Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem31 Structured version   Visualization version   GIF version

Theorem fourierdlem31 43650
Description: If 𝐴 is finite and for any element in 𝐴 there is a number 𝑚 such that a property holds for all numbers larger than 𝑚, then there is a number 𝑛 such that the property holds for all numbers larger than 𝑛 and for all elements in 𝐴. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 29-Sep-2020.)
Hypotheses
Ref Expression
fourierdlem31.i 𝑖𝜑
fourierdlem31.r 𝑟𝜑
fourierdlem31.iv 𝑖𝑉
fourierdlem31.a (𝜑𝐴 ∈ Fin)
fourierdlem31.exm (𝜑 → ∀𝑖𝐴𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)𝜒)
fourierdlem31.m 𝑀 = {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}
fourierdlem31.v 𝑉 = (𝑖𝐴 ↦ inf(𝑀, ℝ, < ))
fourierdlem31.n 𝑁 = sup(ran 𝑉, ℝ, < )
Assertion
Ref Expression
fourierdlem31 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒)
Distinct variable groups:   𝐴,𝑖,𝑚,𝑟   𝐴,𝑛,𝑖,𝑟   𝑛,𝑁   𝜒,𝑚   𝜒,𝑛
Allowed substitution hints:   𝜑(𝑖,𝑚,𝑛,𝑟)   𝜒(𝑖,𝑟)   𝑀(𝑖,𝑚,𝑛,𝑟)   𝑁(𝑖,𝑚,𝑟)   𝑉(𝑖,𝑚,𝑛,𝑟)

Proof of Theorem fourierdlem31
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn 11984 . . . 4 1 ∈ ℕ
2 rzal 4445 . . . . 5 (𝐴 = ∅ → ∀𝑖𝐴 𝜒)
32ralrimivw 3111 . . . 4 (𝐴 = ∅ → ∀𝑟 ∈ (1(,)+∞)∀𝑖𝐴 𝜒)
4 oveq1 7278 . . . . . 6 (𝑛 = 1 → (𝑛(,)+∞) = (1(,)+∞))
54raleqdv 3347 . . . . 5 (𝑛 = 1 → (∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒 ↔ ∀𝑟 ∈ (1(,)+∞)∀𝑖𝐴 𝜒))
65rspcev 3561 . . . 4 ((1 ∈ ℕ ∧ ∀𝑟 ∈ (1(,)+∞)∀𝑖𝐴 𝜒) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒)
71, 3, 6sylancr 587 . . 3 (𝐴 = ∅ → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒)
87adantl 482 . 2 ((𝜑𝐴 = ∅) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒)
9 fourierdlem31.n . . . 4 𝑁 = sup(ran 𝑉, ℝ, < )
10 fourierdlem31.i . . . . . . 7 𝑖𝜑
11 fourierdlem31.v . . . . . . 7 𝑉 = (𝑖𝐴 ↦ inf(𝑀, ℝ, < ))
12 fourierdlem31.m . . . . . . . . . 10 𝑀 = {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}
1312a1i 11 . . . . . . . . 9 ((𝜑𝑖𝐴) → 𝑀 = {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒})
1413infeq1d 9214 . . . . . . . 8 ((𝜑𝑖𝐴) → inf(𝑀, ℝ, < ) = inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}, ℝ, < ))
15 ssrab2 4018 . . . . . . . . 9 {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ⊆ ℕ
16 nnuz 12620 . . . . . . . . . . 11 ℕ = (ℤ‘1)
1715, 16sseqtri 3962 . . . . . . . . . 10 {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ⊆ (ℤ‘1)
18 fourierdlem31.exm . . . . . . . . . . . 12 (𝜑 → ∀𝑖𝐴𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)𝜒)
1918r19.21bi 3135 . . . . . . . . . . 11 ((𝜑𝑖𝐴) → ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)𝜒)
20 rabn0 4325 . . . . . . . . . . 11 ({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ≠ ∅ ↔ ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)𝜒)
2119, 20sylibr 233 . . . . . . . . . 10 ((𝜑𝑖𝐴) → {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ≠ ∅)
22 infssuzcl 12671 . . . . . . . . . 10 (({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ⊆ (ℤ‘1) ∧ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ≠ ∅) → inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}, ℝ, < ) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒})
2317, 21, 22sylancr 587 . . . . . . . . 9 ((𝜑𝑖𝐴) → inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}, ℝ, < ) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒})
2415, 23sselid 3924 . . . . . . . 8 ((𝜑𝑖𝐴) → inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}, ℝ, < ) ∈ ℕ)
2514, 24eqeltrd 2841 . . . . . . 7 ((𝜑𝑖𝐴) → inf(𝑀, ℝ, < ) ∈ ℕ)
2610, 11, 25rnmptssd 42705 . . . . . 6 (𝜑 → ran 𝑉 ⊆ ℕ)
2726adantr 481 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = ∅) → ran 𝑉 ⊆ ℕ)
28 ltso 11056 . . . . . . 7 < Or ℝ
2928a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = ∅) → < Or ℝ)
30 fourierdlem31.a . . . . . . . . . 10 (𝜑𝐴 ∈ Fin)
31 mptfi 9096 . . . . . . . . . 10 (𝐴 ∈ Fin → (𝑖𝐴 ↦ inf(𝑀, ℝ, < )) ∈ Fin)
3230, 31syl 17 . . . . . . . . 9 (𝜑 → (𝑖𝐴 ↦ inf(𝑀, ℝ, < )) ∈ Fin)
3311, 32eqeltrid 2845 . . . . . . . 8 (𝜑𝑉 ∈ Fin)
34 rnfi 9080 . . . . . . . 8 (𝑉 ∈ Fin → ran 𝑉 ∈ Fin)
3533, 34syl 17 . . . . . . 7 (𝜑 → ran 𝑉 ∈ Fin)
3635adantr 481 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = ∅) → ran 𝑉 ∈ Fin)
37 neqne 2953 . . . . . . . . 9 𝐴 = ∅ → 𝐴 ≠ ∅)
38 n0 4286 . . . . . . . . 9 (𝐴 ≠ ∅ ↔ ∃𝑖 𝑖𝐴)
3937, 38sylib 217 . . . . . . . 8 𝐴 = ∅ → ∃𝑖 𝑖𝐴)
4039adantl 482 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 = ∅) → ∃𝑖 𝑖𝐴)
41 nfv 1921 . . . . . . . . 9 𝑖 ¬ 𝐴 = ∅
4210, 41nfan 1906 . . . . . . . 8 𝑖(𝜑 ∧ ¬ 𝐴 = ∅)
43 fourierdlem31.iv . . . . . . . . . 10 𝑖𝑉
4443nfrn 5860 . . . . . . . . 9 𝑖ran 𝑉
45 nfcv 2909 . . . . . . . . 9 𝑖
4644, 45nfne 3047 . . . . . . . 8 𝑖ran 𝑉 ≠ ∅
47 simpr 485 . . . . . . . . . . . 12 ((𝜑𝑖𝐴) → 𝑖𝐴)
4811elrnmpt1 5866 . . . . . . . . . . . 12 ((𝑖𝐴 ∧ inf(𝑀, ℝ, < ) ∈ ℕ) → inf(𝑀, ℝ, < ) ∈ ran 𝑉)
4947, 25, 48syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑖𝐴) → inf(𝑀, ℝ, < ) ∈ ran 𝑉)
5049ne0d 4275 . . . . . . . . . 10 ((𝜑𝑖𝐴) → ran 𝑉 ≠ ∅)
5150ex 413 . . . . . . . . 9 (𝜑 → (𝑖𝐴 → ran 𝑉 ≠ ∅))
5251adantr 481 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 = ∅) → (𝑖𝐴 → ran 𝑉 ≠ ∅))
5342, 46, 52exlimd 2215 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 = ∅) → (∃𝑖 𝑖𝐴 → ran 𝑉 ≠ ∅))
5440, 53mpd 15 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = ∅) → ran 𝑉 ≠ ∅)
55 nnssre 11977 . . . . . . 7 ℕ ⊆ ℝ
5627, 55sstrdi 3938 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = ∅) → ran 𝑉 ⊆ ℝ)
