| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1eq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.) |
| Ref | Expression |
|---|---|
| f1eq2 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐵–1-1→𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2 6697 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
| 2 | 1 | anbi1d 631 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹) ↔ (𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹))) |
| 3 | df-f1 6546 | . 2 ⊢ (𝐹:𝐴–1-1→𝐶 ↔ (𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹)) | |
| 4 | df-f1 6546 | . 2 ⊢ (𝐹:𝐵–1-1→𝐶 ↔ (𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐵–1-1→𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ◡ccnv 5664 Fun wfun 6535 ⟶wf 6537 –1-1→wf1 6538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-cleq 2726 df-fn 6544 df-f 6545 df-f1 6546 |
| This theorem is referenced by: f1co 6795 f1oeq2 6817 f1eq123d 6820 f10d 6862 brdom2g 8978 brdomgOLD 8980 marypha1lem 9455 fseqenlem1 10046 dfac12lem2 10167 dfac12lem3 10168 ackbij2 10264 iundom2g 10562 hashf1 14478 istrkg3ld 28405 ausgrusgrb 29110 usgr0 29188 uspgr1e 29189 usgrres 29253 usgrexilem 29385 usgr2pthlem 29711 usgr2pth 29712 s2f1 32869 ccatf1 32873 cshf1o 32887 cycpmconjv 33101 cyc3evpm 33109 lindflbs 33342 matunitlindflem2 37583 eldioph2lem2 42735 f1cof1b 47047 fundcmpsurinj 47354 fundcmpsurbijinj 47355 fargshiftf1 47386 f102g 48719 f1mo 48720 aacllem 49328 |
| Copyright terms: Public domain | W3C validator |