Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > diaf1oN | Structured version Visualization version GIF version |
Description: The partial isomorphism A for a lattice 𝐾 is a one-to-one, onto function. Part of Lemma M of [Crawley] p. 121 line 12, with closed subspaces rather than subspaces. See diadm 38799 for the domain. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dvadia.h | ⊢ 𝐻 = (LHyp‘𝐾) |
dvadia.u | ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) |
dvadia.i | ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) |
dvadia.n | ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) |
dvadia.s | ⊢ 𝑆 = (LSubSp‘𝑈) |
Ref | Expression |
---|---|
diaf1oN | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1-onto→{𝑥 ∈ 𝑆 ∣ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvadia.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | dvadia.i | . . . . 5 ⊢ 𝐼 = ((DIsoA‘𝐾)‘𝑊) | |
3 | 1, 2 | diaf11N 38813 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1-onto→ran 𝐼) |
4 | f1of1 6669 | . . . 4 ⊢ (𝐼:dom 𝐼–1-1-onto→ran 𝐼 → 𝐼:dom 𝐼–1-1→ran 𝐼) | |
5 | 3, 4 | syl 17 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1→ran 𝐼) |
6 | dvadia.u | . . . . 5 ⊢ 𝑈 = ((DVecA‘𝐾)‘𝑊) | |
7 | dvadia.n | . . . . 5 ⊢ ⊥ = ((ocA‘𝐾)‘𝑊) | |
8 | dvadia.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑈) | |
9 | 1, 6, 2, 7, 8 | diarnN 38893 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ran 𝐼 = {𝑥 ∈ 𝑆 ∣ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥}) |
10 | f1eq3 6621 | . . . 4 ⊢ (ran 𝐼 = {𝑥 ∈ 𝑆 ∣ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥} → (𝐼:dom 𝐼–1-1→ran 𝐼 ↔ 𝐼:dom 𝐼–1-1→{𝑥 ∈ 𝑆 ∣ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥})) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐼:dom 𝐼–1-1→ran 𝐼 ↔ 𝐼:dom 𝐼–1-1→{𝑥 ∈ 𝑆 ∣ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥})) |
12 | 5, 11 | mpbid 235 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1→{𝑥 ∈ 𝑆 ∣ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥}) |
13 | dff1o5 6679 | . 2 ⊢ (𝐼:dom 𝐼–1-1-onto→{𝑥 ∈ 𝑆 ∣ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥} ↔ (𝐼:dom 𝐼–1-1→{𝑥 ∈ 𝑆 ∣ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥} ∧ ran 𝐼 = {𝑥 ∈ 𝑆 ∣ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥})) | |
14 | 12, 9, 13 | sylanbrc 586 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝐼:dom 𝐼–1-1-onto→{𝑥 ∈ 𝑆 ∣ ( ⊥ ‘( ⊥ ‘𝑥)) = 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2111 {crab 3066 dom cdm 5560 ran crn 5561 –1-1→wf1 6386 –1-1-onto→wf1o 6388 ‘cfv 6389 LSubSpclss 19981 HLchlt 37114 LHypclh 37748 DVecAcdveca 38766 DIsoAcdia 38792 ocAcocaN 38883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5188 ax-sep 5201 ax-nul 5208 ax-pow 5267 ax-pr 5331 ax-un 7532 ax-cnex 10798 ax-resscn 10799 ax-1cn 10800 ax-icn 10801 ax-addcl 10802 ax-addrcl 10803 ax-mulcl 10804 ax-mulrcl 10805 ax-mulcom 10806 ax-addass 10807 ax-mulass 10808 ax-distr 10809 ax-i2m1 10810 ax-1ne0 10811 ax-1rid 10812 ax-rnegex 10813 ax-rrecex 10814 ax-cnre 10815 ax-pre-lttri 10816 ax-pre-lttrn 10817 ax-pre-ltadd 10818 ax-pre-mulgt0 10819 ax-riotaBAD 36717 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3417 df-sbc 3704 df-csb 3821 df-dif 3878 df-un 3880 df-in 3882 df-ss 3892 df-pss 3894 df-nul 4247 df-if 4449 df-pw 4524 df-sn 4551 df-pr 4553 df-tp 4555 df-op 4557 df-uni 4829 df-int 4869 df-iun 4915 df-iin 4916 df-br 5063 df-opab 5125 df-mpt 5145 df-tr 5171 df-id 5464 df-eprel 5469 df-po 5477 df-so 5478 df-fr 5518 df-we 5520 df-xp 5566 df-rel 5567 df-cnv 5568 df-co 5569 df-dm 5570 df-rn 5571 df-res 5572 df-ima 5573 df-pred 6169 df-ord 6225 df-on 6226 df-lim 6227 df-suc 6228 df-iota 6347 df-fun 6391 df-fn 6392 df-f 6393 df-f1 6394 df-fo 6395 df-f1o 6396 df-fv 6397 df-riota 7179 df-ov 7225 df-oprab 7226 df-mpo 7227 df-om 7654 df-1st 7770 df-2nd 7771 df-undef 8024 df-wrecs 8056 df-recs 8117 df-rdg 8155 df-1o 8211 df-er 8400 df-map 8519 df-en 8636 df-dom 8637 df-sdom 8638 df-fin 8639 df-pnf 10882 df-mnf 10883 df-xr 10884 df-ltxr 10885 df-le 10886 df-sub 11077 df-neg 11078 df-nn 11844 df-2 11906 df-3 11907 df-4 11908 df-5 11909 df-6 11910 df-n0 12104 df-z 12190 df-uz 12452 df-fz 13109 df-struct 16713 df-slot 16748 df-ndx 16758 df-base 16774 df-plusg 16828 df-mulr 16829 df-sca 16831 df-vsca 16832 df-proset 17815 df-poset 17833 df-plt 17849 df-lub 17865 df-glb 17866 df-join 17867 df-meet 17868 df-p0 17944 df-p1 17945 df-lat 17951 df-clat 18018 df-lss 19982 df-oposet 36940 df-cmtN 36941 df-ol 36942 df-oml 36943 df-covers 37030 df-ats 37031 df-atl 37062 df-cvlat 37086 df-hlat 37115 df-llines 37262 df-lplanes 37263 df-lvols 37264 df-lines 37265 df-psubsp 37267 df-pmap 37268 df-padd 37560 df-lhyp 37752 df-laut 37753 df-ldil 37868 df-ltrn 37869 df-trl 37923 df-tendo 38519 df-edring 38521 df-dveca 38767 df-disoa 38793 df-docaN 38884 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |