![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exopxfr2 | Structured version Visualization version GIF version |
Description: Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014.) |
Ref | Expression |
---|---|
exopxfr2.1 | ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
exopxfr2 | ⊢ (Rel 𝐴 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∃𝑧(〈𝑦, 𝑧〉 ∈ 𝐴 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 5348 | . . . . . . 7 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
2 | 1 | biimpi 208 | . . . . . 6 ⊢ (Rel 𝐴 → 𝐴 ⊆ (V × V)) |
3 | 2 | sseld 3825 | . . . . 5 ⊢ (Rel 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ∈ (V × V))) |
4 | 3 | adantrd 487 | . . . 4 ⊢ (Rel 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 ∈ (V × V))) |
5 | 4 | pm4.71rd 560 | . . 3 ⊢ (Rel 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ (V × V) ∧ (𝑥 ∈ 𝐴 ∧ 𝜑)))) |
6 | 5 | rexbidv2 3257 | . 2 ⊢ (Rel 𝐴 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ (V × V)(𝑥 ∈ 𝐴 ∧ 𝜑))) |
7 | eleq1 2893 | . . . 4 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝑥 ∈ 𝐴 ↔ 〈𝑦, 𝑧〉 ∈ 𝐴)) | |
8 | exopxfr2.1 | . . . 4 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) | |
9 | 7, 8 | anbi12d 626 | . . 3 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (〈𝑦, 𝑧〉 ∈ 𝐴 ∧ 𝜓))) |
10 | 9 | exopxfr 5497 | . 2 ⊢ (∃𝑥 ∈ (V × V)(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑦∃𝑧(〈𝑦, 𝑧〉 ∈ 𝐴 ∧ 𝜓)) |
11 | 6, 10 | syl6bb 279 | 1 ⊢ (Rel 𝐴 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∃𝑧(〈𝑦, 𝑧〉 ∈ 𝐴 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1658 ∃wex 1880 ∈ wcel 2166 ∃wrex 3117 Vcvv 3413 ⊆ wss 3797 〈cop 4402 × cxp 5339 Rel wrel 5346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-sep 5004 ax-nul 5012 ax-pr 5126 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ral 3121 df-rex 3122 df-rab 3125 df-v 3415 df-sbc 3662 df-csb 3757 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-nul 4144 df-if 4306 df-sn 4397 df-pr 4399 df-op 4403 df-iun 4741 df-opab 4935 df-xp 5347 df-rel 5348 |
This theorem is referenced by: dvhopellsm 37191 |
Copyright terms: Public domain | W3C validator |