| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nff1 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a one-to-one function. (Contributed by NM, 16-May-2004.) |
| Ref | Expression |
|---|---|
| nff1.1 | ⊢ Ⅎ𝑥𝐹 |
| nff1.2 | ⊢ Ⅎ𝑥𝐴 |
| nff1.3 | ⊢ Ⅎ𝑥𝐵 |
| Ref | Expression |
|---|---|
| nff1 | ⊢ Ⅎ𝑥 𝐹:𝐴–1-1→𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1 6541 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹)) | |
| 2 | nff1.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 3 | nff1.2 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nff1.3 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 5 | 2, 3, 4 | nff 6707 | . . 3 ⊢ Ⅎ𝑥 𝐹:𝐴⟶𝐵 |
| 6 | 2 | nfcnv 5863 | . . . 4 ⊢ Ⅎ𝑥◡𝐹 |
| 7 | 6 | nffun 6564 | . . 3 ⊢ Ⅎ𝑥Fun ◡𝐹 |
| 8 | 5, 7 | nfan 1899 | . 2 ⊢ Ⅎ𝑥(𝐹:𝐴⟶𝐵 ∧ Fun ◡𝐹) |
| 9 | 1, 8 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥 𝐹:𝐴–1-1→𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 Ⅎwnf 1783 Ⅎwnfc 2884 ◡ccnv 5658 Fun wfun 6530 ⟶wf 6532 –1-1→wf1 6533 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 |
| This theorem is referenced by: nff1o 6821 iundom2g 10559 |
| Copyright terms: Public domain | W3C validator |