Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  diaf1oN Structured version   Visualization version   GIF version

Theorem diaf1oN 38894
Description: The partial isomorphism A for a lattice 𝐾 is a one-to-one, onto function. Part of Lemma M of [Crawley] p. 121 line 12, with closed subspaces rather than subspaces. See diadm 38799 for the domain. (Contributed by NM, 17-Jan-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
dvadia.h 𝐻 = (LHyp‘𝐾)
dvadia.u 𝑈 = ((DVecA‘𝐾)‘𝑊)
dvadia.i 𝐼 = ((DIsoA‘𝐾)‘𝑊)
dvadia.n = ((ocA‘𝐾)‘𝑊)
dvadia.s 𝑆 = (LSubSp‘𝑈)
Assertion
Ref Expression
diaf1oN ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1-onto→{𝑥𝑆 ∣ ( ‘( 𝑥)) = 𝑥})
Distinct variable groups:   𝑥,𝐻   𝑥,𝐼   𝑥,𝐾   𝑥,𝑆   𝑥,𝑊
Allowed substitution hints:   𝑈(𝑥)   (𝑥)

Proof of Theorem diaf1oN
StepHypRef Expression
1 dvadia.h . . . . 5 𝐻 = (LHyp‘𝐾)
2 dvadia.i . . . . 5 𝐼 = ((DIsoA‘𝐾)‘𝑊)
31, 2diaf11N 38813 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1-onto→ran 𝐼)
4 f1of1 6669 . . . 4 (𝐼:dom 𝐼1-1-onto→ran 𝐼𝐼:dom 𝐼1-1→ran 𝐼)
53, 4syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1→ran 𝐼)
6 dvadia.u . . . . 5 𝑈 = ((DVecA‘𝐾)‘𝑊)
7 dvadia.n . . . . 5 = ((ocA‘𝐾)‘𝑊)
8 dvadia.s . . . . 5 𝑆 = (LSubSp‘𝑈)
91, 6, 2, 7, 8diarnN 38893 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ran 𝐼 = {𝑥𝑆 ∣ ( ‘( 𝑥)) = 𝑥})
10 f1eq3 6621 . . . 4 (ran 𝐼 = {𝑥𝑆 ∣ ( ‘( 𝑥)) = 𝑥} → (𝐼:dom 𝐼1-1→ran 𝐼𝐼:dom 𝐼1-1→{𝑥𝑆 ∣ ( ‘( 𝑥)) = 𝑥}))
119, 10syl 17 . . 3 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐼:dom 𝐼1-1→ran 𝐼𝐼:dom 𝐼1-1→{𝑥𝑆 ∣ ( ‘( 𝑥)) = 𝑥}))
125, 11mpbid 235 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1→{𝑥𝑆 ∣ ( ‘( 𝑥)) = 𝑥})
13 dff1o5 6679 . 2 (𝐼:dom 𝐼1-1-onto→{𝑥𝑆 ∣ ( ‘( 𝑥)) = 𝑥} ↔ (𝐼:dom 𝐼1-1→{𝑥𝑆 ∣ ( ‘( 𝑥)) = 𝑥} ∧ ran 𝐼 = {𝑥𝑆 ∣ ( ‘( 𝑥)) = 𝑥}))
1412, 9, 13sylanbrc 586 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝐼:dom 𝐼1-1-onto→{𝑥𝑆 ∣ ( ‘( 𝑥)) = 𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wcel 2111  {crab 3066  dom cdm 5560  ran crn 5561  1-1wf1 6386  1-1-ontowf1o 6388  cfv 6389  LSubSpclss 19981  HLchlt 37114  LHypclh 37748  DVecAcdveca 38766  DIsoAcdia 38792  ocAcocaN 38883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5188  ax-sep 5201  ax-nul 5208  ax-pow 5267  ax-pr 5331  ax-un 7532  ax-cnex 10798  ax-resscn 10799  ax-1cn 10800  ax-icn 10801  ax-addcl 10802  ax-addrcl 10803  ax-mulcl 10804  ax-mulrcl 10805  ax-mulcom 10806  ax-addass 10807  ax-mulass 10808  ax-distr 10809  ax-i2m1 10810  ax-1ne0 10811  ax-1rid 10812  ax-rnegex 10813  ax-rrecex 10814  ax-cnre 10815  ax-pre-lttri 10816  ax-pre-lttrn 10817  ax-pre-ltadd 10818  ax-pre-mulgt0 10819  ax-riotaBAD 36717
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3417  df-sbc 3704  df-csb 3821  df-dif 3878  df-un 3880  df-in 3882  df-ss 3892  df-pss 3894  df-nul 4247  df-if 4449  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4829  df-int 4869  df-iun 4915  df-iin 4916  df-br 5063  df-opab 5125  df-mpt 5145  df-tr 5171  df-id 5464  df-eprel 5469  df-po 5477  df-so 5478  df-fr 5518  df-we 5520  df-xp 5566  df-rel 5567  df-cnv 5568  df-co 5569  df-dm 5570  df-rn 5571  df-res 5572  df-ima 5573  df-pred 6169  df-ord 6225  df-on 6226  df-lim 6227  df-suc 6228  df-iota 6347  df-fun 6391  df-fn 6392  df-f 6393  df-f1 6394  df-fo 6395  df-f1o 6396  df-fv 6397  df-riota 7179  df-ov 7225  df-oprab 7226  df-mpo 7227  df-om 7654  df-1st 7770  df-2nd 7771  df-undef 8024  df-wrecs 8056  df-recs 8117  df-rdg 8155  df-1o 8211  df-er 8400  df-map 8519  df-en 8636  df-dom 8637  df-sdom 8638  df-fin 8639  df-pnf 10882  df-mnf 10883  df-xr 10884  df-ltxr 10885  df-le 10886  df-sub 11077  df-neg 11078  df-nn 11844  df-2 11906  df-3 11907  df-4 11908  df-5 11909  df-6 11910  df-n0 12104  df-z 12190  df-uz 12452  df-fz 13109  df-struct 16713  df-slot 16748  df-ndx 16758  df-base 16774  df-plusg 16828  df-mulr 16829  df-sca 16831  df-vsca 16832  df-proset 17815  df-poset 17833  df-plt 17849  df-lub 17865  df-glb 17866  df-join 17867  df-meet 17868  df-p0 17944  df-p1 17945  df-lat 17951  df-clat 18018  df-lss 19982  df-oposet 36940  df-cmtN 36941  df-ol 36942  df-oml 36943  df-covers 37030  df-ats 37031  df-atl 37062  df-cvlat 37086  df-hlat 37115  df-llines 37262  df-lplanes 37263  df-lvols 37264  df-lines 37265  df-psubsp 37267  df-pmap 37268  df-padd 37560  df-lhyp 37752  df-laut 37753  df-ldil 37868  df-ltrn 37869  df-trl 37923  df-tendo 38519  df-edring 38521  df-dveca 38767  df-disoa 38793  df-docaN 38884
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator