![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1linds | Structured version Visualization version GIF version |
Description: A family constructed from non-repeated elements of an independent set is independent. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
Ref | Expression |
---|---|
f1linds | β’ ((π β LMod β§ π β (LIndSβπ) β§ πΉ:π·β1-1βπ) β πΉ LIndF π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 6798 | . . . 4 β’ (πΉ:π·β1-1βπ β πΉ:π·βΆπ) | |
2 | fcoi2 6777 | . . . 4 β’ (πΉ:π·βΆπ β (( I βΎ π) β πΉ) = πΉ) | |
3 | 1, 2 | syl 17 | . . 3 β’ (πΉ:π·β1-1βπ β (( I βΎ π) β πΉ) = πΉ) |
4 | 3 | 3ad2ant3 1132 | . 2 β’ ((π β LMod β§ π β (LIndSβπ) β§ πΉ:π·β1-1βπ) β (( I βΎ π) β πΉ) = πΉ) |
5 | simp1 1133 | . . 3 β’ ((π β LMod β§ π β (LIndSβπ) β§ πΉ:π·β1-1βπ) β π β LMod) | |
6 | linds2 21752 | . . . 4 β’ (π β (LIndSβπ) β ( I βΎ π) LIndF π) | |
7 | 6 | 3ad2ant2 1131 | . . 3 β’ ((π β LMod β§ π β (LIndSβπ) β§ πΉ:π·β1-1βπ) β ( I βΎ π) LIndF π) |
8 | dmresi 6060 | . . . . . 6 β’ dom ( I βΎ π) = π | |
9 | f1eq3 6795 | . . . . . 6 β’ (dom ( I βΎ π) = π β (πΉ:π·β1-1βdom ( I βΎ π) β πΉ:π·β1-1βπ)) | |
10 | 8, 9 | ax-mp 5 | . . . . 5 β’ (πΉ:π·β1-1βdom ( I βΎ π) β πΉ:π·β1-1βπ) |
11 | 10 | biimpri 227 | . . . 4 β’ (πΉ:π·β1-1βπ β πΉ:π·β1-1βdom ( I βΎ π)) |
12 | 11 | 3ad2ant3 1132 | . . 3 β’ ((π β LMod β§ π β (LIndSβπ) β§ πΉ:π·β1-1βπ) β πΉ:π·β1-1βdom ( I βΎ π)) |
13 | f1lindf 21763 | . . 3 β’ ((π β LMod β§ ( I βΎ π) LIndF π β§ πΉ:π·β1-1βdom ( I βΎ π)) β (( I βΎ π) β πΉ) LIndF π) | |
14 | 5, 7, 12, 13 | syl3anc 1368 | . 2 β’ ((π β LMod β§ π β (LIndSβπ) β§ πΉ:π·β1-1βπ) β (( I βΎ π) β πΉ) LIndF π) |
15 | 4, 14 | eqbrtrrd 5176 | 1 β’ ((π β LMod β§ π β (LIndSβπ) β§ πΉ:π·β1-1βπ) β πΉ LIndF π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ w3a 1084 = wceq 1533 β wcel 2098 class class class wbr 5152 I cid 5579 dom cdm 5682 βΎ cres 5684 β ccom 5686 βΆwf 6549 β1-1βwf1 6550 βcfv 6553 LModclmod 20750 LIndF clindf 21745 LIndSclinds 21746 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-1cn 11204 ax-addcl 11206 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-om 7877 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-nn 12251 df-slot 17158 df-ndx 17170 df-base 17188 df-0g 17430 df-mgm 18607 df-sgrp 18686 df-mnd 18702 df-grp 18900 df-lmod 20752 df-lss 20823 df-lsp 20863 df-lindf 21747 df-linds 21748 |
This theorem is referenced by: islindf3 21767 lindsmm 21769 lbslcic 21782 |
Copyright terms: Public domain | W3C validator |