57 fisupcl 9206 . . . . . 6 (( < Or ℝ ∧ (ran 𝑉 ∈ Fin ∧ ran 𝑉 ≠ ∅ ∧ ran 𝑉 ⊆ ℝ)) → sup(ran 𝑉, ℝ, < ) ∈ ran 𝑉)
5829, 36, 54, 56, 57syl13anc 1371 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = ∅) → sup(ran 𝑉, ℝ, < ) ∈ ran 𝑉)
5927, 58sseldd 3927 . . . 4 ((𝜑 ∧ ¬ 𝐴 = ∅) → sup(ran 𝑉, ℝ, < ) ∈ ℕ)
609, 59eqeltrid 2845 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝑁 ∈ ℕ)
61 fourierdlem31.r . . . . 5 𝑟𝜑
62 nfcv 2909 . . . . . . . . . . . 12 𝑖
63 nfcv 2909 . . . . . . . . . . . 12 𝑖 <
6444, 62, 63nfsup 9188 . . . . . . . . . . 11 𝑖sup(ran 𝑉, ℝ, < )
659, 64nfcxfr 2907 . . . . . . . . . 10 𝑖𝑁
66 nfcv 2909 . . . . . . . . . 10 𝑖(,)
67 nfcv 2909 . . . . . . . . . 10 𝑖+∞
6865, 66, 67nfov 7301 . . . . . . . . 9 𝑖(𝑁(,)+∞)
6968nfcri 2896 . . . . . . . 8 𝑖 𝑟 ∈ (𝑁(,)+∞)
7010, 69nfan 1906 . . . . . . 7 𝑖(𝜑𝑟 ∈ (𝑁(,)+∞))
7111fvmpt2 6883 . . . . . . . . . . . . . 14 ((𝑖𝐴 ∧ inf(𝑀, ℝ, < ) ∈ ℕ) → (𝑉𝑖) = inf(𝑀, ℝ, < ))
7247, 25, 71syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → (𝑉𝑖) = inf(𝑀, ℝ, < ))
7325nnxrd 42555 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → inf(𝑀, ℝ, < ) ∈ ℝ*)
7472, 73eqeltrd 2841 . . . . . . . . . . . 12 ((𝜑𝑖𝐴) → (𝑉𝑖) ∈ ℝ*)
7574adantr 481 . . . . . . . . . . 11 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → (𝑉𝑖) ∈ ℝ*)
76 pnfxr 11030 . . . . . . . . . . . 12 +∞ ∈ ℝ*
7776a1i 11 . . . . . . . . . . 11 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → +∞ ∈ ℝ*)
78 elioore 13108 . . . . . . . . . . . 12 (𝑟 ∈ (𝑁(,)+∞) → 𝑟 ∈ ℝ)
7978adantl 482 . . . . . . . . . . 11 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑟 ∈ ℝ)
8072, 25eqeltrd 2841 . . . . . . . . . . . . . 14 ((𝜑𝑖𝐴) → (𝑉𝑖) ∈ ℕ)
8180nnred 11988 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → (𝑉𝑖) ∈ ℝ)
8281adantr 481 . . . . . . . . . . . 12 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → (𝑉𝑖) ∈ ℝ)
83 ne0i 4274 . . . . . . . . . . . . . . . . 17 (𝑖𝐴𝐴 ≠ ∅)
8483adantl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝐴) → 𝐴 ≠ ∅)
8584neneqd 2950 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐴) → ¬ 𝐴 = ∅)
8685, 60syldan 591 . . . . . . . . . . . . . 14 ((𝜑𝑖𝐴) → 𝑁 ∈ ℕ)
8786nnred 11988 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → 𝑁 ∈ ℝ)
8887adantr 481 . . . . . . . . . . . 12 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑁 ∈ ℝ)
8985, 56syldan 591 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐴) → ran 𝑉 ⊆ ℝ)
9026, 55sstrdi 3938 . . . . . . . . . . . . . . . . 17 (𝜑 → ran 𝑉 ⊆ ℝ)
91 fimaxre2 11920 . . . . . . . . . . . . . . . . 17 ((ran 𝑉 ⊆ ℝ ∧ ran 𝑉 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑉 𝑦𝑥)
9290, 35, 91syl2anc 584 . . . . . . . . . . . . . . . 16 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑉 𝑦𝑥)
9392adantr 481 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐴) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑉 𝑦𝑥)
9472, 49eqeltrd 2841 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐴) → (𝑉𝑖) ∈ ran 𝑉)
95 suprub 11936 . . . . . . . . . . . . . . 15 (((ran 𝑉 ⊆ ℝ ∧ ran 𝑉 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑉 𝑦𝑥) ∧ (𝑉𝑖) ∈ ran 𝑉) → (𝑉𝑖) ≤ sup(ran 𝑉, ℝ, < ))
9689, 50, 93, 94, 95syl31anc 1372 . . . . . . . . . . . . . 14 ((𝜑𝑖𝐴) → (𝑉𝑖) ≤ sup(ran 𝑉, ℝ, < ))
9796, 9breqtrrdi 5121 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → (𝑉𝑖) ≤ 𝑁)
9897adantr 481 . . . . . . . . . . . 12 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → (𝑉𝑖) ≤ 𝑁)
9988rexrd 11026 . . . . . . . . . . . . 13 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑁 ∈ ℝ*)
100 simpr 485 . . . . . . . . . . . . 13 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑟 ∈ (𝑁(,)+∞))
101 ioogtlb 43004 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑟 ∈ (𝑁(,)+∞)) → 𝑁 < 𝑟)
10299, 77, 100, 101syl3anc 1370 . . . . . . . . . . . 12 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑁 < 𝑟)
10382, 88, 79, 98, 102lelttrd 11133 . . . . . . . . . . 11 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → (𝑉𝑖) < 𝑟)
10479ltpnfd 12856 . . . . . . . . . . 11 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑟 < +∞)
10575, 77, 79, 103, 104eliood 43007 . . . . . . . . . 10 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑟 ∈ ((𝑉𝑖)(,)+∞))
10614, 23eqeltrd 2841 . . . . . . . . . . . . . 14 ((𝜑𝑖𝐴) → inf(𝑀, ℝ, < ) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒})
10772, 106eqeltrd 2841 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → (𝑉𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒})
108 nfcv 2909 . . . . . . . . . . . . . . . . . 18 𝑚𝐴
109 nfrab1 3316 . . . . . . . . . . . . . . . . . . . 20 𝑚{𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}
11012, 109nfcxfr 2907 . . . . . . . . . . . . . . . . . . 19 𝑚𝑀
111 nfcv 2909 . . . . . . . . . . . . . . . . . . 19 𝑚
112 nfcv 2909 . . . . . . . . . . . . . . . . . . 19 𝑚 <
113110, 111, 112nfinf 9219 . . . . . . . . . . . . . . . . . 18 𝑚inf(𝑀, ℝ, < )
114108, 113nfmpt 5186 . . . . . . . . . . . . . . . . 17 𝑚(𝑖𝐴 ↦ inf(𝑀, ℝ, < ))
11511, 114nfcxfr 2907 . . . . . . . . . . . . . . . 16 𝑚𝑉
116 nfcv 2909 . . . . . . . . . . . . . . . 16 𝑚𝑖
117115, 116nffv 6781 . . . . . . . . . . . . . . 15 𝑚(𝑉𝑖)
118117, 109nfel 2923 . . . . . . . . . . . . . . . 16 𝑚(𝑉𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}
119117nfel1 2925 . . . . . . . . . . . . . . . . 17 𝑚(𝑉𝑖) ∈ ℕ
120 nfcv 2909 . . . . . . . . . . . . . . . . . . 19 𝑚(,)
121 nfcv 2909 . . . . . . . . . . . . . . . . . . 19 𝑚+∞
122117, 120, 121nfov 7301 . . . . . . . . . . . . . . . . . 18 𝑚((𝑉𝑖)(,)+∞)
