Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1eq3 | Structured version Visualization version GIF version |
Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.) |
Ref | Expression |
---|---|
f1eq3 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–1-1→𝐴 ↔ 𝐹:𝐶–1-1→𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq3 6488 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶⟶𝐴 ↔ 𝐹:𝐶⟶𝐵)) | |
2 | 1 | anbi1d 633 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹:𝐶⟶𝐴 ∧ Fun ◡𝐹) ↔ (𝐹:𝐶⟶𝐵 ∧ Fun ◡𝐹))) |
3 | df-f1 6345 | . 2 ⊢ (𝐹:𝐶–1-1→𝐴 ↔ (𝐹:𝐶⟶𝐴 ∧ Fun ◡𝐹)) | |
4 | df-f1 6345 | . 2 ⊢ (𝐹:𝐶–1-1→𝐵 ↔ (𝐹:𝐶⟶𝐵 ∧ Fun ◡𝐹)) | |
5 | 2, 3, 4 | 3bitr4g 317 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐶–1-1→𝐴 ↔ 𝐹:𝐶–1-1→𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ◡ccnv 5525 Fun wfun 6334 ⟶wf 6336 –1-1→wf1 6337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2711 |
This theorem depends on definitions: df-bi 210 df-an 400 df-tru 1545 df-ex 1787 df-sb 2075 df-clab 2718 df-cleq 2731 df-clel 2812 df-v 3401 df-in 3851 df-ss 3861 df-f 6344 df-f1 6345 |
This theorem is referenced by: f1oeq3 6611 f1eq123d 6613 tposf12 7949 brdomg 8568 pwfseq 10167 f1linds 20644 isusgrs 27104 usgrstrrepe 27180 usgrexilem 27385 tocycval 30955 diaf1oN 38790 f1cof1b 44131 |
Copyright terms: Public domain | W3C validator |