MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1eq3 Structured version   Visualization version   GIF version

Theorem f1eq3 6735
Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1eq3 (𝐴 = 𝐵 → (𝐹:𝐶1-1𝐴𝐹:𝐶1-1𝐵))

Proof of Theorem f1eq3
StepHypRef Expression
1 feq3 6650 . . 3 (𝐴 = 𝐵 → (𝐹:𝐶𝐴𝐹:𝐶𝐵))
21anbi1d 631 . 2 (𝐴 = 𝐵 → ((𝐹:𝐶𝐴 ∧ Fun 𝐹) ↔ (𝐹:𝐶𝐵 ∧ Fun 𝐹)))
3 df-f1 6504 . 2 (𝐹:𝐶1-1𝐴 ↔ (𝐹:𝐶𝐴 ∧ Fun 𝐹))
4 df-f1 6504 . 2 (𝐹:𝐶1-1𝐵 ↔ (𝐹:𝐶𝐵 ∧ Fun 𝐹))
52, 3, 43bitr4g 314 1 (𝐴 = 𝐵 → (𝐹:𝐶1-1𝐴𝐹:𝐶1-1𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  ccnv 5630  Fun wfun 6493  wf 6495  1-1wf1 6496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-ss 3928  df-f 6503  df-f1 6504
This theorem is referenced by:  f1oeq3  6772  f1eq123d  6774  tposf12  8207  brdom2g  8906  1sdom2dom  9170  pwfseq  10593  f1linds  21710  isusgrs  29059  usgrstrrepe  29138  usgrexilem  29343  tocycval  33038  diaf1oN  41097  f1cof1b  47051
  Copyright terms: Public domain W3C validator