| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1eq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.) |
| Ref | Expression |
|---|---|
| f1eq2 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐵–1-1→𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2 6649 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
| 2 | 1 | anbi1d 631 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹) ↔ (𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹))) |
| 3 | df-f1 6504 | . 2 ⊢ (𝐹:𝐴–1-1→𝐶 ↔ (𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹)) | |
| 4 | df-f1 6504 | . 2 ⊢ (𝐹:𝐵–1-1→𝐶 ↔ (𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐵–1-1→𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ◡ccnv 5630 Fun wfun 6493 ⟶wf 6495 –1-1→wf1 6496 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-fn 6502 df-f 6503 df-f1 6504 |
| This theorem is referenced by: f1co 6749 f1oeq2 6771 f1eq123d 6774 f10d 6816 brdom2g 8906 marypha1lem 9360 fseqenlem1 9953 dfac12lem2 10074 dfac12lem3 10075 ackbij2 10171 iundom2g 10469 hashf1 14398 istrkg3ld 28364 ausgrusgrb 29068 usgr0 29146 uspgr1e 29147 usgrres 29211 usgrexilem 29343 usgr2pthlem 29666 usgr2pth 29667 s2f1 32839 ccatf1 32843 cshf1o 32857 cycpmconjv 33072 cyc3evpm 33080 lindflbs 33323 matunitlindflem2 37584 eldioph2lem2 42722 f1cof1b 47051 fundcmpsurinj 47383 fundcmpsurbijinj 47384 fargshiftf1 47415 upgrimtrlslem2 47878 f102g 48813 f1mo 48814 aacllem 49763 |
| Copyright terms: Public domain | W3C validator |