Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem31 Structured version   Visualization version   GIF version

Theorem fourierdlem31 46184
Description: If 𝐴 is finite and for any element in 𝐴 there is a number 𝑚 such that a property holds for all numbers larger than 𝑚, then there is a number 𝑛 such that the property holds for all numbers larger than 𝑛 and for all elements in 𝐴. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 29-Sep-2020.)
Hypotheses
Ref Expression
fourierdlem31.i 𝑖𝜑
fourierdlem31.r 𝑟𝜑
fourierdlem31.iv 𝑖𝑉
fourierdlem31.a (𝜑𝐴 ∈ Fin)
fourierdlem31.exm (𝜑 → ∀𝑖𝐴𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)𝜒)
fourierdlem31.m 𝑀 = {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}
fourierdlem31.v 𝑉 = (𝑖𝐴 ↦ inf(𝑀, ℝ, < ))
fourierdlem31.n 𝑁 = sup(ran 𝑉, ℝ, < )
Assertion
Ref Expression
fourierdlem31 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒)
Distinct variable groups:   𝐴,𝑖,𝑚,𝑟   𝐴,𝑛,𝑖,𝑟   𝑛,𝑁   𝜒,𝑚   𝜒,𝑛
Allowed substitution hints:   𝜑(𝑖,𝑚,𝑛,𝑟)   𝜒(𝑖,𝑟)   𝑀(𝑖,𝑚,𝑛,𝑟)   𝑁(𝑖,𝑚,𝑟)   𝑉(𝑖,𝑚,𝑛,𝑟)

Proof of Theorem fourierdlem31
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn 12136 . . . 4 1 ∈ ℕ
2 rzal 4456 . . . . 5 (𝐴 = ∅ → ∀𝑖𝐴 𝜒)
32ralrimivw 3128 . . . 4 (𝐴 = ∅ → ∀𝑟 ∈ (1(,)+∞)∀𝑖𝐴 𝜒)
4 oveq1 7353 . . . . . 6 (𝑛 = 1 → (𝑛(,)+∞) = (1(,)+∞))
54raleqdv 3292 . . . . 5 (𝑛 = 1 → (∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒 ↔ ∀𝑟 ∈ (1(,)+∞)∀𝑖𝐴 𝜒))
65rspcev 3572 . . . 4 ((1 ∈ ℕ ∧ ∀𝑟 ∈ (1(,)+∞)∀𝑖𝐴 𝜒) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒)
71, 3, 6sylancr 587 . . 3 (𝐴 = ∅ → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒)
87adantl 481 . 2 ((𝜑𝐴 = ∅) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒)
9 fourierdlem31.n . . . 4 𝑁 = sup(ran 𝑉, ℝ, < )
10 fourierdlem31.i . . . . . . 7 𝑖𝜑
11 fourierdlem31.v . . . . . . 7 𝑉 = (𝑖𝐴 ↦ inf(𝑀, ℝ, < ))
12 fourierdlem31.m . . . . . . . . . 10 𝑀 = {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}
1312a1i 11 . . . . . . . . 9 ((𝜑𝑖𝐴) → 𝑀 = {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒})
1413infeq1d 9362 . . . . . . . 8 ((𝜑𝑖𝐴) → inf(𝑀, ℝ, < ) = inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}, ℝ, < ))
15 ssrab2 4027 . . . . . . . . 9 {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ⊆ ℕ
16 nnuz 12775 . . . . . . . . . . 11 ℕ = (ℤ‘1)
1715, 16sseqtri 3978 . . . . . . . . . 10 {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ⊆ (ℤ‘1)
18 fourierdlem31.exm . . . . . . . . . . . 12 (𝜑 → ∀𝑖𝐴𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)𝜒)
1918r19.21bi 3224 . . . . . . . . . . 11 ((𝜑𝑖𝐴) → ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)𝜒)
20 rabn0 4336 . . . . . . . . . . 11 ({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ≠ ∅ ↔ ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)𝜒)
