| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1eq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.) |
| Ref | Expression |
|---|---|
| f1eq2 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐵–1-1→𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2 6649 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
| 2 | 1 | anbi1d 631 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹) ↔ (𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹))) |
| 3 | df-f1 6504 | . 2 ⊢ (𝐹:𝐴–1-1→𝐶 ↔ (𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹)) | |
| 4 | df-f1 6504 | . 2 ⊢ (𝐹:𝐵–1-1→𝐶 ↔ (𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐵–1-1→𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ◡ccnv 5630 Fun wfun 6493 ⟶wf 6495 –1-1→wf1 6496 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-fn 6502 df-f 6503 df-f1 6504 |
| This theorem is referenced by: f1co 6749 f1oeq2 6771 f1eq123d 6774 f10d 6816 brdom2g 8906 marypha1lem 9360 fseqenlem1 9953 dfac12lem2 10074 dfac12lem3 10075 ackbij2 10171 iundom2g 10469 hashf1 14398 istrkg3ld 28441 ausgrusgrb 29145 usgr0 29223 uspgr1e 29224 usgrres 29288 usgrexilem 29420 usgr2pthlem 29743 usgr2pth 29744 s2f1 32916 ccatf1 32920 cshf1o 32934 cycpmconjv 33114 cyc3evpm 33122 lindflbs 33343 matunitlindflem2 37604 eldioph2lem2 42742 f1cof1b 47071 fundcmpsurinj 47403 fundcmpsurbijinj 47404 fargshiftf1 47435 upgrimtrlslem2 47898 f102g 48833 f1mo 48834 aacllem 49783 |
| Copyright terms: Public domain | W3C validator |