![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1eq2 | Structured version Visualization version GIF version |
Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.) |
Ref | Expression |
---|---|
f1eq2 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐵–1-1→𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2 6729 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
2 | 1 | anbi1d 630 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹) ↔ (𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹))) |
3 | df-f1 6578 | . 2 ⊢ (𝐹:𝐴–1-1→𝐶 ↔ (𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹)) | |
4 | df-f1 6578 | . 2 ⊢ (𝐹:𝐵–1-1→𝐶 ↔ (𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹)) | |
5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐵–1-1→𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ◡ccnv 5699 Fun wfun 6567 ⟶wf 6569 –1-1→wf1 6570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-fn 6576 df-f 6577 df-f1 6578 |
This theorem is referenced by: f1co 6828 f1oeq2 6851 f1eq123d 6854 f10d 6896 brdom2g 9015 brdomgOLD 9017 marypha1lem 9502 fseqenlem1 10093 dfac12lem2 10214 dfac12lem3 10215 ackbij2 10311 iundom2g 10609 hashf1 14506 istrkg3ld 28487 ausgrusgrb 29200 usgr0 29278 uspgr1e 29279 usgrres 29343 usgrexilem 29475 usgr2pthlem 29799 usgr2pth 29800 s2f1 32911 ccatf1 32915 cshf1o 32929 cycpmconjv 33135 cyc3evpm 33143 lindflbs 33372 matunitlindflem2 37577 eldioph2lem2 42717 f1cof1b 46992 fundcmpsurinj 47283 fundcmpsurbijinj 47284 fargshiftf1 47315 f102g 48565 f1mo 48566 aacllem 48895 |
Copyright terms: Public domain | W3C validator |