Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1eq2 | Structured version Visualization version GIF version |
Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.) |
Ref | Expression |
---|---|
f1eq2 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐵–1-1→𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2 6566 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
2 | 1 | anbi1d 629 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹) ↔ (𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹))) |
3 | df-f1 6423 | . 2 ⊢ (𝐹:𝐴–1-1→𝐶 ↔ (𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹)) | |
4 | df-f1 6423 | . 2 ⊢ (𝐹:𝐵–1-1→𝐶 ↔ (𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹)) | |
5 | 2, 3, 4 | 3bitr4g 313 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐵–1-1→𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ◡ccnv 5579 Fun wfun 6412 ⟶wf 6414 –1-1→wf1 6415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-fn 6421 df-f 6422 df-f1 6423 |
This theorem is referenced by: f1co 6666 f1oeq2 6689 f1eq123d 6692 f10d 6733 brdomg 8703 marypha1lem 9122 fseqenlem1 9711 dfac12lem2 9831 dfac12lem3 9832 ackbij2 9930 iundom2g 10227 hashf1 14099 istrkg3ld 26726 ausgrusgrb 27438 usgr0 27513 uspgr1e 27514 usgrres 27578 usgrexilem 27710 usgr2pthlem 28032 usgr2pth 28033 s2f1 31121 ccatf1 31125 cshf1o 31136 cycpmconjv 31311 cyc3evpm 31319 lindflbs 31476 matunitlindflem2 35701 eldioph2lem2 40499 f1cof1b 44456 fundcmpsurinj 44749 fundcmpsurbijinj 44750 fargshiftf1 44781 f102g 46067 f1mo 46068 aacllem 46391 |
Copyright terms: Public domain | W3C validator |