123 nfv 1921 . . . . . . . . . . . . . . . . . 18 𝑚𝜒
124122, 123nfralw 3152 . . . . . . . . . . . . . . . . 17 𝑚𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒
125119, 124nfan 1906 . . . . . . . . . . . . . . . 16 𝑚((𝑉𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒)
126118, 125nfbi 1910 . . . . . . . . . . . . . . 15 𝑚((𝑉𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ ((𝑉𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒))
127 eleq1 2828 . . . . . . . . . . . . . . . 16 (𝑚 = (𝑉𝑖) → (𝑚 ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ (𝑉𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}))
128 eleq1 2828 . . . . . . . . . . . . . . . . 17 (𝑚 = (𝑉𝑖) → (𝑚 ∈ ℕ ↔ (𝑉𝑖) ∈ ℕ))
129 oveq1 7278 . . . . . . . . . . . . . . . . . 18 (𝑚 = (𝑉𝑖) → (𝑚(,)+∞) = ((𝑉𝑖)(,)+∞))
130 nfcv 2909 . . . . . . . . . . . . . . . . . . 19 𝑟(𝑚(,)+∞)
131 nfcv 2909 . . . . . . . . . . . . . . . . . . . . . . 23 𝑟𝐴
132 nfra1 3145 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑟𝑟 ∈ (𝑚(,)+∞)𝜒
133 nfcv 2909 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑟
134132, 133nfrabw 3317 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑟{𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}
13512, 134nfcxfr 2907 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑟𝑀
136 nfcv 2909 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑟
137 nfcv 2909 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑟 <
138135, 136, 137nfinf 9219 . . . . . . . . . . . . . . . . . . . . . . 23 𝑟inf(𝑀, ℝ, < )
139131, 138nfmpt 5186 . . . . . . . . . . . . . . . . . . . . . 22 𝑟(𝑖𝐴 ↦ inf(𝑀, ℝ, < ))
14011, 139nfcxfr 2907 . . . . . . . . . . . . . . . . . . . . 21 𝑟𝑉
141 nfcv 2909 . . . . . . . . . . . . . . . . . . . . 21 𝑟𝑖
142140, 141nffv 6781 . . . . . . . . . . . . . . . . . . . 20 𝑟(𝑉𝑖)
143 nfcv 2909 . . . . . . . . . . . . . . . . . . . 20 𝑟(,)
144 nfcv 2909 . . . . . . . . . . . . . . . . . . . 20 𝑟+∞
145142, 143, 144nfov 7301 . . . . . . . . . . . . . . . . . . 19 𝑟((𝑉𝑖)(,)+∞)
146130, 145raleqf 3331 . . . . . . . . . . . . . . . . . 18 ((𝑚(,)+∞) = ((𝑉𝑖)(,)+∞) → (∀𝑟 ∈ (𝑚(,)+∞)𝜒 ↔ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒))
147129, 146syl 17 . . . . . . . . . . . . . . . . 17 (𝑚 = (𝑉𝑖) → (∀𝑟 ∈ (𝑚(,)+∞)𝜒 ↔ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒))
148128, 147anbi12d 631 . . . . . . . . . . . . . . . 16 (𝑚 = (𝑉𝑖) → ((𝑚 ∈ ℕ ∧ ∀𝑟 ∈ (𝑚(,)+∞)𝜒) ↔ ((𝑉𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒)))
149127, 148bibi12d 346 . . . . . . . . . . . . . . 15 (𝑚 = (𝑉𝑖) → ((𝑚 ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ (𝑚 ∈ ℕ ∧ ∀𝑟 ∈ (𝑚(,)+∞)𝜒)) ↔ ((𝑉𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ ((𝑉𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒))))
