MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exopxfr Structured version   Visualization version   GIF version

Theorem exopxfr 5810
Description: Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
exopxfr.1 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
Assertion
Ref Expression
exopxfr (∃𝑥 ∈ (V × V)𝜑 ↔ ∃𝑦𝑧𝜓)
Distinct variable groups:   𝑦,𝑧,𝜑   𝜓,𝑥   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)

Proof of Theorem exopxfr
StepHypRef Expression
1 exopxfr.1 . . 3 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
21rexxp 5809 . 2 (∃𝑥 ∈ (V × V)𝜑 ↔ ∃𝑦 ∈ V ∃𝑧 ∈ V 𝜓)
3 rexv 3478 . 2 (∃𝑦 ∈ V ∃𝑧 ∈ V 𝜓 ↔ ∃𝑦𝑧 ∈ V 𝜓)
4 rexv 3478 . . 3 (∃𝑧 ∈ V 𝜓 ↔ ∃𝑧𝜓)
54exbii 1848 . 2 (∃𝑦𝑧 ∈ V 𝜓 ↔ ∃𝑦𝑧𝜓)
62, 3, 53bitri 297 1 (∃𝑥 ∈ (V × V)𝜑 ↔ ∃𝑦𝑧𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wex 1779  wrex 3054  Vcvv 3450  cop 4598   × cxp 5639
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-iun 4960  df-opab 5173  df-xp 5647  df-rel 5648
This theorem is referenced by:  exopxfr2  5811
  Copyright terms: Public domain W3C validator