| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1eq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.) |
| Ref | Expression |
|---|---|
| f1eq2 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐵–1-1→𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2 6667 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
| 2 | 1 | anbi1d 631 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹) ↔ (𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹))) |
| 3 | df-f1 6516 | . 2 ⊢ (𝐹:𝐴–1-1→𝐶 ↔ (𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹)) | |
| 4 | df-f1 6516 | . 2 ⊢ (𝐹:𝐵–1-1→𝐶 ↔ (𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐵–1-1→𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ◡ccnv 5637 Fun wfun 6505 ⟶wf 6507 –1-1→wf1 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-fn 6514 df-f 6515 df-f1 6516 |
| This theorem is referenced by: f1co 6767 f1oeq2 6789 f1eq123d 6792 f10d 6834 brdom2g 8929 marypha1lem 9384 fseqenlem1 9977 dfac12lem2 10098 dfac12lem3 10099 ackbij2 10195 iundom2g 10493 hashf1 14422 istrkg3ld 28388 ausgrusgrb 29092 usgr0 29170 uspgr1e 29171 usgrres 29235 usgrexilem 29367 usgr2pthlem 29693 usgr2pth 29694 s2f1 32866 ccatf1 32870 cshf1o 32884 cycpmconjv 33099 cyc3evpm 33107 lindflbs 33350 matunitlindflem2 37611 eldioph2lem2 42749 f1cof1b 47078 fundcmpsurinj 47410 fundcmpsurbijinj 47411 fargshiftf1 47442 upgrimtrlslem2 47905 f102g 48840 f1mo 48841 aacllem 49790 |
| Copyright terms: Public domain | W3C validator |