![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exopxfr2 | Structured version Visualization version GIF version |
Description: Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014.) |
Ref | Expression |
---|---|
exopxfr2.1 | ⊢ (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
exopxfr2 | ⊢ (Rel 𝐴 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∃𝑧(⟨𝑦, 𝑧⟩ ∈ 𝐴 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 5684 | . . . . . . 7 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
2 | 1 | biimpi 215 | . . . . . 6 ⊢ (Rel 𝐴 → 𝐴 ⊆ (V × V)) |
3 | 2 | sseld 3982 | . . . . 5 ⊢ (Rel 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ∈ (V × V))) |
4 | 3 | adantrd 493 | . . . 4 ⊢ (Rel 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 ∈ (V × V))) |
5 | 4 | pm4.71rd 564 | . . 3 ⊢ (Rel 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ (V × V) ∧ (𝑥 ∈ 𝐴 ∧ 𝜑)))) |
6 | 5 | rexbidv2 3175 | . 2 ⊢ (Rel 𝐴 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ (V × V)(𝑥 ∈ 𝐴 ∧ 𝜑))) |
7 | eleq1 2822 | . . . 4 ⊢ (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑥 ∈ 𝐴 ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐴)) | |
8 | exopxfr2.1 | . . . 4 ⊢ (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑 ↔ 𝜓)) | |
9 | 7, 8 | anbi12d 632 | . . 3 ⊢ (𝑥 = ⟨𝑦, 𝑧⟩ → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (⟨𝑦, 𝑧⟩ ∈ 𝐴 ∧ 𝜓))) |
10 | 9 | exopxfr 5844 | . 2 ⊢ (∃𝑥 ∈ (V × V)(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑦∃𝑧(⟨𝑦, 𝑧⟩ ∈ 𝐴 ∧ 𝜓)) |
11 | 6, 10 | bitrdi 287 | 1 ⊢ (Rel 𝐴 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∃𝑧(⟨𝑦, 𝑧⟩ ∈ 𝐴 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ∃wrex 3071 Vcvv 3475 ⊆ wss 3949 ⟨cop 4635 × cxp 5675 Rel wrel 5682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-iun 5000 df-opab 5212 df-xp 5683 df-rel 5684 |
This theorem is referenced by: dvhopellsm 39988 |
Copyright terms: Public domain | W3C validator |