![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1eq2 | Structured version Visualization version GIF version |
Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.) |
Ref | Expression |
---|---|
f1eq2 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐵–1-1→𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2 6717 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
2 | 1 | anbi1d 631 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹) ↔ (𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹))) |
3 | df-f1 6567 | . 2 ⊢ (𝐹:𝐴–1-1→𝐶 ↔ (𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹)) | |
4 | df-f1 6567 | . 2 ⊢ (𝐹:𝐵–1-1→𝐶 ↔ (𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹)) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐵–1-1→𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ◡ccnv 5687 Fun wfun 6556 ⟶wf 6558 –1-1→wf1 6559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-cleq 2726 df-fn 6565 df-f 6566 df-f1 6567 |
This theorem is referenced by: f1co 6815 f1oeq2 6837 f1eq123d 6840 f10d 6882 brdom2g 8994 brdomgOLD 8996 marypha1lem 9470 fseqenlem1 10061 dfac12lem2 10182 dfac12lem3 10183 ackbij2 10279 iundom2g 10577 hashf1 14492 istrkg3ld 28483 ausgrusgrb 29196 usgr0 29274 uspgr1e 29275 usgrres 29339 usgrexilem 29471 usgr2pthlem 29795 usgr2pth 29796 s2f1 32913 ccatf1 32917 cshf1o 32931 cycpmconjv 33144 cyc3evpm 33152 lindflbs 33386 matunitlindflem2 37603 eldioph2lem2 42748 f1cof1b 47026 fundcmpsurinj 47333 fundcmpsurbijinj 47334 fargshiftf1 47365 f102g 48681 f1mo 48682 aacllem 49031 |
Copyright terms: Public domain | W3C validator |