![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exopxfr | Structured version Visualization version GIF version |
Description: Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
exopxfr.1 | ⊢ (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
exopxfr | ⊢ (∃𝑥 ∈ (V × V)𝜑 ↔ ∃𝑦∃𝑧𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exopxfr.1 | . . 3 ⊢ (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑 ↔ 𝜓)) | |
2 | 1 | rexxp 5847 | . 2 ⊢ (∃𝑥 ∈ (V × V)𝜑 ↔ ∃𝑦 ∈ V ∃𝑧 ∈ V 𝜓) |
3 | rexv 3497 | . 2 ⊢ (∃𝑦 ∈ V ∃𝑧 ∈ V 𝜓 ↔ ∃𝑦∃𝑧 ∈ V 𝜓) | |
4 | rexv 3497 | . . 3 ⊢ (∃𝑧 ∈ V 𝜓 ↔ ∃𝑧𝜓) | |
5 | 4 | exbii 1842 | . 2 ⊢ (∃𝑦∃𝑧 ∈ V 𝜓 ↔ ∃𝑦∃𝑧𝜓) |
6 | 2, 3, 5 | 3bitri 296 | 1 ⊢ (∃𝑥 ∈ (V × V)𝜑 ↔ ∃𝑦∃𝑧𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1533 ∃wex 1773 ∃wrex 3066 Vcvv 3471 ⟨cop 4636 × cxp 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pr 5431 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-iun 5000 df-opab 5213 df-xp 5686 df-rel 5687 |
This theorem is referenced by: exopxfr2 5849 |
Copyright terms: Public domain | W3C validator |