![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exopxfr | Structured version Visualization version GIF version |
Description: Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
exopxfr.1 | ⊢ (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
exopxfr | ⊢ (∃𝑥 ∈ (V × V)𝜑 ↔ ∃𝑦∃𝑧𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exopxfr.1 | . . 3 ⊢ (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑 ↔ 𝜓)) | |
2 | 1 | rexxp 5843 | . 2 ⊢ (∃𝑥 ∈ (V × V)𝜑 ↔ ∃𝑦 ∈ V ∃𝑧 ∈ V 𝜓) |
3 | rexv 3500 | . 2 ⊢ (∃𝑦 ∈ V ∃𝑧 ∈ V 𝜓 ↔ ∃𝑦∃𝑧 ∈ V 𝜓) | |
4 | rexv 3500 | . . 3 ⊢ (∃𝑧 ∈ V 𝜓 ↔ ∃𝑧𝜓) | |
5 | 4 | exbii 1851 | . 2 ⊢ (∃𝑦∃𝑧 ∈ V 𝜓 ↔ ∃𝑦∃𝑧𝜓) |
6 | 2, 3, 5 | 3bitri 297 | 1 ⊢ (∃𝑥 ∈ (V × V)𝜑 ↔ ∃𝑦∃𝑧𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∃wex 1782 ∃wrex 3071 Vcvv 3475 ⟨cop 4635 × cxp 5675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-iun 5000 df-opab 5212 df-xp 5683 df-rel 5684 |
This theorem is referenced by: exopxfr2 5845 |
Copyright terms: Public domain | W3C validator |