| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1linds | Structured version Visualization version GIF version | ||
| Description: A family constructed from non-repeated elements of an independent set is independent. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
| Ref | Expression |
|---|---|
| f1linds | ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷–1-1→𝑆) → 𝐹 LIndF 𝑊) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f 6720 | . . . 4 ⊢ (𝐹:𝐷–1-1→𝑆 → 𝐹:𝐷⟶𝑆) | |
| 2 | fcoi2 6699 | . . . 4 ⊢ (𝐹:𝐷⟶𝑆 → (( I ↾ 𝑆) ∘ 𝐹) = 𝐹) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐹:𝐷–1-1→𝑆 → (( I ↾ 𝑆) ∘ 𝐹) = 𝐹) |
| 4 | 3 | 3ad2ant3 1135 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷–1-1→𝑆) → (( I ↾ 𝑆) ∘ 𝐹) = 𝐹) |
| 5 | simp1 1136 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷–1-1→𝑆) → 𝑊 ∈ LMod) | |
| 6 | linds2 21718 | . . . 4 ⊢ (𝑆 ∈ (LIndS‘𝑊) → ( I ↾ 𝑆) LIndF 𝑊) | |
| 7 | 6 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷–1-1→𝑆) → ( I ↾ 𝑆) LIndF 𝑊) |
| 8 | dmresi 6003 | . . . . . 6 ⊢ dom ( I ↾ 𝑆) = 𝑆 | |
| 9 | f1eq3 6717 | . . . . . 6 ⊢ (dom ( I ↾ 𝑆) = 𝑆 → (𝐹:𝐷–1-1→dom ( I ↾ 𝑆) ↔ 𝐹:𝐷–1-1→𝑆)) | |
| 10 | 8, 9 | ax-mp 5 | . . . . 5 ⊢ (𝐹:𝐷–1-1→dom ( I ↾ 𝑆) ↔ 𝐹:𝐷–1-1→𝑆) |
| 11 | 10 | biimpri 228 | . . . 4 ⊢ (𝐹:𝐷–1-1→𝑆 → 𝐹:𝐷–1-1→dom ( I ↾ 𝑆)) |
| 12 | 11 | 3ad2ant3 1135 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷–1-1→𝑆) → 𝐹:𝐷–1-1→dom ( I ↾ 𝑆)) |
| 13 | f1lindf 21729 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ ( I ↾ 𝑆) LIndF 𝑊 ∧ 𝐹:𝐷–1-1→dom ( I ↾ 𝑆)) → (( I ↾ 𝑆) ∘ 𝐹) LIndF 𝑊) | |
| 14 | 5, 7, 12, 13 | syl3anc 1373 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷–1-1→𝑆) → (( I ↾ 𝑆) ∘ 𝐹) LIndF 𝑊) |
| 15 | 4, 14 | eqbrtrrd 5116 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷–1-1→𝑆) → 𝐹 LIndF 𝑊) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5092 I cid 5513 dom cdm 5619 ↾ cres 5621 ∘ ccom 5623 ⟶wf 6478 –1-1→wf1 6479 ‘cfv 6482 LModclmod 20763 LIndF clindf 21711 LIndSclinds 21712 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-1cn 11067 ax-addcl 11069 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-nn 12129 df-slot 17093 df-ndx 17105 df-base 17121 df-0g 17345 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-grp 18815 df-lmod 20765 df-lss 20835 df-lsp 20875 df-lindf 21713 df-linds 21714 |
| This theorem is referenced by: islindf3 21733 lindsmm 21735 lbslcic 21748 |
| Copyright terms: Public domain | W3C validator |