Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1linds | Structured version Visualization version GIF version |
Description: A family constructed from non-repeated elements of an independent set is independent. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
Ref | Expression |
---|---|
f1linds | ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷–1-1→𝑆) → 𝐹 LIndF 𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 6668 | . . . 4 ⊢ (𝐹:𝐷–1-1→𝑆 → 𝐹:𝐷⟶𝑆) | |
2 | fcoi2 6647 | . . . 4 ⊢ (𝐹:𝐷⟶𝑆 → (( I ↾ 𝑆) ∘ 𝐹) = 𝐹) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐹:𝐷–1-1→𝑆 → (( I ↾ 𝑆) ∘ 𝐹) = 𝐹) |
4 | 3 | 3ad2ant3 1134 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷–1-1→𝑆) → (( I ↾ 𝑆) ∘ 𝐹) = 𝐹) |
5 | simp1 1135 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷–1-1→𝑆) → 𝑊 ∈ LMod) | |
6 | linds2 21016 | . . . 4 ⊢ (𝑆 ∈ (LIndS‘𝑊) → ( I ↾ 𝑆) LIndF 𝑊) | |
7 | 6 | 3ad2ant2 1133 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷–1-1→𝑆) → ( I ↾ 𝑆) LIndF 𝑊) |
8 | dmresi 5960 | . . . . . 6 ⊢ dom ( I ↾ 𝑆) = 𝑆 | |
9 | f1eq3 6665 | . . . . . 6 ⊢ (dom ( I ↾ 𝑆) = 𝑆 → (𝐹:𝐷–1-1→dom ( I ↾ 𝑆) ↔ 𝐹:𝐷–1-1→𝑆)) | |
10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ (𝐹:𝐷–1-1→dom ( I ↾ 𝑆) ↔ 𝐹:𝐷–1-1→𝑆) |
11 | 10 | biimpri 227 | . . . 4 ⊢ (𝐹:𝐷–1-1→𝑆 → 𝐹:𝐷–1-1→dom ( I ↾ 𝑆)) |
12 | 11 | 3ad2ant3 1134 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷–1-1→𝑆) → 𝐹:𝐷–1-1→dom ( I ↾ 𝑆)) |
13 | f1lindf 21027 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ ( I ↾ 𝑆) LIndF 𝑊 ∧ 𝐹:𝐷–1-1→dom ( I ↾ 𝑆)) → (( I ↾ 𝑆) ∘ 𝐹) LIndF 𝑊) | |
14 | 5, 7, 12, 13 | syl3anc 1370 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷–1-1→𝑆) → (( I ↾ 𝑆) ∘ 𝐹) LIndF 𝑊) |
15 | 4, 14 | eqbrtrrd 5103 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷–1-1→𝑆) → 𝐹 LIndF 𝑊) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 class class class wbr 5079 I cid 5489 dom cdm 5590 ↾ cres 5592 ∘ ccom 5594 ⟶wf 6428 –1-1→wf1 6429 ‘cfv 6432 LModclmod 20121 LIndF clindf 21009 LIndSclinds 21010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-cnex 10928 ax-1cn 10930 ax-addcl 10932 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rmo 3074 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-int 4886 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-tr 5197 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6201 df-ord 6268 df-on 6269 df-lim 6270 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-om 7707 df-2nd 7825 df-frecs 8088 df-wrecs 8119 df-recs 8193 df-rdg 8232 df-nn 11974 df-slot 16881 df-ndx 16893 df-base 16911 df-0g 17150 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-grp 18578 df-lmod 20123 df-lss 20192 df-lsp 20232 df-lindf 21011 df-linds 21012 |
This theorem is referenced by: islindf3 21031 lindsmm 21033 lbslcic 21046 |
Copyright terms: Public domain | W3C validator |