![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > diaf1oN | Structured version Visualization version GIF version |
Description: The partial isomorphism A for a lattice πΎ is a one-to-one, onto function. Part of Lemma M of [Crawley] p. 121 line 12, with closed subspaces rather than subspaces. See diadm 40540 for the domain. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dvadia.h | β’ π» = (LHypβπΎ) |
dvadia.u | β’ π = ((DVecAβπΎ)βπ) |
dvadia.i | β’ πΌ = ((DIsoAβπΎ)βπ) |
dvadia.n | β’ β₯ = ((ocAβπΎ)βπ) |
dvadia.s | β’ π = (LSubSpβπ) |
Ref | Expression |
---|---|
diaf1oN | β’ ((πΎ β HL β§ π β π») β πΌ:dom πΌβ1-1-ontoβ{π₯ β π β£ ( β₯ β( β₯ βπ₯)) = π₯}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvadia.h | . . . . 5 β’ π» = (LHypβπΎ) | |
2 | dvadia.i | . . . . 5 β’ πΌ = ((DIsoAβπΎ)βπ) | |
3 | 1, 2 | diaf11N 40554 | . . . 4 β’ ((πΎ β HL β§ π β π») β πΌ:dom πΌβ1-1-ontoβran πΌ) |
4 | f1of1 6843 | . . . 4 β’ (πΌ:dom πΌβ1-1-ontoβran πΌ β πΌ:dom πΌβ1-1βran πΌ) | |
5 | 3, 4 | syl 17 | . . 3 β’ ((πΎ β HL β§ π β π») β πΌ:dom πΌβ1-1βran πΌ) |
6 | dvadia.u | . . . . 5 β’ π = ((DVecAβπΎ)βπ) | |
7 | dvadia.n | . . . . 5 β’ β₯ = ((ocAβπΎ)βπ) | |
8 | dvadia.s | . . . . 5 β’ π = (LSubSpβπ) | |
9 | 1, 6, 2, 7, 8 | diarnN 40634 | . . . 4 β’ ((πΎ β HL β§ π β π») β ran πΌ = {π₯ β π β£ ( β₯ β( β₯ βπ₯)) = π₯}) |
10 | f1eq3 6795 | . . . 4 β’ (ran πΌ = {π₯ β π β£ ( β₯ β( β₯ βπ₯)) = π₯} β (πΌ:dom πΌβ1-1βran πΌ β πΌ:dom πΌβ1-1β{π₯ β π β£ ( β₯ β( β₯ βπ₯)) = π₯})) | |
11 | 9, 10 | syl 17 | . . 3 β’ ((πΎ β HL β§ π β π») β (πΌ:dom πΌβ1-1βran πΌ β πΌ:dom πΌβ1-1β{π₯ β π β£ ( β₯ β( β₯ βπ₯)) = π₯})) |
12 | 5, 11 | mpbid 231 | . 2 β’ ((πΎ β HL β§ π β π») β πΌ:dom πΌβ1-1β{π₯ β π β£ ( β₯ β( β₯ βπ₯)) = π₯}) |
13 | dff1o5 6853 | . 2 β’ (πΌ:dom πΌβ1-1-ontoβ{π₯ β π β£ ( β₯ β( β₯ βπ₯)) = π₯} β (πΌ:dom πΌβ1-1β{π₯ β π β£ ( β₯ β( β₯ βπ₯)) = π₯} β§ ran πΌ = {π₯ β π β£ ( β₯ β( β₯ βπ₯)) = π₯})) | |
14 | 12, 9, 13 | sylanbrc 581 | 1 β’ ((πΎ β HL β§ π β π») β πΌ:dom πΌβ1-1-ontoβ{π₯ β π β£ ( β₯ β( β₯ βπ₯)) = π₯}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 394 = wceq 1533 β wcel 2098 {crab 3430 dom cdm 5682 ran crn 5683 β1-1βwf1 6550 β1-1-ontoβwf1o 6552 βcfv 6553 LSubSpclss 20822 HLchlt 38854 LHypclh 39489 DVecAcdveca 40507 DIsoAcdia 40533 ocAcocaN 40624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 ax-riotaBAD 38457 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-iin 5003 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-undef 8285 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-er 8731 df-map 8853 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-3 12314 df-4 12315 df-5 12316 df-6 12317 df-n0 12511 df-z 12597 df-uz 12861 df-fz 13525 df-struct 17123 df-slot 17158 df-ndx 17170 df-base 17188 df-plusg 17253 df-mulr 17254 df-sca 17256 df-vsca 17257 df-proset 18294 df-poset 18312 df-plt 18329 df-lub 18345 df-glb 18346 df-join 18347 df-meet 18348 df-p0 18424 df-p1 18425 df-lat 18431 df-clat 18498 df-lss 20823 df-oposet 38680 df-cmtN 38681 df-ol 38682 df-oml 38683 df-covers 38770 df-ats 38771 df-atl 38802 df-cvlat 38826 df-hlat 38855 df-llines 39003 df-lplanes 39004 df-lvols 39005 df-lines 39006 df-psubsp 39008 df-pmap 39009 df-padd 39301 df-lhyp 39493 df-laut 39494 df-ldil 39609 df-ltrn 39610 df-trl 39664 df-tendo 40260 df-edring 40262 df-dveca 40508 df-disoa 40534 df-docaN 40625 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |