![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exopxfr | Structured version Visualization version GIF version |
Description: Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
exopxfr.1 | ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
exopxfr | ⊢ (∃𝑥 ∈ (V × V)𝜑 ↔ ∃𝑦∃𝑧𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exopxfr.1 | . . 3 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) | |
2 | 1 | rexxp 5856 | . 2 ⊢ (∃𝑥 ∈ (V × V)𝜑 ↔ ∃𝑦 ∈ V ∃𝑧 ∈ V 𝜓) |
3 | rexv 3507 | . 2 ⊢ (∃𝑦 ∈ V ∃𝑧 ∈ V 𝜓 ↔ ∃𝑦∃𝑧 ∈ V 𝜓) | |
4 | rexv 3507 | . . 3 ⊢ (∃𝑧 ∈ V 𝜓 ↔ ∃𝑧𝜓) | |
5 | 4 | exbii 1845 | . 2 ⊢ (∃𝑦∃𝑧 ∈ V 𝜓 ↔ ∃𝑦∃𝑧𝜓) |
6 | 2, 3, 5 | 3bitri 297 | 1 ⊢ (∃𝑥 ∈ (V × V)𝜑 ↔ ∃𝑦∃𝑧𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∃wex 1776 ∃wrex 3068 Vcvv 3478 〈cop 4637 × cxp 5687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-iun 4998 df-opab 5211 df-xp 5695 df-rel 5696 |
This theorem is referenced by: exopxfr2 5858 |
Copyright terms: Public domain | W3C validator |