| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exopxfr2 | Structured version Visualization version GIF version | ||
| Description: Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014.) |
| Ref | Expression |
|---|---|
| exopxfr2.1 | ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| exopxfr2 | ⊢ (Rel 𝐴 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∃𝑧(〈𝑦, 𝑧〉 ∈ 𝐴 ∧ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rel 5661 | . . . . . . 7 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
| 2 | 1 | biimpi 216 | . . . . . 6 ⊢ (Rel 𝐴 → 𝐴 ⊆ (V × V)) |
| 3 | 2 | sseld 3957 | . . . . 5 ⊢ (Rel 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ∈ (V × V))) |
| 4 | 3 | adantrd 491 | . . . 4 ⊢ (Rel 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 ∈ (V × V))) |
| 5 | 4 | pm4.71rd 562 | . . 3 ⊢ (Rel 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ (V × V) ∧ (𝑥 ∈ 𝐴 ∧ 𝜑)))) |
| 6 | 5 | rexbidv2 3160 | . 2 ⊢ (Rel 𝐴 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ (V × V)(𝑥 ∈ 𝐴 ∧ 𝜑))) |
| 7 | eleq1 2822 | . . . 4 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝑥 ∈ 𝐴 ↔ 〈𝑦, 𝑧〉 ∈ 𝐴)) | |
| 8 | exopxfr2.1 | . . . 4 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) | |
| 9 | 7, 8 | anbi12d 632 | . . 3 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (〈𝑦, 𝑧〉 ∈ 𝐴 ∧ 𝜓))) |
| 10 | 9 | exopxfr 5823 | . 2 ⊢ (∃𝑥 ∈ (V × V)(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑦∃𝑧(〈𝑦, 𝑧〉 ∈ 𝐴 ∧ 𝜓)) |
| 11 | 6, 10 | bitrdi 287 | 1 ⊢ (Rel 𝐴 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∃𝑧(〈𝑦, 𝑧〉 ∈ 𝐴 ∧ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∃wrex 3060 Vcvv 3459 ⊆ wss 3926 〈cop 4607 × cxp 5652 Rel wrel 5659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-iun 4969 df-opab 5182 df-xp 5660 df-rel 5661 |
| This theorem is referenced by: dvhopellsm 41136 |
| Copyright terms: Public domain | W3C validator |