![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1eq2 | Structured version Visualization version GIF version |
Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.) |
Ref | Expression |
---|---|
f1eq2 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐵–1-1→𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2 6696 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
2 | 1 | anbi1d 630 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹) ↔ (𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹))) |
3 | df-f1 6545 | . 2 ⊢ (𝐹:𝐴–1-1→𝐶 ↔ (𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹)) | |
4 | df-f1 6545 | . 2 ⊢ (𝐹:𝐵–1-1→𝐶 ↔ (𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹)) | |
5 | 2, 3, 4 | 3bitr4g 313 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐵–1-1→𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ◡ccnv 5674 Fun wfun 6534 ⟶wf 6536 –1-1→wf1 6537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-cleq 2724 df-fn 6543 df-f 6544 df-f1 6545 |
This theorem is referenced by: f1co 6796 f1oeq2 6819 f1eq123d 6822 f10d 6864 brdom2g 8947 brdomgOLD 8949 marypha1lem 9424 fseqenlem1 10015 dfac12lem2 10135 dfac12lem3 10136 ackbij2 10234 iundom2g 10531 hashf1 14414 istrkg3ld 27701 ausgrusgrb 28414 usgr0 28489 uspgr1e 28490 usgrres 28554 usgrexilem 28686 usgr2pthlem 29009 usgr2pth 29010 s2f1 32098 ccatf1 32102 cshf1o 32113 cycpmconjv 32288 cyc3evpm 32296 lindflbs 32483 matunitlindflem2 36473 eldioph2lem2 41484 f1cof1b 45771 fundcmpsurinj 46063 fundcmpsurbijinj 46064 fargshiftf1 46095 f102g 47471 f1mo 47472 aacllem 47801 |
Copyright terms: Public domain | W3C validator |