962 |
. . . . . . . . . 10
⊢ {𝑚 ∈ ℕ ∣
∀𝑟 ∈ (𝑚(,)+∞)𝜒} ⊆
(ℤ≥‘1) |
18 | | fourierdlem31.exm |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑖 ∈ 𝐴 ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)𝜒) |
19 | 18 | r19.21bi 3135 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)𝜒) |
20 | | rabn0 4325 |
. . . . . . . . . . 11
⊢ ({𝑚 ∈ ℕ ∣
∀𝑟 ∈ (𝑚(,)+∞)𝜒} ≠ ∅ ↔ ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)𝜒) |
21 | 19, 20 | sylibr 233 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ≠ ∅) |
22 | | infssuzcl 12671 |
. . . . . . . . . 10
⊢ (({𝑚 ∈ ℕ ∣
∀𝑟 ∈ (𝑚(,)+∞)𝜒} ⊆ (ℤ≥‘1)
∧ {𝑚 ∈ ℕ
∣ ∀𝑟 ∈
(𝑚(,)+∞)𝜒} ≠ ∅) → inf({𝑚 ∈ ℕ ∣
∀𝑟 ∈ (𝑚(,)+∞)𝜒}, ℝ, < ) ∈ {𝑚 ∈ ℕ ∣
∀𝑟 ∈ (𝑚(,)+∞)𝜒}) |
23 | 17, 21, 22 | sylancr 587 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}, ℝ, < ) ∈ {𝑚 ∈ ℕ ∣
∀𝑟 ∈ (𝑚(,)+∞)𝜒}) |
24 | 15, 23 | sselid 3924 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}, ℝ, < ) ∈
ℕ) |
25 | 14, 24 | eqeltrd 2841 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → inf(𝑀, ℝ, < ) ∈
ℕ) |
26 | 10, 11, 25 | rnmptssd 42705 |
. . . . . 6
⊢ (𝜑 → ran 𝑉 ⊆ ℕ) |
27 | 26 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → ran 𝑉 ⊆ ℕ) |
28 | | ltso 11056 |
. . . . . . 7
⊢ < Or
ℝ |
29 | 28 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → < Or
ℝ) |
30 | | fourierdlem31.a |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ Fin) |
31 | | mptfi 9096 |
. . . . . . . . . 10
⊢ (𝐴 ∈ Fin → (𝑖 ∈ 𝐴 ↦ inf(𝑀, ℝ, < )) ∈
Fin) |
32 | 30, 31 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → (𝑖 ∈ 𝐴 ↦ inf(𝑀, ℝ, < )) ∈
Fin) |
33 | 11, 32 | eqeltrid 2845 |
. . . . . . . 8
⊢ (𝜑 → 𝑉 ∈ Fin) |
34 | | rnfi 9080 |
. . . . . . . 8
⊢ (𝑉 ∈ Fin → ran 𝑉 ∈ Fin) |
35 | 33, 34 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ran 𝑉 ∈ Fin) |
36 | 35 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → ran 𝑉 ∈ Fin) |
37 | | neqne 2953 |
. . . . . . . . 9
⊢ (¬
𝐴 = ∅ → 𝐴 ≠ ∅) |
38 | | n0 4286 |
. . . . . . . . 9
⊢ (𝐴 ≠ ∅ ↔
∃𝑖 𝑖 ∈ 𝐴) |
39 | 37, 38 | sylib 217 |
. . . . . . . 8
⊢ (¬
𝐴 = ∅ →
∃𝑖 𝑖 ∈ 𝐴) |
40 | 39 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → ∃𝑖 𝑖 ∈ 𝐴) |
41 | | nfv 1921 |
. . . . . . . . 9
⊢
Ⅎ𝑖 ¬ 𝐴 = ∅ |
42 | 10, 41 | nfan 1906 |
. . . . . . . 8
⊢
Ⅎ𝑖(𝜑 ∧ ¬ 𝐴 = ∅) |
43 | | fourierdlem31.iv |
. . . . . . . . . 10
⊢
Ⅎ𝑖𝑉 |
44 | 43 | nfrn 5860 |
. . . . . . . . 9
⊢
Ⅎ𝑖ran
𝑉 |
45 | | nfcv 2909 |
. . . . . . . . 9
⊢
Ⅎ𝑖∅ |
46 | 44, 45 | nfne 3047 |
. . . . . . . 8
⊢
Ⅎ𝑖ran 𝑉 ≠ ∅ |
47 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → 𝑖 ∈ 𝐴) |
48 | 11 | elrnmpt1 5866 |
. . . . . . . . . . . 12
⊢ ((𝑖 ∈ 𝐴 ∧ inf(𝑀, ℝ, < ) ∈ ℕ) →
inf(𝑀, ℝ, < )
∈ ran 𝑉) |
49 | 47, 25, 48 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → inf(𝑀, ℝ, < ) ∈ ran 𝑉) |
50 | 49 | ne0d 4275 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → ran 𝑉 ≠ ∅) |
51 | 50 | ex 413 |
. . . . . . . . 9
⊢ (𝜑 → (𝑖 ∈ 𝐴 → ran 𝑉 ≠ ∅)) |
52 | 51 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → (𝑖 ∈ 𝐴 → ran 𝑉 ≠ ∅)) |
53 | 42, 46, 52 | exlimd 2215 |
. . . . . . 7
⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → (∃𝑖 𝑖 ∈ 𝐴 → ran 𝑉 ≠ ∅)) |
54 | 40, 53 | mpd 15 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → ran 𝑉 ≠ ∅) |
55 | | nnssre 11977 |
. . . . . . 7
⊢ ℕ
⊆ ℝ |
56 | 27, 55 | sstrdi 3938 |
. . . . . 6
⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → ran 𝑉 ⊆ ℝ) |
57 | | fisupcl 9206 |
. . . . . 6
⊢ (( <
Or ℝ ∧ (ran 𝑉
∈ Fin ∧ ran 𝑉 ≠
∅ ∧ ran 𝑉 ⊆
ℝ)) → sup(ran 𝑉,
ℝ, < ) ∈ ran 𝑉) |
58 | 29, 36, 54, 56, 57 | syl13anc 1371 |
. . . . 5
⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → sup(ran 𝑉, ℝ, < ) ∈ ran 𝑉) |
59 | 27, 58 | sseldd 3927 |
. . . 4
⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → sup(ran 𝑉, ℝ, < ) ∈
ℕ) |
60 | 9, 59 | eqeltrid 2845 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝑁 ∈ ℕ) |
61 | | fourierdlem31.r |
. . . . 5
⊢
Ⅎ𝑟𝜑 |
62 | | nfcv 2909 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖ℝ |
63 | | nfcv 2909 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖
< |
64 | 44, 62, 63 | nfsup 9188 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖sup(ran 𝑉, ℝ, < ) |
65 | 9, 64 | nfcxfr 2907 |
. . . . . . . . . 10
⊢
Ⅎ𝑖𝑁 |
66 | | nfcv 2909 |
. . . . . . . . . 10
⊢
Ⅎ𝑖(,) |
67 | | nfcv 2909 |
. . . . . . . . . 10
⊢
Ⅎ𝑖+∞ |
68 | 65, 66, 67 | nfov 7301 |
. . . . . . . . 9
⊢
Ⅎ𝑖(𝑁(,)+∞) |
69 | 68 | nfcri 2896 |
. . . . . . . 8
⊢
Ⅎ𝑖 𝑟 ∈ (𝑁(,)+∞) |
70 | 10, 69 | nfan 1906 |
. . . . . . 7
⊢
Ⅎ𝑖(𝜑 ∧ 𝑟 ∈ (𝑁(,)+∞)) |
71 | 11 | fvmpt2 6883 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ 𝐴 ∧ inf(𝑀, ℝ, < ) ∈ ℕ) →
(𝑉‘𝑖) = inf(𝑀, ℝ, < )) |
72 | 47, 25, 71 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → (𝑉‘𝑖) = inf(𝑀, ℝ, < )) |
73 | 25 | nnxrd 42555 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → inf(𝑀, ℝ, < ) ∈
ℝ*) |
74 | 72, 73 | eqeltrd 2841 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → (𝑉‘𝑖) ∈
ℝ*) |
75 | 74 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → (𝑉‘𝑖) ∈
ℝ*) |
76 | | pnfxr 11030 |
. . . . . . . . . . . 12
⊢ +∞
∈ ℝ* |
77 | 76 | a1i 11 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → +∞ ∈
ℝ*) |
78 | | elioore 13108 |
. . . . . . . . . . . 12
⊢ (𝑟 ∈ (𝑁(,)+∞) → 𝑟 ∈ ℝ) |
79 | 78 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑟 ∈ ℝ) |
80 | 72, 25 | eqeltrd 2841 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → (𝑉‘𝑖) ∈ ℕ) |
81 | 80 | nnred 11988 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → (𝑉‘𝑖) ∈ ℝ) |
82 | 81 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → (𝑉‘𝑖) ∈ ℝ) |
83 | | ne0i 4274 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 ∈ 𝐴 → 𝐴 ≠ ∅) |
84 | 83 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → 𝐴 ≠ ∅) |
85 | 84 | neneqd 2950 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → ¬ 𝐴 = ∅) |
86 | 85, 60 | syldan 591 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → 𝑁 ∈ ℕ) |
87 | 86 | nnred 11988 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → 𝑁 ∈ ℝ) |
88 | 87 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑁 ∈ ℝ) |
89 | 85, 56 | syldan 591 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → ran 𝑉 ⊆ ℝ) |
90 | 26, 55 | sstrdi 3938 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → ran 𝑉 ⊆ ℝ) |
91 | | fimaxre2 11920 |
. . . . . . . . . . . . . . . . 17
⊢ ((ran
𝑉 ⊆ ℝ ∧ ran
𝑉 ∈ Fin) →
∃𝑥 ∈ ℝ
∀𝑦 ∈ ran 𝑉 𝑦 ≤ 𝑥) |
92 | 90, 35, 91 | syl2anc 584 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑉 𝑦 ≤ 𝑥) |
93 | 92 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑉 𝑦 ≤ 𝑥) |
94 | 72, 49 | eqeltrd 2841 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → (𝑉‘𝑖) ∈ ran 𝑉) |
95 | | suprub 11936 |
. . . . . . . . . . . . . . 15
⊢ (((ran
𝑉 ⊆ ℝ ∧ ran
𝑉 ≠ ∅ ∧
∃𝑥 ∈ ℝ
∀𝑦 ∈ ran 𝑉 𝑦 ≤ 𝑥) ∧ (𝑉‘𝑖) ∈ ran 𝑉) → (𝑉‘𝑖) ≤ sup(ran 𝑉, ℝ, < )) |
96 | 89, 50, 93, 94, 95 | syl31anc 1372 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → (𝑉‘𝑖) ≤ sup(ran 𝑉, ℝ, < )) |
97 | 96, 9 | breqtrrdi 5121 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → (𝑉‘𝑖) ≤ 𝑁) |
98 | 97 | adantr 481 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → (𝑉‘𝑖) ≤ 𝑁) |
99 | 88 | rexrd 11026 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑁 ∈
ℝ*) |
100 | | simpr 485 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑟 ∈ (𝑁(,)+∞)) |
101 | | ioogtlb 43004 |
. . . . . . . . . . . . 13
⊢ ((𝑁 ∈ ℝ*
∧ +∞ ∈ ℝ* ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑁 < 𝑟) |
102 | 99, 77, 100, 101 | syl3anc 1370 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑁 < 𝑟) |
103 | 82, 88, 79, 98, 102 | lelttrd 11133 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → (𝑉‘𝑖) < 𝑟) |
104 | 79 | ltpnfd 12856 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑟 < +∞) |
105 | 75, 77, 79, 103, 104 | eliood 43007 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑟 ∈ ((𝑉‘𝑖)(,)+∞)) |
106 | 14, 23 | eqeltrd 2841 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → inf(𝑀, ℝ, < ) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}) |
107 | 72, 106 | eqeltrd 2841 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → (𝑉‘𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}) |
108 | | nfcv 2909 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑚𝐴 |
109 | | nfrab1 3316 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑚{𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} |
110 | 12, 109 | nfcxfr 2907 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑚𝑀 |
111 | | nfcv 2909 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑚ℝ |
112 | | nfcv 2909 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑚
< |
113 | 110, 111,
112 | nfinf 9219 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑚inf(𝑀, ℝ, < ) |
114 | 108, 113 | nfmpt 5186 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑚(𝑖 ∈ 𝐴 ↦ inf(𝑀, ℝ, < )) |
115 | 11, 114 | nfcxfr 2907 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑚𝑉 |
116 | | nfcv 2909 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑚𝑖 |
117 | 115, 116 | nffv 6781 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑚(𝑉‘𝑖) |
118 | 117, 109 | nfel 2923 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑚(𝑉‘𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} |
119 | 117 | nfel1 2925 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑚(𝑉‘𝑖) ∈ ℕ |
