| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exopxfr | Structured version Visualization version GIF version | ||
| Description: Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| exopxfr.1 | ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| exopxfr | ⊢ (∃𝑥 ∈ (V × V)𝜑 ↔ ∃𝑦∃𝑧𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exopxfr.1 | . . 3 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | rexxp 5786 | . 2 ⊢ (∃𝑥 ∈ (V × V)𝜑 ↔ ∃𝑦 ∈ V ∃𝑧 ∈ V 𝜓) |
| 3 | rexv 3465 | . 2 ⊢ (∃𝑦 ∈ V ∃𝑧 ∈ V 𝜓 ↔ ∃𝑦∃𝑧 ∈ V 𝜓) | |
| 4 | rexv 3465 | . . 3 ⊢ (∃𝑧 ∈ V 𝜓 ↔ ∃𝑧𝜓) | |
| 5 | 4 | exbii 1849 | . 2 ⊢ (∃𝑦∃𝑧 ∈ V 𝜓 ↔ ∃𝑦∃𝑧𝜓) |
| 6 | 2, 3, 5 | 3bitri 297 | 1 ⊢ (∃𝑥 ∈ (V × V)𝜑 ↔ ∃𝑦∃𝑧𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∃wex 1780 ∃wrex 3057 Vcvv 3437 〈cop 4581 × cxp 5617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-iun 4943 df-opab 5156 df-xp 5625 df-rel 5626 |
| This theorem is referenced by: exopxfr2 5788 |
| Copyright terms: Public domain | W3C validator |