![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1eq3 | Structured version Visualization version GIF version |
Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.) |
Ref | Expression |
---|---|
f1eq3 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–1-1→𝐴 ↔ 𝐹:𝐶–1-1→𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq3 6261 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶⟶𝐴 ↔ 𝐹:𝐶⟶𝐵)) | |
2 | 1 | anbi1d 623 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹:𝐶⟶𝐴 ∧ Fun ◡𝐹) ↔ (𝐹:𝐶⟶𝐵 ∧ Fun ◡𝐹))) |
3 | df-f1 6128 | . 2 ⊢ (𝐹:𝐶–1-1→𝐴 ↔ (𝐹:𝐶⟶𝐴 ∧ Fun ◡𝐹)) | |
4 | df-f1 6128 | . 2 ⊢ (𝐹:𝐶–1-1→𝐵 ↔ (𝐹:𝐶⟶𝐵 ∧ Fun ◡𝐹)) | |
5 | 2, 3, 4 | 3bitr4g 306 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–1-1→𝐴 ↔ 𝐹:𝐶–1-1→𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1656 ◡ccnv 5341 Fun wfun 6117 ⟶wf 6119 –1-1→wf1 6120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-clab 2812 df-cleq 2818 df-clel 2821 df-in 3805 df-ss 3812 df-f 6127 df-f1 6128 |
This theorem is referenced by: f1oeq3 6369 f1eq123d 6371 tposf12 7642 brdomg 8232 pwfseq 9801 f1linds 20531 isusgrs 26455 usgrstrrepe 26532 usgrexilem 26738 diaf1oN 37198 |
Copyright terms: Public domain | W3C validator |