![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1eq2 | Structured version Visualization version GIF version |
Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.) |
Ref | Expression |
---|---|
f1eq2 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐵–1-1→𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | feq2 6238 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
2 | 1 | anbi1d 624 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹) ↔ (𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹))) |
3 | df-f1 6106 | . 2 ⊢ (𝐹:𝐴–1-1→𝐶 ↔ (𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹)) | |
4 | df-f1 6106 | . 2 ⊢ (𝐹:𝐵–1-1→𝐶 ↔ (𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹)) | |
5 | 2, 3, 4 | 3bitr4g 306 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐵–1-1→𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 ◡ccnv 5311 Fun wfun 6095 ⟶wf 6097 –1-1→wf1 6098 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-ex 1876 df-cleq 2792 df-fn 6104 df-f 6105 df-f1 6106 |
This theorem is referenced by: f1oeq2 6346 f1eq123d 6349 f10d 6389 brdomg 8205 marypha1lem 8581 fseqenlem1 9133 dfac12lem2 9254 dfac12lem3 9255 ackbij2 9353 iundom2g 9650 hashf1 13490 istrkg3ld 25712 ausgrusgrb 26401 usgr0 26477 uspgr1e 26478 usgrres 26542 usgrexilem 26690 usgr2pthlem 27017 usgr2pth 27018 matunitlindflem2 33895 eldioph2lem2 38110 fargshiftf1 42217 aacllem 43349 |
Copyright terms: Public domain | W3C validator |