| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1eq3 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.) |
| Ref | Expression |
|---|---|
| f1eq3 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–1-1→𝐴 ↔ 𝐹:𝐶–1-1→𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq3 6639 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶⟶𝐴 ↔ 𝐹:𝐶⟶𝐵)) | |
| 2 | 1 | anbi1d 631 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹:𝐶⟶𝐴 ∧ Fun ◡𝐹) ↔ (𝐹:𝐶⟶𝐵 ∧ Fun ◡𝐹))) |
| 3 | df-f1 6494 | . 2 ⊢ (𝐹:𝐶–1-1→𝐴 ↔ (𝐹:𝐶⟶𝐴 ∧ Fun ◡𝐹)) | |
| 4 | df-f1 6494 | . 2 ⊢ (𝐹:𝐶–1-1→𝐵 ↔ (𝐹:𝐶⟶𝐵 ∧ Fun ◡𝐹)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–1-1→𝐴 ↔ 𝐹:𝐶–1-1→𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ◡ccnv 5620 Fun wfun 6483 ⟶wf 6485 –1-1→wf1 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 df-ss 3915 df-f 6493 df-f1 6494 |
| This theorem is referenced by: f1oeq3 6761 f1eq123d 6763 tposf12 8190 brdom2g 8890 1sdom2dom 9149 pwfseq 10566 f1linds 21771 isusgrs 29155 usgrstrrepe 29234 usgrexilem 29439 tocycval 33118 diaf1oN 41302 f1cof1b 47239 |
| Copyright terms: Public domain | W3C validator |