MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1linds Structured version   Visualization version   GIF version

Theorem f1linds 21785
Description: A family constructed from non-repeated elements of an independent set is independent. (Contributed by Stefan O'Rear, 26-Feb-2015.)
Assertion
Ref Expression
f1linds ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷1-1𝑆) → 𝐹 LIndF 𝑊)

Proof of Theorem f1linds
StepHypRef Expression
1 f1f 6774 . . . 4 (𝐹:𝐷1-1𝑆𝐹:𝐷𝑆)
2 fcoi2 6753 . . . 4 (𝐹:𝐷𝑆 → (( I ↾ 𝑆) ∘ 𝐹) = 𝐹)
31, 2syl 17 . . 3 (𝐹:𝐷1-1𝑆 → (( I ↾ 𝑆) ∘ 𝐹) = 𝐹)
433ad2ant3 1135 . 2 ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷1-1𝑆) → (( I ↾ 𝑆) ∘ 𝐹) = 𝐹)
5 simp1 1136 . . 3 ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷1-1𝑆) → 𝑊 ∈ LMod)
6 linds2 21771 . . . 4 (𝑆 ∈ (LIndS‘𝑊) → ( I ↾ 𝑆) LIndF 𝑊)
763ad2ant2 1134 . . 3 ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷1-1𝑆) → ( I ↾ 𝑆) LIndF 𝑊)
8 dmresi 6039 . . . . . 6 dom ( I ↾ 𝑆) = 𝑆
9 f1eq3 6771 . . . . . 6 (dom ( I ↾ 𝑆) = 𝑆 → (𝐹:𝐷1-1→dom ( I ↾ 𝑆) ↔ 𝐹:𝐷1-1𝑆))
108, 9ax-mp 5 . . . . 5 (𝐹:𝐷1-1→dom ( I ↾ 𝑆) ↔ 𝐹:𝐷1-1𝑆)
1110biimpri 228 . . . 4 (𝐹:𝐷1-1𝑆𝐹:𝐷1-1→dom ( I ↾ 𝑆))
12113ad2ant3 1135 . . 3 ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷1-1𝑆) → 𝐹:𝐷1-1→dom ( I ↾ 𝑆))
13 f1lindf 21782 . . 3 ((𝑊 ∈ LMod ∧ ( I ↾ 𝑆) LIndF 𝑊𝐹:𝐷1-1→dom ( I ↾ 𝑆)) → (( I ↾ 𝑆) ∘ 𝐹) LIndF 𝑊)
145, 7, 12, 13syl3anc 1373 . 2 ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷1-1𝑆) → (( I ↾ 𝑆) ∘ 𝐹) LIndF 𝑊)
154, 14eqbrtrrd 5143 1 ((𝑊 ∈ LMod ∧ 𝑆 ∈ (LIndS‘𝑊) ∧ 𝐹:𝐷1-1𝑆) → 𝐹 LIndF 𝑊)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1540  wcel 2108   class class class wbr 5119   I cid 5547  dom cdm 5654  cres 5656  ccom 5658  wf 6527  1-1wf1 6528  cfv 6531  LModclmod 20817   LIndF clindf 21764  LIndSclinds 21765
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-1cn 11187  ax-addcl 11189
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-om 7862  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-nn 12241  df-slot 17201  df-ndx 17213  df-base 17229  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-lmod 20819  df-lss 20889  df-lsp 20929  df-lindf 21766  df-linds 21767
This theorem is referenced by:  islindf3  21786  lindsmm  21788  lbslcic  21801
  Copyright terms: Public domain W3C validator