MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exopxfr2 Structured version   Visualization version   GIF version

Theorem exopxfr2 5698
Description: Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014.)
Hypothesis
Ref Expression
exopxfr2.1 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
Assertion
Ref Expression
exopxfr2 (Rel 𝐴 → (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝑧(⟨𝑦, 𝑧⟩ ∈ 𝐴𝜓)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝜑,𝑦,𝑧   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)

Proof of Theorem exopxfr2
StepHypRef Expression
1 df-rel 5543 . . . . . . 7 (Rel 𝐴𝐴 ⊆ (V × V))
21biimpi 219 . . . . . 6 (Rel 𝐴𝐴 ⊆ (V × V))
32sseld 3886 . . . . 5 (Rel 𝐴 → (𝑥𝐴𝑥 ∈ (V × V)))
43adantrd 495 . . . 4 (Rel 𝐴 → ((𝑥𝐴𝜑) → 𝑥 ∈ (V × V)))
54pm4.71rd 566 . . 3 (Rel 𝐴 → ((𝑥𝐴𝜑) ↔ (𝑥 ∈ (V × V) ∧ (𝑥𝐴𝜑))))
65rexbidv2 3204 . 2 (Rel 𝐴 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥 ∈ (V × V)(𝑥𝐴𝜑)))
7 eleq1 2818 . . . 4 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑥𝐴 ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐴))
8 exopxfr2.1 . . . 4 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
97, 8anbi12d 634 . . 3 (𝑥 = ⟨𝑦, 𝑧⟩ → ((𝑥𝐴𝜑) ↔ (⟨𝑦, 𝑧⟩ ∈ 𝐴𝜓)))
109exopxfr 5697 . 2 (∃𝑥 ∈ (V × V)(𝑥𝐴𝜑) ↔ ∃𝑦𝑧(⟨𝑦, 𝑧⟩ ∈ 𝐴𝜓))
116, 10bitrdi 290 1 (Rel 𝐴 → (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝑧(⟨𝑦, 𝑧⟩ ∈ 𝐴𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wex 1787  wcel 2112  wrex 3052  Vcvv 3398  wss 3853  cop 4533   × cxp 5534  Rel wrel 5541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pr 5307
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-sn 4528  df-pr 4530  df-op 4534  df-iun 4892  df-opab 5102  df-xp 5542  df-rel 5543
This theorem is referenced by:  dvhopellsm  38817
  Copyright terms: Public domain W3C validator