![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1linds | Structured version Visualization version GIF version |
Description: A family constructed from non-repeated elements of an independent set is independent. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
Ref | Expression |
---|---|
f1linds | β’ ((π β LMod β§ π β (LIndSβπ) β§ πΉ:π·β1-1βπ) β πΉ LIndF π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 6787 | . . . 4 β’ (πΉ:π·β1-1βπ β πΉ:π·βΆπ) | |
2 | fcoi2 6766 | . . . 4 β’ (πΉ:π·βΆπ β (( I βΎ π) β πΉ) = πΉ) | |
3 | 1, 2 | syl 17 | . . 3 β’ (πΉ:π·β1-1βπ β (( I βΎ π) β πΉ) = πΉ) |
4 | 3 | 3ad2ant3 1135 | . 2 β’ ((π β LMod β§ π β (LIndSβπ) β§ πΉ:π·β1-1βπ) β (( I βΎ π) β πΉ) = πΉ) |
5 | simp1 1136 | . . 3 β’ ((π β LMod β§ π β (LIndSβπ) β§ πΉ:π·β1-1βπ) β π β LMod) | |
6 | linds2 21365 | . . . 4 β’ (π β (LIndSβπ) β ( I βΎ π) LIndF π) | |
7 | 6 | 3ad2ant2 1134 | . . 3 β’ ((π β LMod β§ π β (LIndSβπ) β§ πΉ:π·β1-1βπ) β ( I βΎ π) LIndF π) |
8 | dmresi 6051 | . . . . . 6 β’ dom ( I βΎ π) = π | |
9 | f1eq3 6784 | . . . . . 6 β’ (dom ( I βΎ π) = π β (πΉ:π·β1-1βdom ( I βΎ π) β πΉ:π·β1-1βπ)) | |
10 | 8, 9 | ax-mp 5 | . . . . 5 β’ (πΉ:π·β1-1βdom ( I βΎ π) β πΉ:π·β1-1βπ) |
11 | 10 | biimpri 227 | . . . 4 β’ (πΉ:π·β1-1βπ β πΉ:π·β1-1βdom ( I βΎ π)) |
12 | 11 | 3ad2ant3 1135 | . . 3 β’ ((π β LMod β§ π β (LIndSβπ) β§ πΉ:π·β1-1βπ) β πΉ:π·β1-1βdom ( I βΎ π)) |
13 | f1lindf 21376 | . . 3 β’ ((π β LMod β§ ( I βΎ π) LIndF π β§ πΉ:π·β1-1βdom ( I βΎ π)) β (( I βΎ π) β πΉ) LIndF π) | |
14 | 5, 7, 12, 13 | syl3anc 1371 | . 2 β’ ((π β LMod β§ π β (LIndSβπ) β§ πΉ:π·β1-1βπ) β (( I βΎ π) β πΉ) LIndF π) |
15 | 4, 14 | eqbrtrrd 5172 | 1 β’ ((π β LMod β§ π β (LIndSβπ) β§ πΉ:π·β1-1βπ) β πΉ LIndF π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ w3a 1087 = wceq 1541 β wcel 2106 class class class wbr 5148 I cid 5573 dom cdm 5676 βΎ cres 5678 β ccom 5680 βΆwf 6539 β1-1βwf1 6540 βcfv 6543 LModclmod 20470 LIndF clindf 21358 LIndSclinds 21359 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-1cn 11167 ax-addcl 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-nn 12212 df-slot 17114 df-ndx 17126 df-base 17144 df-0g 17386 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-grp 18821 df-lmod 20472 df-lss 20542 df-lsp 20582 df-lindf 21360 df-linds 21361 |
This theorem is referenced by: islindf3 21380 lindsmm 21382 lbslcic 21395 |
Copyright terms: Public domain | W3C validator |