MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exopxfr Structured version   Visualization version   GIF version

Theorem exopxfr 5752
Description: Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014.) (Proof shortened by Mario Carneiro, 31-Aug-2015.)
Hypothesis
Ref Expression
exopxfr.1 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
Assertion
Ref Expression
exopxfr (∃𝑥 ∈ (V × V)𝜑 ↔ ∃𝑦𝑧𝜓)
Distinct variable groups:   𝑦,𝑧,𝜑   𝜓,𝑥   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)

Proof of Theorem exopxfr
StepHypRef Expression
1 exopxfr.1 . . 3 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
21rexxp 5751 . 2 (∃𝑥 ∈ (V × V)𝜑 ↔ ∃𝑦 ∈ V ∃𝑧 ∈ V 𝜓)
3 rexv 3457 . 2 (∃𝑦 ∈ V ∃𝑧 ∈ V 𝜓 ↔ ∃𝑦𝑧 ∈ V 𝜓)
4 rexv 3457 . . 3 (∃𝑧 ∈ V 𝜓 ↔ ∃𝑧𝜓)
54exbii 1850 . 2 (∃𝑦𝑧 ∈ V 𝜓 ↔ ∃𝑦𝑧𝜓)
62, 3, 53bitri 297 1 (∃𝑥 ∈ (V × V)𝜑 ↔ ∃𝑦𝑧𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wex 1782  wrex 3065  Vcvv 3432  cop 4567   × cxp 5587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-iun 4926  df-opab 5137  df-xp 5595  df-rel 5596
This theorem is referenced by:  exopxfr2  5753
  Copyright terms: Public domain W3C validator