![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1linds | Structured version Visualization version GIF version |
Description: A family constructed from non-repeated elements of an independent set is independent. (Contributed by Stefan O'Rear, 26-Feb-2015.) |
Ref | Expression |
---|---|
f1linds | β’ ((π β LMod β§ π β (LIndSβπ) β§ πΉ:π·β1-1βπ) β πΉ LIndF π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1f 6780 | . . . 4 β’ (πΉ:π·β1-1βπ β πΉ:π·βΆπ) | |
2 | fcoi2 6759 | . . . 4 β’ (πΉ:π·βΆπ β (( I βΎ π) β πΉ) = πΉ) | |
3 | 1, 2 | syl 17 | . . 3 β’ (πΉ:π·β1-1βπ β (( I βΎ π) β πΉ) = πΉ) |
4 | 3 | 3ad2ant3 1132 | . 2 β’ ((π β LMod β§ π β (LIndSβπ) β§ πΉ:π·β1-1βπ) β (( I βΎ π) β πΉ) = πΉ) |
5 | simp1 1133 | . . 3 β’ ((π β LMod β§ π β (LIndSβπ) β§ πΉ:π·β1-1βπ) β π β LMod) | |
6 | linds2 21701 | . . . 4 β’ (π β (LIndSβπ) β ( I βΎ π) LIndF π) | |
7 | 6 | 3ad2ant2 1131 | . . 3 β’ ((π β LMod β§ π β (LIndSβπ) β§ πΉ:π·β1-1βπ) β ( I βΎ π) LIndF π) |
8 | dmresi 6044 | . . . . . 6 β’ dom ( I βΎ π) = π | |
9 | f1eq3 6777 | . . . . . 6 β’ (dom ( I βΎ π) = π β (πΉ:π·β1-1βdom ( I βΎ π) β πΉ:π·β1-1βπ)) | |
10 | 8, 9 | ax-mp 5 | . . . . 5 β’ (πΉ:π·β1-1βdom ( I βΎ π) β πΉ:π·β1-1βπ) |
11 | 10 | biimpri 227 | . . . 4 β’ (πΉ:π·β1-1βπ β πΉ:π·β1-1βdom ( I βΎ π)) |
12 | 11 | 3ad2ant3 1132 | . . 3 β’ ((π β LMod β§ π β (LIndSβπ) β§ πΉ:π·β1-1βπ) β πΉ:π·β1-1βdom ( I βΎ π)) |
13 | f1lindf 21712 | . . 3 β’ ((π β LMod β§ ( I βΎ π) LIndF π β§ πΉ:π·β1-1βdom ( I βΎ π)) β (( I βΎ π) β πΉ) LIndF π) | |
14 | 5, 7, 12, 13 | syl3anc 1368 | . 2 β’ ((π β LMod β§ π β (LIndSβπ) β§ πΉ:π·β1-1βπ) β (( I βΎ π) β πΉ) LIndF π) |
15 | 4, 14 | eqbrtrrd 5165 | 1 β’ ((π β LMod β§ π β (LIndSβπ) β§ πΉ:π·β1-1βπ) β πΉ LIndF π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ w3a 1084 = wceq 1533 β wcel 2098 class class class wbr 5141 I cid 5566 dom cdm 5669 βΎ cres 5671 β ccom 5673 βΆwf 6532 β1-1βwf1 6533 βcfv 6536 LModclmod 20703 LIndF clindf 21694 LIndSclinds 21695 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-cnex 11165 ax-1cn 11167 ax-addcl 11169 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7360 df-ov 7407 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-nn 12214 df-slot 17121 df-ndx 17133 df-base 17151 df-0g 17393 df-mgm 18570 df-sgrp 18649 df-mnd 18665 df-grp 18863 df-lmod 20705 df-lss 20776 df-lsp 20816 df-lindf 21696 df-linds 21697 |
This theorem is referenced by: islindf3 21716 lindsmm 21718 lbslcic 21731 |
Copyright terms: Public domain | W3C validator |