Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem31 Structured version   Visualization version   GIF version

Theorem fourierdlem31 43308
Description: If 𝐴 is finite and for any element in 𝐴 there is a number 𝑚 such that a property holds for all numbers larger than 𝑚, then there is a number 𝑛 such that the property holds for all numbers larger than 𝑛 and for all elements in 𝐴. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (Revised by AV, 29-Sep-2020.)
Hypotheses
Ref Expression
fourierdlem31.i 𝑖𝜑
fourierdlem31.r 𝑟𝜑
fourierdlem31.iv 𝑖𝑉
fourierdlem31.a (𝜑𝐴 ∈ Fin)
fourierdlem31.exm (𝜑 → ∀𝑖𝐴𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)𝜒)
fourierdlem31.m 𝑀 = {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}
fourierdlem31.v 𝑉 = (𝑖𝐴 ↦ inf(𝑀, ℝ, < ))
fourierdlem31.n 𝑁 = sup(ran 𝑉, ℝ, < )
Assertion
Ref Expression
fourierdlem31 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒)
Distinct variable groups:   𝐴,𝑖,𝑚,𝑟   𝐴,𝑛,𝑖,𝑟   𝑛,𝑁   𝜒,𝑚   𝜒,𝑛
Allowed substitution hints:   𝜑(𝑖,𝑚,𝑛,𝑟)   𝜒(𝑖,𝑟)   𝑀(𝑖,𝑚,𝑛,𝑟)   𝑁(𝑖,𝑚,𝑟)   𝑉(𝑖,𝑚,𝑛,𝑟)

Proof of Theorem fourierdlem31
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1nn 11824 . . . 4 1 ∈ ℕ
2 rzal 4410 . . . . 5 (𝐴 = ∅ → ∀𝑖𝐴 𝜒)
32ralrimivw 3099 . . . 4 (𝐴 = ∅ → ∀𝑟 ∈ (1(,)+∞)∀𝑖𝐴 𝜒)
4 oveq1 7209 . . . . . 6 (𝑛 = 1 → (𝑛(,)+∞) = (1(,)+∞))
54raleqdv 3318 . . . . 5 (𝑛 = 1 → (∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒 ↔ ∀𝑟 ∈ (1(,)+∞)∀𝑖𝐴 𝜒))
65rspcev 3530 . . . 4 ((1 ∈ ℕ ∧ ∀𝑟 ∈ (1(,)+∞)∀𝑖𝐴 𝜒) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒)
71, 3, 6sylancr 590 . . 3 (𝐴 = ∅ → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒)
87adantl 485 . 2 ((𝜑𝐴 = ∅) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒)
9 fourierdlem31.n . . . 4 𝑁 = sup(ran 𝑉, ℝ, < )
10 fourierdlem31.i . . . . . . 7 𝑖𝜑
11 fourierdlem31.v . . . . . . 7 𝑉 = (𝑖𝐴 ↦ inf(𝑀, ℝ, < ))
12 fourierdlem31.m . . . . . . . . . 10 𝑀 = {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}
1312a1i 11 . . . . . . . . 9 ((𝜑𝑖𝐴) → 𝑀 = {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒})
1413infeq1d 9082 . . . . . . . 8 ((𝜑𝑖𝐴) → inf(𝑀, ℝ, < ) = inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}, ℝ, < ))
15 ssrab2 3983 . . . . . . . . 9 {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ⊆ ℕ
16 nnuz 12460 . . . . . . . . . . 11 ℕ = (ℤ‘1)
1715, 16sseqtri 3927 . . . . . . . . . 10 {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ⊆ (ℤ‘1)
18 fourierdlem31.exm . . . . . . . . . . . 12 (𝜑 → ∀𝑖𝐴𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)𝜒)
1918r19.21bi 3123 . . . . . . . . . . 11 ((𝜑𝑖𝐴) → ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)𝜒)
