MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1eq3 Structured version   Visualization version   GIF version

Theorem f1eq3 6667
Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1eq3 (𝐴 = 𝐵 → (𝐹:𝐶1-1𝐴𝐹:𝐶1-1𝐵))

Proof of Theorem f1eq3
StepHypRef Expression
1 feq3 6583 . . 3 (𝐴 = 𝐵 → (𝐹:𝐶𝐴𝐹:𝐶𝐵))
21anbi1d 630 . 2 (𝐴 = 𝐵 → ((𝐹:𝐶𝐴 ∧ Fun 𝐹) ↔ (𝐹:𝐶𝐵 ∧ Fun 𝐹)))
3 df-f1 6438 . 2 (𝐹:𝐶1-1𝐴 ↔ (𝐹:𝐶𝐴 ∧ Fun 𝐹))
4 df-f1 6438 . 2 (𝐹:𝐶1-1𝐵 ↔ (𝐹:𝐶𝐵 ∧ Fun 𝐹))
52, 3, 43bitr4g 314 1 (𝐴 = 𝐵 → (𝐹:𝐶1-1𝐴𝐹:𝐶1-1𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  ccnv 5588  Fun wfun 6427  wf 6429  1-1wf1 6430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-ss 3904  df-f 6437  df-f1 6438
This theorem is referenced by:  f1oeq3  6706  f1eq123d  6708  tposf12  8067  brdom2g  8745  brdomgOLD  8747  pwfseq  10420  f1linds  21032  isusgrs  27526  usgrstrrepe  27602  usgrexilem  27807  tocycval  31375  diaf1oN  39144  f1cof1b  44569
  Copyright terms: Public domain W3C validator