MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1linds Structured version   Visualization version   GIF version

Theorem f1linds 20741
Description: A family constructed from non-repeated elements of an independent set is independent. (Contributed by Stefan O'Rear, 26-Feb-2015.)
Assertion
Ref Expression
f1linds ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷1-1𝑆) → 𝐹 LIndF 𝑊)

Proof of Theorem f1linds
StepHypRef Expression
1 f1f 6593 . . . 4 (𝐹:𝐷1-1𝑆𝐹:𝐷𝑆)
2 fcoi2 6572 . . . 4 (𝐹:𝐷𝑆 → (( I ↾ 𝑆) ∘ 𝐹) = 𝐹)
31, 2syl 17 . . 3 (𝐹:𝐷1-1𝑆 → (( I ↾ 𝑆) ∘ 𝐹) = 𝐹)
433ad2ant3 1137 . 2 ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷1-1𝑆) → (( I ↾ 𝑆) ∘ 𝐹) = 𝐹)
5 simp1 1138 . . 3 ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷1-1𝑆) → 𝑊 ∈ LMod)
6 linds2 20727 . . . 4 (𝑆 ∈ (LIndS‘𝑊) → ( I ↾ 𝑆) LIndF 𝑊)
763ad2ant2 1136 . . 3 ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷1-1𝑆) → ( I ↾ 𝑆) LIndF 𝑊)
8 dmresi 5906 . . . . . 6 dom ( I ↾ 𝑆) = 𝑆
9 f1eq3 6590 . . . . . 6 (dom ( I ↾ 𝑆) = 𝑆 → (𝐹:𝐷1-1→dom ( I ↾ 𝑆) ↔ 𝐹:𝐷1-1𝑆))
108, 9ax-mp 5 . . . . 5 (𝐹:𝐷1-1→dom ( I ↾ 𝑆) ↔ 𝐹:𝐷1-1𝑆)
1110biimpri 231 . . . 4 (𝐹:𝐷1-1𝑆𝐹:𝐷1-1→dom ( I ↾ 𝑆))
12113ad2ant3 1137 . . 3 ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷1-1𝑆) → 𝐹:𝐷1-1→dom ( I ↾ 𝑆))
13 f1lindf 20738 . . 3 ((𝑊 ∈ LMod ∧ ( I ↾ 𝑆) LIndF 𝑊𝐹:𝐷1-1→dom ( I ↾ 𝑆)) → (( I ↾ 𝑆) ∘ 𝐹) LIndF 𝑊)
145, 7, 12, 13syl3anc 1373 . 2 ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷1-1𝑆) → (( I ↾ 𝑆) ∘ 𝐹) LIndF 𝑊)
154, 14eqbrtrrd 5063 1 ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷1-1𝑆) → 𝐹 LIndF 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  w3a 1089   = wceq 1543  wcel 2112   class class class wbr 5039   I cid 5439  dom cdm 5536  cres 5538  ccom 5540  wf 6354  1-1wf1 6355  cfv 6358  LModclmod 19853   LIndF clindf 20720  LIndSclinds 20721
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-1cn 10752  ax-addcl 10754
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-om 7623  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-nn 11796  df-ndx 16669  df-slot 16670  df-base 16672  df-0g 16900  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-grp 18322  df-lmod 19855  df-lss 19923  df-lsp 19963  df-lindf 20722  df-linds 20723
This theorem is referenced by:  islindf3  20742  lindsmm  20744  lbslcic  20757
  Copyright terms: Public domain W3C validator