20 rabn0 4290 . . . . . . . . . . 11 ({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ≠ ∅ ↔ ∃𝑚 ∈ ℕ ∀𝑟 ∈ (𝑚(,)+∞)𝜒)
2119, 20sylibr 237 . . . . . . . . . 10 ((𝜑𝑖𝐴) → {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ≠ ∅)
22 infssuzcl 12511 . . . . . . . . . 10 (({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ⊆ (ℤ‘1) ∧ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ≠ ∅) → inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}, ℝ, < ) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒})
2317, 21, 22sylancr 590 . . . . . . . . 9 ((𝜑𝑖𝐴) → inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}, ℝ, < ) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒})
2415, 23sseldi 3889 . . . . . . . 8 ((𝜑𝑖𝐴) → inf({𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}, ℝ, < ) ∈ ℕ)
2514, 24eqeltrd 2834 . . . . . . 7 ((𝜑𝑖𝐴) → inf(𝑀, ℝ, < ) ∈ ℕ)
2610, 11, 25rnmptssd 42360 . . . . . 6 (𝜑 → ran 𝑉 ⊆ ℕ)
2726adantr 484 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = ∅) → ran 𝑉 ⊆ ℕ)
28 ltso 10896 . . . . . . 7 < Or ℝ
2928a1i 11 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = ∅) → < Or ℝ)
30 fourierdlem31.a . . . . . . . . . 10 (𝜑𝐴 ∈ Fin)
31 mptfi 8964 . . . . . . . . . 10 (𝐴 ∈ Fin → (𝑖𝐴 ↦ inf(𝑀, ℝ, < )) ∈ Fin)
3230, 31syl 17 . . . . . . . . 9 (𝜑 → (𝑖𝐴 ↦ inf(𝑀, ℝ, < )) ∈ Fin)
3311, 32eqeltrid 2838 . . . . . . . 8 (𝜑𝑉 ∈ Fin)
34 rnfi 8948 . . . . . . . 8 (𝑉 ∈ Fin → ran 𝑉 ∈ Fin)
3533, 34syl 17 . . . . . . 7 (𝜑 → ran 𝑉 ∈ Fin)
3635adantr 484 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = ∅) → ran 𝑉 ∈ Fin)
37 neqne 2943 . . . . . . . . 9 𝐴 = ∅ → 𝐴 ≠ ∅)
38 n0 4251 . . . . . . . . 9 (𝐴 ≠ ∅ ↔ ∃𝑖 𝑖𝐴)
3937, 38sylib 221 . . . . . . . 8 𝐴 = ∅ → ∃𝑖 𝑖𝐴)
4039adantl 485 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 = ∅) → ∃𝑖 𝑖𝐴)
41 nfv 1922 . . . . . . . . 9 𝑖 ¬ 𝐴 = ∅
4210, 41nfan 1907 . . . . . . . 8 𝑖(𝜑 ∧ ¬ 𝐴 = ∅)
43 fourierdlem31.iv . . . . . . . . . 10 𝑖𝑉
4443nfrn 5810 . . . . . . . . 9 𝑖ran 𝑉
45 nfcv 2900 . . . . . . . . 9 𝑖
4644, 45nfne 3035 . . . . . . . 8 𝑖ran 𝑉 ≠ ∅
47 simpr 488 . . . . . . . . . . . 12 ((𝜑𝑖𝐴) → 𝑖𝐴)
4811elrnmpt1 5816 . . . . . . . . . . . 12 ((𝑖𝐴 ∧ inf(𝑀, ℝ, < ) ∈ ℕ) → inf(𝑀, ℝ, < ) ∈ ran 𝑉)
4947, 25, 48syl2anc 587 . . . . . . . . . . 11 ((𝜑𝑖𝐴) → inf(𝑀, ℝ, < ) ∈ ran 𝑉)
5049ne0d 4240 . . . . . . . . . 10 ((𝜑𝑖𝐴) → ran 𝑉 ≠ ∅)
5150ex 416 . . . . . . . . 9 (𝜑 → (𝑖𝐴 → ran 𝑉 ≠ ∅))
5251adantr 484 . . . . . . . 8 ((𝜑 ∧ ¬ 𝐴 = ∅) → (𝑖𝐴 → ran 𝑉 ≠ ∅))
5342, 46, 52exlimd 2216 . . . . . . 7 ((𝜑 ∧ ¬ 𝐴 = ∅) → (∃𝑖 𝑖𝐴 → ran 𝑉 ≠ ∅))
5440, 53mpd 15 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = ∅) → ran 𝑉 ≠ ∅)
55 nnssre 11817 . . . . . . 7 ℕ ⊆ ℝ
5627, 55sstrdi 3903 . . . . . 6 ((𝜑 ∧ ¬ 𝐴 = ∅) → ran 𝑉 ⊆ ℝ)
57 fisupcl 9074 . . . . . 6 (( < Or ℝ ∧ (ran 𝑉 ∈ Fin ∧ ran 𝑉 ≠ ∅ ∧ ran 𝑉 ⊆ ℝ)) → sup(ran 𝑉, ℝ, < ) ∈ ran 𝑉)
