![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1eq2 | Structured version Visualization version GIF version |
Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.) |
Ref | Expression |
---|---|
f1eq2 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐵–1-1→𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2 6690 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
2 | 1 | anbi1d 629 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹) ↔ (𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹))) |
3 | df-f1 6539 | . 2 ⊢ (𝐹:𝐴–1-1→𝐶 ↔ (𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹)) | |
4 | df-f1 6539 | . 2 ⊢ (𝐹:𝐵–1-1→𝐶 ↔ (𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹)) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐵–1-1→𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ◡ccnv 5666 Fun wfun 6528 ⟶wf 6530 –1-1→wf1 6531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1774 df-cleq 2716 df-fn 6537 df-f 6538 df-f1 6539 |
This theorem is referenced by: f1co 6790 f1oeq2 6813 f1eq123d 6816 f10d 6858 brdom2g 8948 brdomgOLD 8950 marypha1lem 9425 fseqenlem1 10016 dfac12lem2 10136 dfac12lem3 10137 ackbij2 10235 iundom2g 10532 hashf1 14416 istrkg3ld 28184 ausgrusgrb 28897 usgr0 28972 uspgr1e 28973 usgrres 29037 usgrexilem 29169 usgr2pthlem 29492 usgr2pth 29493 s2f1 32581 ccatf1 32585 cshf1o 32596 cycpmconjv 32772 cyc3evpm 32780 lindflbs 32967 matunitlindflem2 36979 eldioph2lem2 42013 f1cof1b 46295 fundcmpsurinj 46587 fundcmpsurbijinj 46588 fargshiftf1 46619 f102g 47730 f1mo 47731 aacllem 48060 |
Copyright terms: Public domain | W3C validator |