120 | | nfcv 2909 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑚(,) |
121 | | nfcv 2909 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑚+∞ |
122 | 117, 120,
121 | nfov 7301 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑚((𝑉‘𝑖)(,)+∞) |
123 | | nfv 1921 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑚𝜒 |
124 | 122, 123 | nfralw 3152 |
. . . . . . . . . . . . . . . . 17
⊢
Ⅎ𝑚∀𝑟 ∈ ((𝑉‘𝑖)(,)+∞)𝜒 |
125 | 119, 124 | nfan 1906 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑚((𝑉‘𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉‘𝑖)(,)+∞)𝜒) |
126 | 118, 125 | nfbi 1910 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑚((𝑉‘𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ ((𝑉‘𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉‘𝑖)(,)+∞)𝜒)) |
127 | | eleq1 2828 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = (𝑉‘𝑖) → (𝑚 ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ (𝑉‘𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒})) |
128 | | eleq1 2828 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = (𝑉‘𝑖) → (𝑚 ∈ ℕ ↔ (𝑉‘𝑖) ∈ ℕ)) |
129 | | oveq1 7278 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 = (𝑉‘𝑖) → (𝑚(,)+∞) = ((𝑉‘𝑖)(,)+∞)) |
130 | | nfcv 2909 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑟(𝑚(,)+∞) |
131 | | nfcv 2909 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑟𝐴 |
132 | | nfra1 3145 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑟∀𝑟 ∈ (𝑚(,)+∞)𝜒 |
133 | | nfcv 2909 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢
Ⅎ𝑟ℕ |
134 | 132, 133 | nfrabw 3317 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
Ⅎ𝑟{𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} |
135 | 12, 134 | nfcxfr 2907 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑟𝑀 |
136 | | nfcv 2909 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑟ℝ |
137 | | nfcv 2909 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
Ⅎ𝑟
< |
138 | 135, 136,
137 | nfinf 9219 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
Ⅎ𝑟inf(𝑀, ℝ, < ) |
139 | 131, 138 | nfmpt 5186 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑟(𝑖 ∈ 𝐴 ↦ inf(𝑀, ℝ, < )) |
140 | 11, 139 | nfcxfr 2907 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑟𝑉 |
141 | | nfcv 2909 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑟𝑖 |
142 | 140, 141 | nffv 6781 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑟(𝑉‘𝑖) |
143 | | nfcv 2909 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑟(,) |
144 | | nfcv 2909 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑟+∞ |
145 | 142, 143,
144 | nfov 7301 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑟((𝑉‘𝑖)(,)+∞) |
146 | 130, 145 | raleqf 3331 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑚(,)+∞) = ((𝑉‘𝑖)(,)+∞) → (∀𝑟 ∈ (𝑚(,)+∞)𝜒 ↔ ∀𝑟 ∈ ((𝑉‘𝑖)(,)+∞)𝜒)) |
147 | 129, 146 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑚 = (𝑉‘𝑖) → (∀𝑟 ∈ (𝑚(,)+∞)𝜒 ↔ ∀𝑟 ∈ ((𝑉‘𝑖)(,)+∞)𝜒)) |
148 | 128, 147 | anbi12d 631 |
. . . . . . . . . . . . . . . 16
