Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  exopxfr2 Structured version   Visualization version   GIF version

Theorem exopxfr2 5679
 Description: Transfer ordered-pair existence from/to single variable existence. (Contributed by NM, 26-Feb-2014.)
Hypothesis
Ref Expression
exopxfr2.1 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
Assertion
Ref Expression
exopxfr2 (Rel 𝐴 → (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝑧(⟨𝑦, 𝑧⟩ ∈ 𝐴𝜓)))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝜑,𝑦,𝑧   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦,𝑧)

Proof of Theorem exopxfr2
StepHypRef Expression
1 df-rel 5526 . . . . . . 7 (Rel 𝐴𝐴 ⊆ (V × V))
21biimpi 219 . . . . . 6 (Rel 𝐴𝐴 ⊆ (V × V))
32sseld 3914 . . . . 5 (Rel 𝐴 → (𝑥𝐴𝑥 ∈ (V × V)))
43adantrd 495 . . . 4 (Rel 𝐴 → ((𝑥𝐴𝜑) → 𝑥 ∈ (V × V)))
54pm4.71rd 566 . . 3 (Rel 𝐴 → ((𝑥𝐴𝜑) ↔ (𝑥 ∈ (V × V) ∧ (𝑥𝐴𝜑))))
65rexbidv2 3254 . 2 (Rel 𝐴 → (∃𝑥𝐴 𝜑 ↔ ∃𝑥 ∈ (V × V)(𝑥𝐴𝜑)))
7 eleq1 2877 . . . 4 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑥𝐴 ↔ ⟨𝑦, 𝑧⟩ ∈ 𝐴))
8 exopxfr2.1 . . . 4 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝜑𝜓))
97, 8anbi12d 633 . . 3 (𝑥 = ⟨𝑦, 𝑧⟩ → ((𝑥𝐴𝜑) ↔ (⟨𝑦, 𝑧⟩ ∈ 𝐴𝜓)))
109exopxfr 5678 . 2 (∃𝑥 ∈ (V × V)(𝑥𝐴𝜑) ↔ ∃𝑦𝑧(⟨𝑦, 𝑧⟩ ∈ 𝐴𝜓))
116, 10syl6bb 290 1 (Rel 𝐴 → (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝑧(⟨𝑦, 𝑧⟩ ∈ 𝐴𝜓)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538  ∃wex 1781   ∈ wcel 2111  ∃wrex 3107  Vcvv 3441   ⊆ wss 3881  ⟨cop 4531   × cxp 5517  Rel wrel 5524 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-iun 4883  df-opab 5093  df-xp 5525  df-rel 5526 This theorem is referenced by:  dvhopellsm  38413
 Copyright terms: Public domain W3C validator