2119, 20sylibr 234 . . . . . . . . . 10 ((𝜑𝑖𝐴) → {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ≠ ∅)
22 infssuzcl 12830 . . . . . . . . . 10 (({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ⊆ (ℤ‘1) ∧ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ≠ ∅) → inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}, ℝ, < ) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒})
2317, 21, 22sylancr 587 . . . . . . . . 9 ((𝜑𝑖𝐴) → inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}, ℝ, < ) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒})
2415, 23sselid 3927 . . . . . . . 8 ((𝜑𝑖𝐴) → inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}, ℝ, < ) ∈ ℕ)
2514, 24eqeltrd 2831 . . . . . . 7 ((𝜑𝑖𝐴) → inf(𝑀, ℝ, < ) ∈ ℕ)
2610, 11, 25rnmptssd 45241 . . . . . 6 (𝜑 → ran 𝑉 ⊆ ℕ)
2726adantr 480 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = ∅) → ran 𝑉 ⊆ ℕ)
28 ltso 11193 . . . . . . 7 < Or ℝ
2928a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = ∅) → < Or ℝ)
30 fourierdlem31.a . . . . . . . . . 10 (𝜑𝐴 ∈ Fin)
31 mptfi 9235 . . . . . . . . . 10 (𝐴 ∈ Fin → (𝑖𝐴 ↦ inf(𝑀, ℝ, < )) ∈ Fin)
3230, 31syl 17 . . . . . . . . 9 (𝜑 → (𝑖𝐴 ↦ inf(𝑀, ℝ, < )) ∈ Fin)
3311, 32eqeltrid 2835 . . . . . . . 8 (𝜑𝑉 ∈ Fin)
34 rnfi 9224 . . . . . . . 8 (𝑉 ∈ Fin → ran 𝑉 ∈ Fin)
3533, 34syl 17 . . . . . . 7 (𝜑 → ran 𝑉 ∈ Fin)
3635adantr 480 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = ∅) → ran 𝑉 ∈ Fin)
37 neqne 2936 . . . . . . . . 9 𝐴 = ∅ → 𝐴 ≠ ∅)
38 n0 4300 . . . . . . . . 9 (𝐴 ≠ ∅ ↔ ∃𝑖 𝑖𝐴)
3937, 38sylib 218 . . . . . . . 8 𝐴 = ∅ → ∃𝑖 𝑖𝐴)
4039adantl 481 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 = ∅) → ∃𝑖 𝑖𝐴)
41 nfv 1915 . . . . . . . . 9 𝑖 ¬ 𝐴 = ∅
4210, 41nfan 1900 . . . . . . . 8 𝑖(𝜑 ∧ ¬ 𝐴 = ∅)
43 fourierdlem31.iv . . . . . . . . . 10 𝑖𝑉
4443nfrn 5891 . . . . . . . . 9 𝑖ran 𝑉
45 nfcv 2894 . . . . . . . . 9 𝑖
4644, 45nfne 3029 . . . . . . . 8 𝑖ran 𝑉 ≠ ∅
47 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑖𝐴) → 𝑖𝐴)
4811elrnmpt1 5899 . . . . . . . . . . . 12 ((𝑖𝐴 ∧ inf(𝑀, ℝ, < ) ∈ ℕ) → inf(𝑀, ℝ, < ) ∈ ran 𝑉)
4947, 25, 48syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑖𝐴) → inf(𝑀, ℝ, < ) ∈ ran 𝑉)
5049ne0d 4289 . . . . . . . . . 10 ((𝜑𝑖𝐴) → ran 𝑉 ≠ ∅)
5150ex 412 . . . . . . . . 9 (𝜑 → (𝑖𝐴 → ran 𝑉 ≠ ∅))
5251adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 = ∅) → (𝑖𝐴 → ran 𝑉 ≠ ∅))
5342, 46, 52exlimd 2221 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 = ∅) → (∃𝑖 𝑖𝐴 → ran 𝑉 ≠ ∅))
5440, 53mpd 15 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = ∅) → ran 𝑉 ≠ ∅)
55 nnssre 12129 . . . . . . 7 ℕ ⊆ ℝ
5627, 55sstrdi 3942 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = ∅) → ran 𝑉 ⊆ ℝ)