⊢ (𝑚 = (𝑉‘𝑖) → ((𝑚 ∈ ℕ ∧ ∀𝑟 ∈ (𝑚(,)+∞)𝜒) ↔ ((𝑉‘𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉‘𝑖)(,)+∞)𝜒))) |
149 | 127, 148 | bibi12d 346 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 = (𝑉‘𝑖) → ((𝑚 ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ (𝑚 ∈ ℕ ∧ ∀𝑟 ∈ (𝑚(,)+∞)𝜒)) ↔ ((𝑉‘𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ ((𝑉‘𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉‘𝑖)(,)+∞)𝜒)))) |
150 | | rabid 3309 |
. . . . . . . . . . . . . . 15
⊢ (𝑚 ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ (𝑚 ∈ ℕ ∧ ∀𝑟 ∈ (𝑚(,)+∞)𝜒)) |
151 | 117, 126,
149, 150 | vtoclgf 3502 |
. . . . . . . . . . . . . 14
⊢ ((𝑉‘𝑖) ∈ ℕ → ((𝑉‘𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ ((𝑉‘𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉‘𝑖)(,)+∞)𝜒))) |
152 | 80, 151 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → ((𝑉‘𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ ((𝑉‘𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉‘𝑖)(,)+∞)𝜒))) |
153 | 107, 152 | mpbid 231 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → ((𝑉‘𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉‘𝑖)(,)+∞)𝜒)) |
154 | 153 | simprd 496 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐴) → ∀𝑟 ∈ ((𝑉‘𝑖)(,)+∞)𝜒) |
155 | 154 | r19.21bi 3135 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐴) ∧ 𝑟 ∈ ((𝑉‘𝑖)(,)+∞)) → 𝜒) |
156 | 105, 155 | syldan 591 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ 𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝜒) |
157 | 156 | an32s 649 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑟 ∈ (𝑁(,)+∞)) ∧ 𝑖 ∈ 𝐴) → 𝜒) |
158 | 157 | ex 413 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑟 ∈ (𝑁(,)+∞)) → (𝑖 ∈ 𝐴 → 𝜒)) |
159 | 70, 158 | ralrimi 3142 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑟 ∈ (𝑁(,)+∞)) → ∀𝑖 ∈ 𝐴 𝜒) |
160 | 159 | ex 413 |
. . . . 5
⊢ (𝜑 → (𝑟 ∈ (𝑁(,)+∞) → ∀𝑖 ∈ 𝐴 𝜒)) |
161 | 61, 160 | ralrimi 3142 |
. . . 4
⊢ (𝜑 → ∀𝑟 ∈ (𝑁(,)+∞)∀𝑖 ∈ 𝐴 𝜒) |
162 | 161 | adantr 481 |
. . 3
⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → ∀𝑟 ∈ (𝑁(,)+∞)∀𝑖 ∈ 𝐴 𝜒) |
163 | | oveq1 7278 |
. . . . 5
⊢ (𝑛 = 𝑁 → (𝑛(,)+∞) = (𝑁(,)+∞)) |
164 | | nfcv 2909 |
. . . . . 6
⊢
Ⅎ𝑟(𝑛(,)+∞) |
165 | 140 | nfrn 5860 |
. . . . . . . . 9
⊢
Ⅎ𝑟ran
𝑉 |
166 | 165, 136,
137 | nfsup 9188 |
. . . . . . . 8
⊢
Ⅎ𝑟sup(ran 𝑉, ℝ, < ) |
167 | 9, 166 | nfcxfr 2907 |
. . . . . . 7
⊢
Ⅎ𝑟𝑁 |
168 | 167, 143,
144 | nfov 7301 |
. . . . . 6
⊢
Ⅎ𝑟(𝑁(,)+∞) |
169 | 164, 168 | raleqf 3331 |
. . . . 5
⊢ ((𝑛(,)+∞) = (𝑁(,)+∞) →
(∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ 𝐴 𝜒 ↔ ∀𝑟 ∈ (𝑁(,)+∞)∀𝑖 ∈ 𝐴 𝜒)) |
170 | 163, 169 | syl 17 |
. . . 4
⊢ (𝑛 = 𝑁 → (∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ 𝐴 𝜒 ↔ ∀𝑟 ∈ (𝑁(,)+∞)∀𝑖 ∈ 𝐴 𝜒)) |
171 | 170 | rspcev 3561 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧
∀𝑟 ∈ (𝑁(,)+∞)∀𝑖 ∈ 𝐴 𝜒) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ 𝐴 𝜒) |
172 | 60, 162, 171 | syl2anc 584 |
. 2
⊢ ((𝜑 ∧ ¬ 𝐴 = ∅) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ 𝐴 𝜒) |
173 | 8, 172 | pm2.61dan 810 |
1
⊢ (𝜑 → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖 ∈ 𝐴 𝜒) |