150 rabid 3309 . . . . . . . . . . . . . . 15 (𝑚 ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ (𝑚 ∈ ℕ ∧ ∀𝑟 ∈ (𝑚(,)+∞)𝜒))
151117, 126, 149, 150vtoclgf 3502 . . . . . . . . . . . . . 14 ((𝑉𝑖) ∈ ℕ → ((𝑉𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ ((𝑉𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒)))
15280, 151syl 17 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → ((𝑉𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ ((𝑉𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒)))
153107, 152mpbid 231 . . . . . . . . . . . 12 ((𝜑𝑖𝐴) → ((𝑉𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒))
154153simprd 496 . . . . . . . . . . 11 ((𝜑𝑖𝐴) → ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒)
155154r19.21bi 3135 . . . . . . . . . 10 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ ((𝑉𝑖)(,)+∞)) → 𝜒)
156105, 155syldan 591 . . . . . . . . 9 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝜒)
157156an32s 649 . . . . . . . 8 (((𝜑𝑟 ∈ (𝑁(,)+∞)) ∧ 𝑖𝐴) → 𝜒)
158157ex 413 . . . . . . 7 ((𝜑𝑟 ∈ (𝑁(,)+∞)) → (𝑖𝐴𝜒))
15970, 158ralrimi 3142 . . . . . 6 ((𝜑𝑟 ∈ (𝑁(,)+∞)) → ∀𝑖𝐴 𝜒)
160159ex 413 . . . . 5 (𝜑 → (𝑟 ∈ (𝑁(,)+∞) → ∀𝑖𝐴 𝜒))
16161, 160ralrimi 3142 . . . 4 (𝜑 → ∀𝑟 ∈ (𝑁(,)+∞)∀𝑖𝐴 𝜒)
162161adantr 481 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → ∀𝑟 ∈ (𝑁(,)+∞)∀𝑖𝐴 𝜒)
163 oveq1 7278 . . . . 5 (𝑛 = 𝑁 → (𝑛(,)+∞) = (𝑁(,)+∞))
164 nfcv 2909 . . . . . 6 𝑟(𝑛(,)+∞)
165140nfrn 5860 . . . . . . . . 9 𝑟ran 𝑉
166165, 136, 137nfsup 9188 . . . . . . . 8 𝑟sup(ran 𝑉, ℝ, < )
1679, 166nfcxfr 2907 . . . . . . 7 𝑟𝑁
168167, 143, 144nfov 7301 . . . . . 6 𝑟(𝑁(,)+∞)
169164, 168raleqf 3331 . . . . 5 ((𝑛(,)+∞) = (𝑁(,)+∞) → (∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒 ↔ ∀𝑟 ∈ (𝑁(,)+∞)∀𝑖𝐴 𝜒))
170163, 169syl 17 . . . 4 (𝑛 = 𝑁 → (∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒 ↔ ∀𝑟 ∈ (𝑁(,)+∞)∀𝑖𝐴 𝜒))
171170rspcev 3561 . . 3 ((𝑁 ∈ ℕ ∧ ∀𝑟 ∈ (𝑁(,)+∞)∀𝑖𝐴 𝜒) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒)
17260, 162, 171syl2anc 584 . 2 ((𝜑 ∧ ¬ 𝐴 = ∅) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒)
1738, 172pm2.61dan 810 1 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1542  wex 1786  wnf 1790  wcel 2110  wnfc 2889  wne 2945  wral 3066  wrex 3067  {crab 3070  wss 3892  c0 4262   class class class wbr 5079  cmpt 5162   Or wor 5503  ran crn 5591  cfv 6432  (class class class)co 7271  Fincfn 8716  supcsup 9177  infcinf 9178  cr 10871  1c1 10873  +∞cpnf 11007  *cxr 11009   < clt 11010  cle 11011  cn 11973  cuz 12581  (,)cioo 13078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-sup 9179  df-inf 9180  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12582  df-ioo 13082
This theorem is referenced by:  fourierdlem73  43691
  Copyright terms: Public domain W3C validator