Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nff1 | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a one-to-one function. (Contributed by NM, 16-May-2004.) |
Ref | Expression |
---|---|
nff1.1 | ⊢ Ⅎ𝑥𝐹 |
nff1.2 | ⊢ Ⅎ𝑥𝐴 |
nff1.3 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
nff1 | ⊢ Ⅎ𝑥 𝐹:𝐴–1-1→𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-f1 6489 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
2 | nff1.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
3 | nff1.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | nff1.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
5 | 2, 3, 4 | nff 6652 | . . 3 ⊢ Ⅎ𝑥 𝐹:𝐴⟶𝐵 |
6 | 2 | nfcnv 5825 | . . . 4 ⊢ Ⅎ𝑥◡𝐹 |
7 | 6 | nffun 6512 | . . 3 ⊢ Ⅎ𝑥Fun ◡𝐹 |
8 | 5, 7 | nfan 1902 | . 2 ⊢ Ⅎ𝑥(𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹) |
9 | 1, 8 | nfxfr 1855 | 1 ⊢ Ⅎ𝑥 𝐹:𝐴–1-1→𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 Ⅎwnf 1785 Ⅎwnfc 2885 ◡ccnv 5624 Fun wfun 6478 ⟶wf 6480 –1-1→wf1 6481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ral 3063 df-rab 3405 df-v 3444 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-sn 4579 df-pr 4581 df-op 4585 df-br 5098 df-opab 5160 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 |
This theorem is referenced by: nff1o 6770 iundom2g 10402 |
Copyright terms: Public domain | W3C validator |