| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1eq2 | Structured version Visualization version GIF version | ||
| Description: Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.) |
| Ref | Expression |
|---|---|
| f1eq2 | ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐵–1-1→𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | feq2 6630 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴⟶𝐶 ↔ 𝐹:𝐵⟶𝐶)) | |
| 2 | 1 | anbi1d 631 | . 2 ⊢ (𝐴 = 𝐵 → ((𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹) ↔ (𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹))) |
| 3 | df-f1 6486 | . 2 ⊢ (𝐹:𝐴–1-1→𝐶 ↔ (𝐹:𝐴⟶𝐶 ∧ Fun ◡𝐹)) | |
| 4 | df-f1 6486 | . 2 ⊢ (𝐹:𝐵–1-1→𝐶 ↔ (𝐹:𝐵⟶𝐶 ∧ Fun ◡𝐹)) | |
| 5 | 2, 3, 4 | 3bitr4g 314 | 1 ⊢ (𝐴 = 𝐵 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐹:𝐵–1-1→𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ◡ccnv 5613 Fun wfun 6475 ⟶wf 6477 –1-1→wf1 6478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-fn 6484 df-f 6485 df-f1 6486 |
| This theorem is referenced by: f1co 6730 f1oeq2 6752 f1eq123d 6755 f10d 6797 brdom2g 8880 marypha1lem 9317 fseqenlem1 9915 dfac12lem2 10036 dfac12lem3 10037 ackbij2 10133 iundom2g 10431 hashf1 14364 istrkg3ld 28439 ausgrusgrb 29143 usgr0 29221 uspgr1e 29222 usgrres 29286 usgrexilem 29418 usgr2pthlem 29741 usgr2pth 29742 s2f1 32926 ccatf1 32930 cshf1o 32943 cycpmconjv 33111 cyc3evpm 33119 lindflbs 33344 matunitlindflem2 37665 eldioph2lem2 42802 f1cof1b 47116 fundcmpsurinj 47448 fundcmpsurbijinj 47449 fargshiftf1 47480 upgrimtrlslem2 47944 f102g 48891 f1mo 48892 aacllem 49841 |
| Copyright terms: Public domain | W3C validator |