MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exopxfr2 Structured version   Visualization version   GIF version

Theorem exopxfr2 5787
Description: Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014.)
Hypothesis
Ref Expression
exopxfr2.1 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
Assertion
Ref Expression
exopxfr2 (Rel 𝐴 → (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝑧(⟨𝑦, 𝑧⟩ ∈ 𝐴𝜓)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝜑,𝑦,𝑧   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)

Proof of Theorem exopxfr2
StepHypRef Expression
1 df-rel 5626 . . . . . . 7 (Rel 𝐴𝐴 ⊆ (V × V))
21biimpi 216 . . . . . 6 (Rel 𝐴𝐴 ⊆ (V × V))
32sseld 3934 . . . . 5 (Rel 𝐴 → (𝑥𝐴𝑥 ∈ (V × V)))
43adantrd 491 . . . 4 (Rel 𝐴 → ((𝑥𝐴𝜑) → 𝑥 ∈ (V × V)))
54pm4.71rd 562 . . 3 (Rel 𝐴 → ((𝑥𝐴𝜑) ↔ (𝑥 ∈ (V × V) ∧ (𝑥𝐴𝜑))))
65rexbidv2 3149 . 2 (Rel 𝐴 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥 ∈ (V × V)(𝑥𝐴𝜑)))
7 eleq1 2816 . . . 4 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑥𝐴 ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐴))
8 exopxfr2.1 . . . 4 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
97, 8anbi12d 632 . . 3 (𝑥 = ⟨𝑦, 𝑧⟩ → ((𝑥𝐴𝜑) ↔ (⟨𝑦, 𝑧⟩ ∈ 𝐴𝜓)))
109exopxfr 5786 . 2 (∃𝑥 ∈ (V × V)(𝑥𝐴𝜑) ↔ ∃𝑦𝑧(⟨𝑦, 𝑧⟩ ∈ 𝐴𝜓))
116, 10bitrdi 287 1 (Rel 𝐴 → (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝑧(⟨𝑦, 𝑧⟩ ∈ 𝐴𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3053  Vcvv 3436  wss 3903  cop 4583   × cxp 5617  Rel wrel 5624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-iun 4943  df-opab 5155  df-xp 5625  df-rel 5626
This theorem is referenced by:  dvhopellsm  41096
  Copyright terms: Public domain W3C validator