MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exopxfr Structured version   Visualization version   GIF version

Theorem exopxfr 5853
Description: Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
exopxfr.1 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
Assertion
Ref Expression
exopxfr (∃𝑥 ∈ (V × V)𝜑 ↔ ∃𝑦𝑧𝜓)
Distinct variable groups:   𝑦,𝑧,𝜑   𝜓,𝑥   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)

Proof of Theorem exopxfr
StepHypRef Expression
1 exopxfr.1 . . 3 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
21rexxp 5852 . 2 (∃𝑥 ∈ (V × V)𝜑 ↔ ∃𝑦 ∈ V ∃𝑧 ∈ V 𝜓)
3 rexv 3508 . 2 (∃𝑦 ∈ V ∃𝑧 ∈ V 𝜓 ↔ ∃𝑦𝑧 ∈ V 𝜓)
4 rexv 3508 . . 3 (∃𝑧 ∈ V 𝜓 ↔ ∃𝑧𝜓)
54exbii 1847 . 2 (∃𝑦𝑧 ∈ V 𝜓 ↔ ∃𝑦𝑧𝜓)
62, 3, 53bitri 297 1 (∃𝑥 ∈ (V × V)𝜑 ↔ ∃𝑦𝑧𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1539  wex 1778  wrex 3069  Vcvv 3479  cop 4631   × cxp 5682
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-iun 4992  df-opab 5205  df-xp 5690  df-rel 5691
This theorem is referenced by:  exopxfr2  5854
  Copyright terms: Public domain W3C validator