| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1eq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.) |
| Ref | Expression |
|---|---|
| f1eq2 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐵–1-1→𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2 6670 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
| 2 | 1 | anbi1d 631 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹) ↔ (𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹))) |
| 3 | df-f1 6519 | . 2 ⊢ (𝐹:𝐴–1-1→𝐶 ↔ (𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹)) | |
| 4 | df-f1 6519 | . 2 ⊢ (𝐹:𝐵–1-1→𝐶 ↔ (𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐵–1-1→𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ◡ccnv 5640 Fun wfun 6508 ⟶wf 6510 –1-1→wf1 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-fn 6517 df-f 6518 df-f1 6519 |
| This theorem is referenced by: f1co 6770 f1oeq2 6792 f1eq123d 6795 f10d 6837 brdom2g 8932 marypha1lem 9391 fseqenlem1 9984 dfac12lem2 10105 dfac12lem3 10106 ackbij2 10202 iundom2g 10500 hashf1 14429 istrkg3ld 28395 ausgrusgrb 29099 usgr0 29177 uspgr1e 29178 usgrres 29242 usgrexilem 29374 usgr2pthlem 29700 usgr2pth 29701 s2f1 32873 ccatf1 32877 cshf1o 32891 cycpmconjv 33106 cyc3evpm 33114 lindflbs 33357 matunitlindflem2 37618 eldioph2lem2 42756 f1cof1b 47082 fundcmpsurinj 47414 fundcmpsurbijinj 47415 fargshiftf1 47446 upgrimtrlslem2 47909 f102g 48844 f1mo 48845 aacllem 49794 |
| Copyright terms: Public domain | W3C validator |