5829, 36, 54, 56, 57syl13anc 1374 . . . . 5 ((𝜑 ∧ ¬ 𝐴 = ∅) → sup(ran 𝑉, ℝ, < ) ∈ ran 𝑉)
5927, 58sseldd 3892 . . . 4 ((𝜑 ∧ ¬ 𝐴 = ∅) → sup(ran 𝑉, ℝ, < ) ∈ ℕ)
609, 59eqeltrid 2838 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → 𝑁 ∈ ℕ)
61 fourierdlem31.r . . . . 5 𝑟𝜑
62 nfcv 2900 . . . . . . . . . . . 12 𝑖
63 nfcv 2900 . . . . . . . . . . . 12 𝑖 <
6444, 62, 63nfsup 9056 . . . . . . . . . . 11 𝑖sup(ran 𝑉, ℝ, < )
659, 64nfcxfr 2898 . . . . . . . . . 10 𝑖𝑁
66 nfcv 2900 . . . . . . . . . 10 𝑖(,)
67 nfcv 2900 . . . . . . . . . 10 𝑖+∞
6865, 66, 67nfov 7232 . . . . . . . . 9 𝑖(𝑁(,)+∞)
6968nfcri 2887 . . . . . . . 8 𝑖 𝑟 ∈ (𝑁(,)+∞)
7010, 69nfan 1907 . . . . . . 7 𝑖(𝜑𝑟 ∈ (𝑁(,)+∞))
7111fvmpt2 6818 . . . . . . . . . . . . . 14 ((𝑖𝐴 ∧ inf(𝑀, ℝ, < ) ∈ ℕ) → (𝑉𝑖) = inf(𝑀, ℝ, < ))
7247, 25, 71syl2anc 587 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → (𝑉𝑖) = inf(𝑀, ℝ, < ))
7325nnxrd 42210 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → inf(𝑀, ℝ, < ) ∈ ℝ*)
7472, 73eqeltrd 2834 . . . . . . . . . . . 12 ((𝜑𝑖𝐴) → (𝑉𝑖) ∈ ℝ*)
7574adantr 484 . . . . . . . . . . 11 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → (𝑉𝑖) ∈ ℝ*)
76 pnfxr 10870 . . . . . . . . . . . 12 +∞ ∈ ℝ*
7776a1i 11 . . . . . . . . . . 11 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → +∞ ∈ ℝ*)
78 elioore 12948 . . . . . . . . . . . 12 (𝑟 ∈ (𝑁(,)+∞) → 𝑟 ∈ ℝ)
7978adantl 485 . . . . . . . . . . 11 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑟 ∈ ℝ)
8072, 25eqeltrd 2834 . . . . . . . . . . . . . 14 ((𝜑𝑖𝐴) → (𝑉𝑖) ∈ ℕ)
8180nnred 11828 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → (𝑉𝑖) ∈ ℝ)
8281adantr 484 . . . . . . . . . . . 12 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → (𝑉𝑖) ∈ ℝ)
83 ne0i 4239 . . . . . . . . . . . . . . . . 17 (𝑖𝐴𝐴 ≠ ∅)
8483adantl 485 . . . . . . . . . . . . . . . 16 ((𝜑𝑖𝐴) → 𝐴 ≠ ∅)
8584neneqd 2940 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐴) → ¬ 𝐴 = ∅)
8685, 60syldan 594 . . . . . . . . . . . . . 14 ((𝜑𝑖𝐴) → 𝑁 ∈ ℕ)
8786nnred 11828 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → 𝑁 ∈ ℝ)
8887adantr 484 . . . . . . . . . . . 12 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑁 ∈ ℝ)
8985, 56syldan 594 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐴) → ran 𝑉 ⊆ ℝ)
9026, 55sstrdi 3903 . . . . . . . . . . . . . . . . 17 (𝜑 → ran 𝑉 ⊆ ℝ)
91 fimaxre2 11760 . . . . . . . . . . . . . . . . 17 ((ran 𝑉 ⊆ ℝ ∧ ran 𝑉 ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑉 𝑦𝑥)
9290, 35, 91syl2anc 587 . . . . . . . . . . . . . . . 16 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑉 𝑦𝑥)
9392adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐴) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑉 𝑦𝑥)
9472, 49eqeltrd 2834 . . . . . . . . . . . . . . 15 ((𝜑𝑖𝐴) → (𝑉𝑖) ∈ ran 𝑉)
95 suprub 11776 . . . . . . . . . . . . . . 15 (((ran 𝑉 ⊆ ℝ ∧ ran 𝑉 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ ran 𝑉 𝑦𝑥) ∧ (𝑉𝑖) ∈ ran 𝑉) → (𝑉𝑖) ≤ sup(ran 𝑉, ℝ, < ))
9689, 50, 93, 94, 95syl31anc 1375 . . . . . . . . . . . . . 14 ((𝜑𝑖𝐴) → (𝑉𝑖) ≤ sup(ran 𝑉, ℝ, < ))
9796, 9breqtrrdi 5085 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → (𝑉𝑖) ≤ 𝑁)
9897adantr 484 . . . . . . . . . . . 12 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → (𝑉𝑖) ≤ 𝑁)
9988rexrd 10866 . . . . . . . . . . . . 13 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑁 ∈ ℝ*)
100 simpr 488 . . . . . . . . . . . . 13 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑟 ∈ (𝑁(,)+∞))
101 ioogtlb 42660 . . . . . . . . . . . . 13 ((𝑁 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑟 ∈ (𝑁(,)+∞)) → 𝑁 < 𝑟)
10299, 77, 100, 101syl3anc 1373 . . . . . . . . . . . 12 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑁 < 𝑟)
10382, 88, 79, 98, 102lelttrd 10973 . . . . . . . . . . 11 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → (𝑉𝑖) < 𝑟)
10479ltpnfd 12696 . . . . . . . . . . 11 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑟 < +∞)
10575, 77, 79, 103, 104eliood 42663 . . . . . . . . . 10 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝑟 ∈ ((𝑉𝑖)(,)+∞))
10614, 23eqeltrd 2834 . . . . . . . . . . . . . 14 ((𝜑𝑖𝐴) → inf(𝑀, ℝ, < ) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒})
10772, 106eqeltrd 2834 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → (𝑉𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒})
108 nfcv 2900 . . . . . . . . . . . . . . . . . 18 𝑚𝐴
109 nfrab1 3289 . . . . . . . . . . . . . . . . . . . 20 𝑚{𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}
11012, 109nfcxfr 2898 . . . . . . . . . . . . . . . . . . 19 𝑚𝑀
111 nfcv 2900 . . . . . . . . . . . . . . . . . . 19 𝑚
112 nfcv 2900 . . . . . . . . . . . . . . . . . . 19 𝑚 <
113110, 111, 112nfinf 9087 . . . . . . . . . . . . . . . . . 18 𝑚inf(𝑀, ℝ, < )
114108, 113nfmpt 5141 . . . . . . . . . . . . . . . . 17 𝑚(𝑖𝐴 ↦ inf(𝑀, ℝ, < ))
11511, 114nfcxfr 2898 . . . . . . . . . . . . . . . 16 𝑚𝑉
116 nfcv 2900 . . . . . . . . . . . . . . . 16 𝑚𝑖
117115, 116nffv 6716 . . . . . . . . . . . . . . 15 𝑚(𝑉𝑖)
118117, 109nfel 2914 . . . . . . . . . . . . . . . 16 𝑚(𝑉𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}
119117nfel1 2916 . . . . . . . . . . . . . . . . 17 𝑚(𝑉𝑖) ∈ ℕ
120 nfcv 2900 . . . . . . . . . . . . . . . . . . 19 𝑚(,)
121 nfcv 2900 . . . . . . . . . . . . . . . . . . 19 𝑚+∞
122117, 120, 121nfov 7232 . . . . . . . . . . . . . . . . . 18 𝑚((𝑉𝑖)(,)+∞)
123 nfv 1922 . . . . . . . . . . . . . . . . . 18 𝑚𝜒
