MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exopxfr2 Structured version   Visualization version   GIF version

Theorem exopxfr2 5766
Description: Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014.)
Hypothesis
Ref Expression
exopxfr2.1 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
Assertion
Ref Expression
exopxfr2 (Rel 𝐴 → (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝑧(⟨𝑦, 𝑧⟩ ∈ 𝐴𝜓)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝜑,𝑦,𝑧   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)

Proof of Theorem exopxfr2
StepHypRef Expression
1 df-rel 5607 . . . . . . 7 (Rel 𝐴𝐴 ⊆ (V × V))
21biimpi 215 . . . . . 6 (Rel 𝐴𝐴 ⊆ (V × V))
32sseld 3925 . . . . 5 (Rel 𝐴 → (𝑥𝐴𝑥 ∈ (V × V)))
43adantrd 493 . . . 4 (Rel 𝐴 → ((𝑥𝐴𝜑) → 𝑥 ∈ (V × V)))
54pm4.71rd 564 . . 3 (Rel 𝐴 → ((𝑥𝐴𝜑) ↔ (𝑥 ∈ (V × V) ∧ (𝑥𝐴𝜑))))
65rexbidv2 3168 . 2 (Rel 𝐴 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥 ∈ (V × V)(𝑥𝐴𝜑)))
7 eleq1 2824 . . . 4 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑥𝐴 ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐴))
8 exopxfr2.1 . . . 4 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
97, 8anbi12d 632 . . 3 (𝑥 = ⟨𝑦, 𝑧⟩ → ((𝑥𝐴𝜑) ↔ (⟨𝑦, 𝑧⟩ ∈ 𝐴𝜓)))
109exopxfr 5765 . 2 (∃𝑥 ∈ (V × V)(𝑥𝐴𝜑) ↔ ∃𝑦𝑧(⟨𝑦, 𝑧⟩ ∈ 𝐴𝜓))
116, 10bitrdi 287 1 (Rel 𝐴 → (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝑧(⟨𝑦, 𝑧⟩ ∈ 𝐴𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wex 1779  wcel 2104  wrex 3071  Vcvv 3437  wss 3892  cop 4571   × cxp 5598  Rel wrel 5605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-iun 4933  df-opab 5144  df-xp 5606  df-rel 5607
This theorem is referenced by:  dvhopellsm  39173
  Copyright terms: Public domain W3C validator