| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1linds | Structured version Visualization version GIF version | ||
| Description: A family constructed from non-repeated elements of an independent set is independent. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| Ref | Expression |
|---|---|
| f1linds | ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷–1-1→𝑆) → 𝐹 LIndF 𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f 6804 | . . . 4 ⊢ (𝐹:𝐷–1-1→𝑆 → 𝐹:𝐷⟶𝑆) | |
| 2 | fcoi2 6783 | . . . 4 ⊢ (𝐹:𝐷⟶𝑆 → (( I ↾ 𝑆) ∘ 𝐹) = 𝐹) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐹:𝐷–1-1→𝑆 → (( I ↾ 𝑆) ∘ 𝐹) = 𝐹) |
| 4 | 3 | 3ad2ant3 1136 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷–1-1→𝑆) → (( I ↾ 𝑆) ∘ 𝐹) = 𝐹) |
| 5 | simp1 1137 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷–1-1→𝑆) → 𝑊 ∈ LMod) | |
| 6 | linds2 21831 | . . . 4 ⊢ (𝑆 ∈ (LIndS‘𝑊) → ( I ↾ 𝑆) LIndF 𝑊) | |
| 7 | 6 | 3ad2ant2 1135 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷–1-1→𝑆) → ( I ↾ 𝑆) LIndF 𝑊) |
| 8 | dmresi 6070 | . . . . . 6 ⊢ dom ( I ↾ 𝑆) = 𝑆 | |
| 9 | f1eq3 6801 | . . . . . 6 ⊢ (dom ( I ↾ 𝑆) = 𝑆 → (𝐹:𝐷–1-1→dom ( I ↾ 𝑆) ↔ 𝐹:𝐷–1-1→𝑆)) | |
| 10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ (𝐹:𝐷–1-1→dom ( I ↾ 𝑆) ↔ 𝐹:𝐷–1-1→𝑆) |
| 11 | 10 | biimpri 228 | . . . 4 ⊢ (𝐹:𝐷–1-1→𝑆 → 𝐹:𝐷–1-1→dom ( I ↾ 𝑆)) |
| 12 | 11 | 3ad2ant3 1136 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷–1-1→𝑆) → 𝐹:𝐷–1-1→dom ( I ↾ 𝑆)) |
| 13 | f1lindf 21842 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ ( I ↾ 𝑆) LIndF 𝑊 ∧ 𝐹:𝐷–1-1→dom ( I ↾ 𝑆)) → (( I ↾ 𝑆) ∘ 𝐹) LIndF 𝑊) | |
| 14 | 5, 7, 12, 13 | syl3anc 1373 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷–1-1→𝑆) → (( I ↾ 𝑆) ∘ 𝐹) LIndF 𝑊) |
| 15 | 4, 14 | eqbrtrrd 5167 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷–1-1→𝑆) → 𝐹 LIndF 𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 class class class wbr 5143 I cid 5577 dom cdm 5685 ↾ cres 5687 ∘ ccom 5689 ⟶wf 6557 –1-1→wf1 6558 ‘cfv 6561 LModclmod 20858 LIndF clindf 21824 LIndSclinds 21825 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-1cn 11213 ax-addcl 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-nn 12267 df-slot 17219 df-ndx 17231 df-base 17248 df-0g 17486 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-grp 18954 df-lmod 20860 df-lss 20930 df-lsp 20970 df-lindf 21826 df-linds 21827 |
| This theorem is referenced by: islindf3 21846 lindsmm 21848 lbslcic 21861 |
| Copyright terms: Public domain | W3C validator |