| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > diaf1oN | Structured version Visualization version GIF version | ||
| Description: The partial isomorphism A for a lattice 𝐾 is a one-to-one, onto function. Part of Lemma M of [Crawley] p. 121 line 12, with closed subspaces rather than subspaces. See diadm 41053 for the domain. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dvadia.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dvadia.u | ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) |
| dvadia.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
| dvadia.n | ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) |
| dvadia.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
| Ref | Expression |
|---|---|
| diaf1oN | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1-onto→{𝑥 ∈ 𝑆 ∣ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvadia.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | dvadia.i | . . . . 5 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
| 3 | 1, 2 | diaf11N 41067 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) |
| 4 | f1of1 6758 | . . . 4 ⊢ (𝐼:dom 𝐼–1-1-onto→ran 𝐼 → 𝐼:dom 𝐼–1-1→ran 𝐼) | |
| 5 | 3, 4 | syl 17 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1→ran 𝐼) |
| 6 | dvadia.u | . . . . 5 ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) | |
| 7 | dvadia.n | . . . . 5 ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) | |
| 8 | dvadia.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑈) | |
| 9 | 1, 6, 2, 7, 8 | diarnN 41147 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ran 𝐼 = {𝑥 ∈ 𝑆 ∣ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥}) |
| 10 | f1eq3 6712 | . . . 4 ⊢ (ran 𝐼 = {𝑥 ∈ 𝑆 ∣ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥} → (𝐼:dom 𝐼–1-1→ran 𝐼 ↔ 𝐼:dom 𝐼–1-1→{𝑥 ∈ 𝑆 ∣ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥})) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼:dom 𝐼–1-1→ran 𝐼 ↔ 𝐼:dom 𝐼–1-1→{𝑥 ∈ 𝑆 ∣ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥})) |
| 12 | 5, 11 | mpbid 232 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1→{𝑥 ∈ 𝑆 ∣ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥}) |
| 13 | dff1o5 6768 | . 2 ⊢ (𝐼:dom 𝐼–1-1-onto→{𝑥 ∈ 𝑆 ∣ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥} ↔ (𝐼:dom 𝐼–1-1→{𝑥 ∈ 𝑆 ∣ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥} ∧ ran 𝐼 = {𝑥 ∈ 𝑆 ∣ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥})) | |
| 14 | 12, 9, 13 | sylanbrc 583 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1-onto→{𝑥 ∈ 𝑆 ∣ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2110 {crab 3393 dom cdm 5614 ran crn 5615 –1-1→wf1 6474 –1-1-onto→wf1o 6476 ‘cfv 6477 LSubSpclss 20857 HLchlt 39368 LHypclh 40002 DVecAcdveca 41020 DIsoAcdia 41046 ocAcocaN 41137 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 ax-riotaBAD 38971 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-undef 8198 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-er 8617 df-map 8747 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-3 12181 df-4 12182 df-5 12183 df-6 12184 df-n0 12374 df-z 12461 df-uz 12725 df-fz 13400 df-struct 17050 df-slot 17085 df-ndx 17097 df-base 17113 df-plusg 17166 df-mulr 17167 df-sca 17169 df-vsca 17170 df-proset 18192 df-poset 18211 df-plt 18226 df-lub 18242 df-glb 18243 df-join 18244 df-meet 18245 df-p0 18321 df-p1 18322 df-lat 18330 df-clat 18397 df-lss 20858 df-oposet 39194 df-cmtN 39195 df-ol 39196 df-oml 39197 df-covers 39284 df-ats 39285 df-atl 39316 df-cvlat 39340 df-hlat 39369 df-llines 39516 df-lplanes 39517 df-lvols 39518 df-lines 39519 df-psubsp 39521 df-pmap 39522 df-padd 39814 df-lhyp 40006 df-laut 40007 df-ldil 40122 df-ltrn 40123 df-trl 40177 df-tendo 40773 df-edring 40775 df-dveca 41021 df-disoa 41047 df-docaN 41138 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |