MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1linds Structured version   Visualization version   GIF version

Theorem f1linds 21732
Description: A family constructed from non-repeated elements of an independent set is independent. (Contributed by Stefan O'Rear, 26-Feb-2015.)
Assertion
Ref Expression
f1linds ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷1-1𝑆) → 𝐹 LIndF 𝑊)

Proof of Theorem f1linds
StepHypRef Expression
1 f1f 6720 . . . 4 (𝐹:𝐷1-1𝑆𝐹:𝐷𝑆)
2 fcoi2 6699 . . . 4 (𝐹:𝐷𝑆 → (( I ↾ 𝑆) ∘ 𝐹) = 𝐹)
31, 2syl 17 . . 3 (𝐹:𝐷1-1𝑆 → (( I ↾ 𝑆) ∘ 𝐹) = 𝐹)
433ad2ant3 1135 . 2 ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷1-1𝑆) → (( I ↾ 𝑆) ∘ 𝐹) = 𝐹)
5 simp1 1136 . . 3 ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷1-1𝑆) → 𝑊 ∈ LMod)
6 linds2 21718 . . . 4 (𝑆 ∈ (LIndS‘𝑊) → ( I ↾ 𝑆) LIndF 𝑊)
763ad2ant2 1134 . . 3 ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷1-1𝑆) → ( I ↾ 𝑆) LIndF 𝑊)
8 dmresi 6003 . . . . . 6 dom ( I ↾ 𝑆) = 𝑆
9 f1eq3 6717 . . . . . 6 (dom ( I ↾ 𝑆) = 𝑆 → (𝐹:𝐷1-1→dom ( I ↾ 𝑆) ↔ 𝐹:𝐷1-1𝑆))
108, 9ax-mp 5 . . . . 5 (𝐹:𝐷1-1→dom ( I ↾ 𝑆) ↔ 𝐹:𝐷1-1𝑆)
1110biimpri 228 . . . 4 (𝐹:𝐷1-1𝑆𝐹:𝐷1-1→dom ( I ↾ 𝑆))
12113ad2ant3 1135 . . 3 ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷1-1𝑆) → 𝐹:𝐷1-1→dom ( I ↾ 𝑆))
13 f1lindf 21729 . . 3 ((𝑊 ∈ LMod ∧ ( I ↾ 𝑆) LIndF 𝑊𝐹:𝐷1-1→dom ( I ↾ 𝑆)) → (( I ↾ 𝑆) ∘ 𝐹) LIndF 𝑊)
145, 7, 12, 13syl3anc 1373 . 2 ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷1-1𝑆) → (( I ↾ 𝑆) ∘ 𝐹) LIndF 𝑊)
154, 14eqbrtrrd 5116 1 ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷1-1𝑆) → 𝐹 LIndF 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5092   I cid 5513  dom cdm 5619  cres 5621  ccom 5623  wf 6478  1-1wf1 6479  cfv 6482  LModclmod 20763   LIndF clindf 21711  LIndSclinds 21712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-1cn 11067  ax-addcl 11069
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-nn 12129  df-slot 17093  df-ndx 17105  df-base 17121  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-lmod 20765  df-lss 20835  df-lsp 20875  df-lindf 21713  df-linds 21714
This theorem is referenced by:  islindf3  21733  lindsmm  21735  lbslcic  21748
  Copyright terms: Public domain W3C validator