124122, 123nfralw 3140 . . . . . . . . . . . . . . . . 17 𝑚𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒
125119, 124nfan 1907 . . . . . . . . . . . . . . . 16 𝑚((𝑉𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒)
126118, 125nfbi 1911 . . . . . . . . . . . . . . 15 𝑚((𝑉𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ ((𝑉𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒))
127 eleq1 2821 . . . . . . . . . . . . . . . 16 (𝑚 = (𝑉𝑖) → (𝑚 ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ (𝑉𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}))
128 eleq1 2821 . . . . . . . . . . . . . . . . 17 (𝑚 = (𝑉𝑖) → (𝑚 ∈ ℕ ↔ (𝑉𝑖) ∈ ℕ))
129 oveq1 7209 . . . . . . . . . . . . . . . . . 18 (𝑚 = (𝑉𝑖) → (𝑚(,)+∞) = ((𝑉𝑖)(,)+∞))
130 nfcv 2900 . . . . . . . . . . . . . . . . . . 19 𝑟(𝑚(,)+∞)
131 nfcv 2900 . . . . . . . . . . . . . . . . . . . . . . 23 𝑟𝐴
132 nfra1 3133 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑟𝑟 ∈ (𝑚(,)+∞)𝜒
133 nfcv 2900 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝑟
134132, 133nfrabw 3290 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑟{𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒}
13512, 134nfcxfr 2898 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑟𝑀
136 nfcv 2900 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑟
137 nfcv 2900 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑟 <
138135, 136, 137nfinf 9087 . . . . . . . . . . . . . . . . . . . . . . 23 𝑟inf(𝑀, ℝ, < )
139131, 138nfmpt 5141 . . . . . . . . . . . . . . . . . . . . . 22 𝑟(𝑖𝐴 ↦ inf(𝑀, ℝ, < ))
14011, 139nfcxfr 2898 . . . . . . . . . . . . . . . . . . . . 21 𝑟𝑉
141 nfcv 2900 . . . . . . . . . . . . . . . . . . . . 21 𝑟𝑖
142140, 141nffv 6716 . . . . . . . . . . . . . . . . . . . 20 𝑟(𝑉𝑖)
143 nfcv 2900 . . . . . . . . . . . . . . . . . . . 20 𝑟(,)
144 nfcv 2900 . . . . . . . . . . . . . . . . . . . 20 𝑟+∞
145142, 143, 144nfov 7232 . . . . . . . . . . . . . . . . . . 19 𝑟((𝑉𝑖)(,)+∞)
146130, 145raleqf 3302 . . . . . . . . . . . . . . . . . 18 ((𝑚(,)+∞) = ((𝑉𝑖)(,)+∞) → (∀𝑟 ∈ (𝑚(,)+∞)𝜒 ↔ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒))
147129, 146syl 17 . . . . . . . . . . . . . . . . 17 (𝑚 = (𝑉𝑖) → (∀𝑟 ∈ (𝑚(,)+∞)𝜒 ↔ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒))
148128, 147anbi12d 634 . . . . . . . . . . . . . . . 16 (𝑚 = (𝑉𝑖) → ((𝑚 ∈ ℕ ∧ ∀𝑟 ∈ (𝑚(,)+∞)𝜒) ↔ ((𝑉𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒)))
149127, 148bibi12d 349 . . . . . . . . . . . . . . 15 (𝑚 = (𝑉𝑖) → ((𝑚 ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ (𝑚 ∈ ℕ ∧ ∀𝑟 ∈ (𝑚(,)+∞)𝜒)) ↔ ((𝑉𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ ((𝑉𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒))))
150 rabid 3283 . . . . . . . . . . . . . . 15 (𝑚 ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ (𝑚 ∈ ℕ ∧ ∀𝑟 ∈ (𝑚(,)+∞)𝜒))
151117, 126, 149, 150vtoclgf 3472 . . . . . . . . . . . . . 14 ((𝑉𝑖) ∈ ℕ → ((𝑉𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ ((𝑉𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒)))
15280, 151syl 17 . . . . . . . . . . . . 13 ((𝜑𝑖𝐴) → ((𝑉𝑖) ∈ {𝑚 ∈ ℕ ∣ ∀𝑟 ∈ (𝑚(,)+∞)𝜒} ↔ ((𝑉𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒)))
153107, 152mpbid 235 . . . . . . . . . . . 12 ((𝜑𝑖𝐴) → ((𝑉𝑖) ∈ ℕ ∧ ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒))
154153simprd 499 . . . . . . . . . . 11 ((𝜑𝑖𝐴) → ∀𝑟 ∈ ((𝑉𝑖)(,)+∞)𝜒)
155154r19.21bi 3123 . . . . . . . . . 10 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ ((𝑉𝑖)(,)+∞)) → 𝜒)
156105, 155syldan 594 . . . . . . . . 9 (((𝜑𝑖𝐴) ∧ 𝑟 ∈ (𝑁(,)+∞)) → 𝜒)
157156an32s 652 . . . . . . . 8 (((𝜑𝑟 ∈ (𝑁(,)+∞)) ∧ 𝑖𝐴) → 𝜒)
158157ex 416 . . . . . . 7 ((𝜑𝑟 ∈ (𝑁(,)+∞)) → (𝑖𝐴𝜒))
15970, 158ralrimi 3130 . . . . . 6 ((𝜑𝑟 ∈ (𝑁(,)+∞)) → ∀𝑖𝐴 𝜒)
160159ex 416 . . . . 5 (𝜑 → (𝑟 ∈ (𝑁(,)+∞) → ∀𝑖𝐴 𝜒))
16161, 160ralrimi 3130 . . . 4 (𝜑 → ∀𝑟 ∈ (𝑁(,)+∞)∀𝑖𝐴 𝜒)
162161adantr 484 . . 3 ((𝜑 ∧ ¬ 𝐴 = ∅) → ∀𝑟 ∈ (𝑁(,)+∞)∀𝑖𝐴 𝜒)
163 oveq1 7209 . . . . 5 (𝑛 = 𝑁 → (𝑛(,)+∞) = (𝑁(,)+∞))
164 nfcv 2900 . . . . . 6 𝑟(𝑛(,)+∞)
165140nfrn 5810 . . . . . . . . 9 𝑟ran 𝑉
166165, 136, 137nfsup 9056 . . . . . . . 8 𝑟sup(ran 𝑉, ℝ, < )
1679, 166nfcxfr 2898 . . . . . . 7 𝑟𝑁
168167, 143, 144nfov 7232 . . . . . 6 𝑟(𝑁(,)+∞)
169164, 168raleqf 3302 . . . . 5 ((𝑛(,)+∞) = (𝑁(,)+∞) → (∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒 ↔ ∀𝑟 ∈ (𝑁(,)+∞)∀𝑖𝐴 𝜒))
170163, 169syl 17 . . . 4 (𝑛 = 𝑁 → (∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒 ↔ ∀𝑟 ∈ (𝑁(,)+∞)∀𝑖𝐴 𝜒))
171170rspcev 3530 . . 3 ((𝑁 ∈ ℕ ∧ ∀𝑟 ∈ (𝑁(,)+∞)∀𝑖𝐴 𝜒) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒)
17260, 162, 171syl2anc 587 . 2 ((𝜑 ∧ ¬ 𝐴 = ∅) → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒)
1738, 172pm2.61dan 813 1 (𝜑 → ∃𝑛 ∈ ℕ ∀𝑟 ∈ (𝑛(,)+∞)∀𝑖𝐴 𝜒)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1543  wex 1787  wnf 1791  wcel 2110  wnfc 2880  wne 2935  wral 3054  wrex 3055  {crab 3058  wss 3857  c0 4227   class class class wbr 5043  cmpt 5124   Or wor 5456  ran crn 5541  cfv 6369  (class class class)co 7202  Fincfn 8615  supcsup 9045  infcinf 9046  cr 10711  1c1 10713  +∞cpnf 10847  *cxr 10849   < clt 10850  cle 10851  cn 11813  cuz 12421  (,)cioo 12918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-sup 9047  df-inf 9048  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-n0 12074  df-z 12160  df-uz 12422  df-ioo 12922
This theorem is referenced by:  fourierdlem73  43349
  Copyright terms: Public domain W3C validator