| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1eq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.) |
| Ref | Expression |
|---|---|
| f1eq2 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐵–1-1→𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2 6687 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
| 2 | 1 | anbi1d 631 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹) ↔ (𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹))) |
| 3 | df-f1 6536 | . 2 ⊢ (𝐹:𝐴–1-1→𝐶 ↔ (𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹)) | |
| 4 | df-f1 6536 | . 2 ⊢ (𝐹:𝐵–1-1→𝐶 ↔ (𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐵–1-1→𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ◡ccnv 5653 Fun wfun 6525 ⟶wf 6527 –1-1→wf1 6528 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-fn 6534 df-f 6535 df-f1 6536 |
| This theorem is referenced by: f1co 6785 f1oeq2 6807 f1eq123d 6810 f10d 6852 brdom2g 8970 brdomgOLD 8972 marypha1lem 9445 fseqenlem1 10038 dfac12lem2 10159 dfac12lem3 10160 ackbij2 10256 iundom2g 10554 hashf1 14475 istrkg3ld 28440 ausgrusgrb 29144 usgr0 29222 uspgr1e 29223 usgrres 29287 usgrexilem 29419 usgr2pthlem 29745 usgr2pth 29746 s2f1 32920 ccatf1 32924 cshf1o 32938 cycpmconjv 33153 cyc3evpm 33161 lindflbs 33394 matunitlindflem2 37641 eldioph2lem2 42784 f1cof1b 47106 fundcmpsurinj 47423 fundcmpsurbijinj 47424 fargshiftf1 47455 upgrimtrlslem2 47918 f102g 48830 f1mo 48831 aacllem 49665 |
| Copyright terms: Public domain | W3C validator |