Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1eq3 Structured version   Visualization version   GIF version

Theorem f1eq3 6565
 Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1eq3 (𝐴 = 𝐵 → (𝐹:𝐶1-1𝐴𝐹:𝐶1-1𝐵))

Proof of Theorem f1eq3
StepHypRef Expression
1 feq3 6490 . . 3 (𝐴 = 𝐵 → (𝐹:𝐶𝐴𝐹:𝐶𝐵))
21anbi1d 631 . 2 (𝐴 = 𝐵 → ((𝐹:𝐶𝐴 ∧ Fun 𝐹) ↔ (𝐹:𝐶𝐵 ∧ Fun 𝐹)))
3 df-f1 6353 . 2 (𝐹:𝐶1-1𝐴 ↔ (𝐹:𝐶𝐴 ∧ Fun 𝐹))
4 df-f1 6353 . 2 (𝐹:𝐶1-1𝐵 ↔ (𝐹:𝐶𝐵 ∧ Fun 𝐹))
52, 3, 43bitr4g 316 1 (𝐴 = 𝐵 → (𝐹:𝐶1-1𝐴𝐹:𝐶1-1𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   ∧ wa 398   = wceq 1530  ◡ccnv 5547  Fun wfun 6342  ⟶wf 6344  –1-1→wf1 6345 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2798  df-cleq 2812  df-clel 2891  df-in 3941  df-ss 3950  df-f 6352  df-f1 6353 This theorem is referenced by:  f1oeq3  6599  f1eq123d  6601  tposf12  7909  brdomg  8511  pwfseq  10078  f1linds  20961  isusgrs  26933  usgrstrrepe  27009  usgrexilem  27214  tocycval  30743  diaf1oN  38253
 Copyright terms: Public domain W3C validator