![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > exopxfr2 | Structured version Visualization version GIF version |
Description: Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014.) |
Ref | Expression |
---|---|
exopxfr2.1 | ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
exopxfr2 | ⊢ (Rel 𝐴 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∃𝑧(〈𝑦, 𝑧〉 ∈ 𝐴 ∧ 𝜓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 5707 | . . . . . . 7 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
2 | 1 | biimpi 216 | . . . . . 6 ⊢ (Rel 𝐴 → 𝐴 ⊆ (V × V)) |
3 | 2 | sseld 4007 | . . . . 5 ⊢ (Rel 𝐴 → (𝑥 ∈ 𝐴 → 𝑥 ∈ (V × V))) |
4 | 3 | adantrd 491 | . . . 4 ⊢ (Rel 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝜑) → 𝑥 ∈ (V × V))) |
5 | 4 | pm4.71rd 562 | . . 3 ⊢ (Rel 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ (V × V) ∧ (𝑥 ∈ 𝐴 ∧ 𝜑)))) |
6 | 5 | rexbidv2 3181 | . 2 ⊢ (Rel 𝐴 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ (V × V)(𝑥 ∈ 𝐴 ∧ 𝜑))) |
7 | eleq1 2832 | . . . 4 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝑥 ∈ 𝐴 ↔ 〈𝑦, 𝑧〉 ∈ 𝐴)) | |
8 | exopxfr2.1 | . . . 4 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → (𝜑 ↔ 𝜓)) | |
9 | 7, 8 | anbi12d 631 | . . 3 ⊢ (𝑥 = 〈𝑦, 𝑧〉 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (〈𝑦, 𝑧〉 ∈ 𝐴 ∧ 𝜓))) |
10 | 9 | exopxfr 5868 | . 2 ⊢ (∃𝑥 ∈ (V × V)(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃𝑦∃𝑧(〈𝑦, 𝑧〉 ∈ 𝐴 ∧ 𝜓)) |
11 | 6, 10 | bitrdi 287 | 1 ⊢ (Rel 𝐴 → (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦∃𝑧(〈𝑦, 𝑧〉 ∈ 𝐴 ∧ 𝜓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∃wrex 3076 Vcvv 3488 ⊆ wss 3976 〈cop 4654 × cxp 5698 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-iun 5017 df-opab 5229 df-xp 5706 df-rel 5707 |
This theorem is referenced by: dvhopellsm 41074 |
Copyright terms: Public domain | W3C validator |