57 fisupcl 9354 . . . . . 6 (( < Or ℝ ∧ (ran 𝑉 ∈ Fin ∧ ran 𝑉 ≠ ∅ ∧ ran 𝑉 ⊆ ℝ)) → sup(ran 𝑉, ℝ, < ) ∈ ran 𝑉)
5829, 36, 54, 56, 57syl13anc 1374 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = ∅) → sup(ran 𝑉, ℝ, < ) ∈ ran 𝑉)
5927, 58sseldd 3930 . . . 4 ((𝜑 ∧ ¬ 𝐴 = ∅) → sup(ran 𝑉, ℝ, < ) ∈ ℕ)
609, 59eqeltrid 2835 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝑁 ∈ ℕ)
61 fourierdlem31.r . . . . 5 𝑟𝜑
62 nfcv 2894 . . . . . . . . . . . 12 𝑖
63 nfcv 2894 . . . . . . . . . . . 12 𝑖 <
6444, 62, 63nfsup 9335 . . . . . . . . . . 11 𝑖sup(ran 𝑉, ℝ, < )
659, 64nfcxfr 2892 . . . . . . . . . 10 𝑖𝑁
66 nfcv 2894 . . . . . . . . . 10 𝑖(,)
67 nfcv 2894 . . . . . . . . . 10 𝑖+∞
6865, 66, 67nfov 7376 . . . . . . . . 9 𝑖(𝑁(,)+∞)
6968nfcri 2886 . . . . . . . 8 𝑖 𝑟 ∈ (𝑁(,)+∞)
7010, 69nfan 1900 . . . . . . 7 𝑖(𝜑𝑟 ∈ (𝑁(,)+∞))
7111fvmpt2 6940 . . . . . . . . . . . . . 14 ((𝑖𝐴 ∧ inf(𝑀, ℝ, < ) ∈ ℕ) → (𝑉𝑖) = inf(𝑀, ℝ, < ))
7247, 25, 71syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → (𝑉𝑖) = inf(𝑀, ℝ, < ))
7325nnxrd 45323 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → inf(𝑀, ℝ, < ) ∈ ℝ*)
7472, 73eqeltrd 2831 . . . . . . . . . . . 12 ((𝜑𝑖𝐴) → (𝑉𝑖) ∈ ℝ*)
7574adantr 480 . . . . . . . . . . 11 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → (𝑉𝑖) ∈ ℝ*)
76 pnfxr 11166 . . . . . . . . . . . 12 +∞ ∈ ℝ*
7776a1i 11 . . . . . . . . . . 11 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → +∞ ∈ ℝ*)
78 elioore 13275 . . . . . . . . . . . 12 (𝑟 ∈ (𝑁(,)+∞) → 𝑟 ∈ ℝ)
7978adantl 481 . . . . . . . . . . 11 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑟 ∈ ℝ)
8072, 25eqeltrd 2831 . . . . . . . . . . . . . 14 ((𝜑𝑖𝐴) → (𝑉𝑖) ∈ ℕ)
8180nnred 12140 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → (𝑉𝑖) ∈ ℝ)
8281adantr 480 . . . . . . . . . . . 12 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → (𝑉𝑖) ∈ ℝ)
83 ne0i 4288 . . . . . . . . . . . . . . . . 17 (𝑖𝐴𝐴 ≠ ∅)
8483adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝐴) → 𝐴 ≠ ∅)
8584neneqd 2933 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐴) → ¬ 𝐴 = ∅)
8685, 60syldan 591 . . . . . . . . . . . . . 14 ((𝜑𝑖𝐴) → 𝑁 ∈ ℕ)
8786nnred 12140 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → 𝑁 ∈ ℝ)
8887adantr 480 . . . . . . . . . . . 12 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑁 ∈ ℝ)
8985, 56syldan 591 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐴) → ran 𝑉 ⊆ ℝ)
9026, 55sstrdi 3942 . . . . . . . . . . . . . . . . 17 (𝜑 → ran 𝑉 ⊆ ℝ)
91 fimaxre2 12067 . . . . . . . . . . . . . . . . 17 ((ran 𝑉 ⊆ ℝ ∧ ran 𝑉 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑉 𝑦𝑥)
9290, 35, 91syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑉 𝑦𝑥)
9392adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐴) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑉 𝑦𝑥)
9472, 49eqeltrd 2831 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐴) → (𝑉𝑖) ∈ ran 𝑉)
95 suprub 12083 . . . . . . . . . . . . . . 15 (((ran 𝑉 ⊆ ℝ ∧ ran 𝑉 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑉 𝑦𝑥) ∧ (𝑉𝑖) ∈ ran 𝑉) → (𝑉𝑖) ≤ sup(ran 𝑉, ℝ, < ))
9689, 50, 93, 94, 95syl31anc 1375 . . . . . . . . . . . . . 14 ((𝜑𝑖𝐴) → (𝑉𝑖) ≤ sup(ran 𝑉, ℝ, < ))
9796, 9breqtrrdi 5131 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → (𝑉𝑖) ≤ 𝑁)
9897adantr 480 . . . . . . . . . . . 12 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → (𝑉𝑖) ≤ 𝑁)
9988rexrd 11162 . . . . . . . . . . . . 13 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑁 ∈ ℝ*)
100 simpr 484 . . . . . . . . . . . . 13 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑟 ∈ (𝑁(,)+∞))
101 ioogtlb 45543 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑟 ∈ (𝑁(,)+∞)) → 𝑁 < 𝑟)
10299, 77, 100, 101syl3anc 1373 . . . . . . . . . . . 12 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑁 < 𝑟)
10382, 88, 79, 98, 102lelttrd 11271 . . . . . . . . . . 11 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → (𝑉𝑖) < 𝑟)
10479ltpnfd 13020 . . . . . . . . . . 11 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑟 < +∞)
10575, 77, 79, 103, 104eliood 45546 . . . . . . . . . 10 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑟 ∈ ((𝑉𝑖)(,)+∞))
10614, 23eqeltrd 2831 . . . . . . . . . . . . . 14 ((𝜑𝑖𝐴) → inf(𝑀, ℝ, < ) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒})
10772, 106eqeltrd 2831 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → (𝑉𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒})
108 nfcv 2894 . . . . . . . . . . . . . . . . . 18 𝑚𝐴
109 nfrab1 3415 . . . . . . . . . . . . . . . . . . . 20 𝑚{𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}
11012, 109nfcxfr 2892 . . . . . . . . . . . . . . . . . . 19 𝑚𝑀
111 nfcv 2894 . . . . . . . . . . . . . . . . . . 19 𝑚
112 nfcv 2894 . . . . . . . . . . . . . . . . . . 19 𝑚 <
113110, 111, 112nfinf 9367 . . . . . . . . . . . . . . . . . 18 𝑚inf(𝑀, ℝ, < )
114108, 113nfmpt 5187 . . . . . . . . . . . . . . . . 17 𝑚(𝑖𝐴 ↦ inf(𝑀, ℝ, < ))
11511, 114nfcxfr 2892 . . . . . . . . . . . . . . . 16 𝑚𝑉
116 nfcv 2894 . . . . . . . . . . . . . . . 16 𝑚𝑖
117115, 116nffv 6832 . . . . . . . . . . . . . . 15 𝑚(𝑉𝑖)
118117, 109nfel 2909 . . . . . . . . . . . . . . . 16 𝑚(𝑉𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}
119117nfel1 2911 . . . . . . . . . . . . . . . . 17 𝑚(𝑉𝑖) ∈ ℕ
120 nfcv 2894 . . . . . . . . . . . . . . . . . . 19 𝑚(,)
121 nfcv 2894 . . . . . . . . . . . . . . . . . . 19 𝑚+∞
122117, 120, 121nfov 7376 . . . . . . . . . . . . . . . . . 18 𝑚((𝑉𝑖)(,)+∞)
123 nfv 1915 . . . . . . . . . . . . . . . . . 18 𝑚𝜒
124122, 123nfralw 3279 . . . . . . . . . . . . . . . . 17 𝑚𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒
125119, 124nfan 1900 . . . . . . . . . . . . . . . 16 𝑚((𝑉𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒)
126118, 125nfbi 1904 . . . . . . . . . . . . . . 15 𝑚((𝑉𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ ((𝑉𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒))
127 eleq1 2819 . . . . . . . . . . . . . . . 16 (𝑚 = (𝑉𝑖) → (𝑚 ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ (𝑉𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}))
128 eleq1 2819 . . . . . . . . . . . . . . . . 17 (𝑚 = (𝑉𝑖) → (𝑚 ∈ ℕ ↔ (𝑉𝑖) ∈ ℕ))
129 oveq1 7353 . . . . . . . . . . . . . . . . . 18 (𝑚 = (𝑉𝑖) → (𝑚(,)+∞) = ((𝑉𝑖)(,)+∞))
130 nfcv 2894 . . . . . . . . . . . . . . . . . . 19 𝑟(𝑚(,)+∞)
131 nfcv 2894 . . . . . . . . . . . . . . . . . . . . . . 23 𝑟𝐴
132 nfra1 3256 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑟𝑟 ∈ (𝑚(,)+∞)𝜒
133 nfcv 2894 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑟
134132, 133nfrabw 3432 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑟{𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}
13512, 134nfcxfr 2892 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑟𝑀
136 nfcv 2894 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑟
137 nfcv 2894 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑟 <
138135, 136, 137nfinf 9367 . . . . . . . . . . . . . . . . . . . . . . 23 𝑟inf(𝑀, ℝ, < )
139131, 138nfmpt 5187 . . . . . . . . . . . . . . . . . . . . . 22 𝑟(𝑖𝐴 ↦ inf(𝑀, ℝ, < ))
14011, 139nfcxfr 2892 . . . . . . . . . . . . . . . . . . . . 21 𝑟𝑉
141 nfcv 2894 . . . . . . . . . . . . . . . . . . . . 21 𝑟𝑖
142140, 141nffv 6832 . . . . . . . . . . . . . . . . . . . 20 𝑟(𝑉𝑖)
143 nfcv 2894 . . . . . . . . . . . . . . . . . . . 20 𝑟(,)
144 nfcv 2894 . . . . . . . . . . . . . . . . . . . 20 𝑟+∞
145142, 143, 144nfov 7376 . . . . . . . . . . . . . . . . . . 19 𝑟((𝑉𝑖)(,)+∞)
146130, 145raleqf 3321 . . . . . . . . . . . . . . . . . 18 ((𝑚(,)+∞) = ((𝑉𝑖)(,)+∞) → (∀𝑟 ∈ (𝑚(,)+∞)𝜒 ↔ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒))
147129, 146syl 17 . . . . . . . . . . . . . . . . 17 (𝑚 = (𝑉𝑖) → (∀𝑟 ∈ (𝑚(,)+∞)𝜒 ↔ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒))
148128, 147anbi12d 632 . . . . . . . . . . . . . . . 16 (𝑚 = (𝑉𝑖) → ((𝑚 ∈ ℕ ∧ ∀𝑟 ∈ (𝑚(,)+∞)𝜒) ↔ ((𝑉𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒)))
149127, 148bibi12d 345 . . . . . . . . . . . . . . 15 (𝑚 = (𝑉𝑖) → ((𝑚 ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ (𝑚 ∈ ℕ ∧ ∀𝑟 ∈ (𝑚(,)+∞)𝜒)) ↔ ((𝑉𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ ((𝑉𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒))))
150 rabid 3416 . . . . . . . . . . . . . . 15 (𝑚 ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ (𝑚 ∈ ℕ ∧ ∀𝑟 ∈ (𝑚(,)+∞)𝜒))
151117, 126, 149, 150vtoclgf 3521 . . . . . . . . . . . . . 14 ((𝑉𝑖) ∈ ℕ → ((𝑉𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ ((𝑉𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒)))
15280, 151syl 17 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → ((𝑉𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ ((𝑉𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒)))
153107, 152mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑖𝐴) → ((𝑉𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒))
154153simprd 495 . . . . . . . . . . 11 ((𝜑𝑖𝐴) → ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒)
155154r19.21bi 3224 . . . . . . . . . 10 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ ((𝑉𝑖)(,)+∞)) → 𝜒)
156105, 155syldan 591 . . . . . . . . 9 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝜒)
157156an32s 652 . . . . . . . 8 (((𝜑𝑟 ∈ (𝑁(,)+∞)) ∧ 𝑖𝐴) → 𝜒)
158157ex 412 . . . . . . 7 ((𝜑𝑟 ∈ (𝑁(,)+∞)) → (𝑖𝐴𝜒))
15970, 158ralrimi 3230 . . . . . 6 ((𝜑𝑟 ∈ (𝑁(,)+∞)) → ∀𝑖𝐴 𝜒)
160159ex 412 . . . . 5 (𝜑 → (𝑟 ∈ (𝑁(,)+∞) → ∀𝑖𝐴 𝜒))
16161, 160ralrimi 3230 . . . 4 (𝜑 → ∀𝑟 ∈ (𝑁(,)+∞)∀𝑖𝐴 𝜒)
162161adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → ∀𝑟 ∈ (𝑁(,)+∞)∀𝑖𝐴 𝜒)
163 oveq1 7353 . . . . 5 (𝑛 = 𝑁 → (𝑛(,)+∞) = (𝑁(,)+∞))
164 nfcv 2894 . . . . . 6 𝑟(𝑛(,)+∞)
165140nfrn 5891 . . . . . . . . 9 𝑟ran 𝑉
166165, 136, 137nfsup 9335 . . . . . . . 8 𝑟sup(ran 𝑉, ℝ, < )
1679, 166nfcxfr 2892 . . . . . . 7 𝑟𝑁
168167, 143, 144nfov 7376 . . . . . 6 𝑟(𝑁(,)+∞)
169164, 168raleqf 3321 . . . . 5 ((𝑛(,)+∞) = (𝑁(,)+∞) → (∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒 ↔ ∀𝑟 ∈ (𝑁(,)+∞)∀𝑖𝐴 𝜒))
170163, 169syl 17 . . . 4 (𝑛 = 𝑁 → (∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒 ↔ ∀𝑟 ∈ (𝑁(,)+∞)∀𝑖𝐴 𝜒))
171170rspcev 3572 . . 3 ((𝑁 ∈ ℕ ∧ ∀𝑟 ∈ (𝑁(,)+∞)∀𝑖𝐴 𝜒) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒)
17260, 162, 171syl2anc 584 . 2 ((𝜑 ∧ ¬ 𝐴 = ∅) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒)
1738, 172pm2.61dan 812 1 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wex 1780  wnf 1784  wcel 2111  wnfc 2879  wne 2928  wral 3047  wrex 3056  {crab 3395  wss 3897  c0 4280   class class class wbr 5089  cmpt 5170   Or wor 5521  ran crn 5615  cfv 6481  (class class class)co 7346  Fincfn 8869  supcsup 9324  infcinf 9325  cr 11005  1c1 11007  +∞cpnf 11143  *cxr 11145   < clt 11146  cle 11147  cn 12125  cuz 12732  (,)cioo 13245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-ioo 13249
This theorem is referenced by:  fourierdlem73  46225
  Copyright terms: Public domain W3C validator