| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1linds | Structured version Visualization version GIF version | ||
| Description: A family constructed from non-repeated elements of an independent set is independent. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| Ref | Expression |
|---|---|
| f1linds | ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷–1-1→𝑆) → 𝐹 LIndF 𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f 6774 | . . . 4 ⊢ (𝐹:𝐷–1-1→𝑆 → 𝐹:𝐷⟶𝑆) | |
| 2 | fcoi2 6753 | . . . 4 ⊢ (𝐹:𝐷⟶𝑆 → (( I ↾ 𝑆) ∘ 𝐹) = 𝐹) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐹:𝐷–1-1→𝑆 → (( I ↾ 𝑆) ∘ 𝐹) = 𝐹) |
| 4 | 3 | 3ad2ant3 1135 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷–1-1→𝑆) → (( I ↾ 𝑆) ∘ 𝐹) = 𝐹) |
| 5 | simp1 1136 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷–1-1→𝑆) → 𝑊 ∈ LMod) | |
| 6 | linds2 21771 | . . . 4 ⊢ (𝑆 ∈ (LIndS‘𝑊) → ( I ↾ 𝑆) LIndF 𝑊) | |
| 7 | 6 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷–1-1→𝑆) → ( I ↾ 𝑆) LIndF 𝑊) |
| 8 | dmresi 6039 | . . . . . 6 ⊢ dom ( I ↾ 𝑆) = 𝑆 | |
| 9 | f1eq3 6771 | . . . . . 6 ⊢ (dom ( I ↾ 𝑆) = 𝑆 → (𝐹:𝐷–1-1→dom ( I ↾ 𝑆) ↔ 𝐹:𝐷–1-1→𝑆)) | |
| 10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ (𝐹:𝐷–1-1→dom ( I ↾ 𝑆) ↔ 𝐹:𝐷–1-1→𝑆) |
| 11 | 10 | biimpri 228 | . . . 4 ⊢ (𝐹:𝐷–1-1→𝑆 → 𝐹:𝐷–1-1→dom ( I ↾ 𝑆)) |
| 12 | 11 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷–1-1→𝑆) → 𝐹:𝐷–1-1→dom ( I ↾ 𝑆)) |
| 13 | f1lindf 21782 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ ( I ↾ 𝑆) LIndF 𝑊 ∧ 𝐹:𝐷–1-1→dom ( I ↾ 𝑆)) → (( I ↾ 𝑆) ∘ 𝐹) LIndF 𝑊) | |
| 14 | 5, 7, 12, 13 | syl3anc 1373 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷–1-1→𝑆) → (( I ↾ 𝑆) ∘ 𝐹) LIndF 𝑊) |
| 15 | 4, 14 | eqbrtrrd 5143 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷–1-1→𝑆) → 𝐹 LIndF 𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 class class class wbr 5119 I cid 5547 dom cdm 5654 ↾ cres 5656 ∘ ccom 5658 ⟶wf 6527 –1-1→wf1 6528 ‘cfv 6531 LModclmod 20817 LIndF clindf 21764 LIndSclinds 21765 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-1cn 11187 ax-addcl 11189 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-nn 12241 df-slot 17201 df-ndx 17213 df-base 17229 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-lmod 20819 df-lss 20889 df-lsp 20929 df-lindf 21766 df-linds 21767 |
| This theorem is referenced by: islindf3 21786 lindsmm 21788 lbslcic 21801 |
| Copyright terms: Public domain | W3C validator |