![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1eq2 | Structured version Visualization version GIF version |
Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.) |
Ref | Expression |
---|---|
f1eq2 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐵–1-1→𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2 6700 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
2 | 1 | anbi1d 631 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹) ↔ (𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹))) |
3 | df-f1 6549 | . 2 ⊢ (𝐹:𝐴–1-1→𝐶 ↔ (𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹)) | |
4 | df-f1 6549 | . 2 ⊢ (𝐹:𝐵–1-1→𝐶 ↔ (𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹)) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐵–1-1→𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ◡ccnv 5676 Fun wfun 6538 ⟶wf 6540 –1-1→wf1 6541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-cleq 2725 df-fn 6547 df-f 6548 df-f1 6549 |
This theorem is referenced by: f1co 6800 f1oeq2 6823 f1eq123d 6826 f10d 6868 brdom2g 8951 brdomgOLD 8953 marypha1lem 9428 fseqenlem1 10019 dfac12lem2 10139 dfac12lem3 10140 ackbij2 10238 iundom2g 10535 hashf1 14418 istrkg3ld 27712 ausgrusgrb 28425 usgr0 28500 uspgr1e 28501 usgrres 28565 usgrexilem 28697 usgr2pthlem 29020 usgr2pth 29021 s2f1 32111 ccatf1 32115 cshf1o 32126 cycpmconjv 32301 cyc3evpm 32309 lindflbs 32495 matunitlindflem2 36485 eldioph2lem2 41499 f1cof1b 45785 fundcmpsurinj 46077 fundcmpsurbijinj 46078 fargshiftf1 46109 f102g 47518 f1mo 47519 aacllem 47848 |
Copyright terms: Public domain | W3C validator |