MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposf12 Structured version   Visualization version   GIF version

Theorem tposf12 8277
Description: Condition for an injective transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposf12 (Rel 𝐴 → (𝐹:𝐴1-1𝐵 → tpos 𝐹:𝐴1-1𝐵))

Proof of Theorem tposf12
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((Rel 𝐴𝐹:𝐴1-1𝐵) → 𝐹:𝐴1-1𝐵)
2 relcnv 6121 . . . . . . 7 Rel 𝐴
3 cnvf1o 8137 . . . . . . 7 (Rel 𝐴 → (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴)
4 f1of1 6846 . . . . . . 7 ((𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴 → (𝑥𝐴 {𝑥}):𝐴1-1𝐴)
52, 3, 4mp2b 10 . . . . . 6 (𝑥𝐴 {𝑥}):𝐴1-1𝐴
6 simpl 482 . . . . . . . 8 ((Rel 𝐴𝐹:𝐴1-1𝐵) → Rel 𝐴)
7 dfrel2 6208 . . . . . . . 8 (Rel 𝐴𝐴 = 𝐴)
86, 7sylib 218 . . . . . . 7 ((Rel 𝐴𝐹:𝐴1-1𝐵) → 𝐴 = 𝐴)
9 f1eq3 6800 . . . . . . 7 (𝐴 = 𝐴 → ((𝑥𝐴 {𝑥}):𝐴1-1𝐴 ↔ (𝑥𝐴 {𝑥}):𝐴1-1𝐴))
108, 9syl 17 . . . . . 6 ((Rel 𝐴𝐹:𝐴1-1𝐵) → ((𝑥𝐴 {𝑥}):𝐴1-1𝐴 ↔ (𝑥𝐴 {𝑥}):𝐴1-1𝐴))
115, 10mpbii 233 . . . . 5 ((Rel 𝐴𝐹:𝐴1-1𝐵) → (𝑥𝐴 {𝑥}):𝐴1-1𝐴)
12 f1dm 6807 . . . . . . . 8 (𝐹:𝐴1-1𝐵 → dom 𝐹 = 𝐴)
131, 12syl 17 . . . . . . 7 ((Rel 𝐴𝐹:𝐴1-1𝐵) → dom 𝐹 = 𝐴)
1413cnveqd 5885 . . . . . 6 ((Rel 𝐴𝐹:𝐴1-1𝐵) → dom 𝐹 = 𝐴)
15 mpteq1 5234 . . . . . 6 (dom 𝐹 = 𝐴 → (𝑥dom 𝐹 {𝑥}) = (𝑥𝐴 {𝑥}))
16 f1eq1 6798 . . . . . 6 ((𝑥dom 𝐹 {𝑥}) = (𝑥𝐴 {𝑥}) → ((𝑥dom 𝐹 {𝑥}):𝐴1-1𝐴 ↔ (𝑥𝐴 {𝑥}):𝐴1-1𝐴))
1714, 15, 163syl 18 . . . . 5 ((Rel 𝐴𝐹:𝐴1-1𝐵) → ((𝑥dom 𝐹 {𝑥}):𝐴1-1𝐴 ↔ (𝑥𝐴 {𝑥}):𝐴1-1𝐴))
1811, 17mpbird 257 . . . 4 ((Rel 𝐴𝐹:𝐴1-1𝐵) → (𝑥dom 𝐹 {𝑥}):𝐴1-1𝐴)
19 f1co 6814 . . . 4 ((𝐹:𝐴1-1𝐵 ∧ (𝑥dom 𝐹 {𝑥}):𝐴1-1𝐴) → (𝐹 ∘ (𝑥dom 𝐹 {𝑥})):𝐴1-1𝐵)
201, 18, 19syl2anc 584 . . 3 ((Rel 𝐴𝐹:𝐴1-1𝐵) → (𝐹 ∘ (𝑥dom 𝐹 {𝑥})):𝐴1-1𝐵)
2112releqd 5787 . . . . 5 (𝐹:𝐴1-1𝐵 → (Rel dom 𝐹 ↔ Rel 𝐴))
2221biimparc 479 . . . 4 ((Rel 𝐴𝐹:𝐴1-1𝐵) → Rel dom 𝐹)
23 dftpos2 8269 . . . 4 (Rel dom 𝐹 → tpos 𝐹 = (𝐹 ∘ (𝑥dom 𝐹 {𝑥})))
24 f1eq1 6798 . . . 4 (tpos 𝐹 = (𝐹 ∘ (𝑥dom 𝐹 {𝑥})) → (tpos 𝐹:𝐴1-1𝐵 ↔ (𝐹 ∘ (𝑥dom 𝐹 {𝑥})):𝐴1-1𝐵))
2522, 23, 243syl 18 . . 3 ((Rel 𝐴𝐹:𝐴1-1𝐵) → (tpos 𝐹:𝐴1-1𝐵 ↔ (𝐹 ∘ (𝑥dom 𝐹 {𝑥})):𝐴1-1𝐵))
2620, 25mpbird 257 . 2 ((Rel 𝐴𝐹:𝐴1-1𝐵) → tpos 𝐹:𝐴1-1𝐵)
2726ex 412 1 (Rel 𝐴 → (𝐹:𝐴1-1𝐵 → tpos 𝐹:𝐴1-1𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  {csn 4625   cuni 4906  cmpt 5224  ccnv 5683  dom cdm 5684  ccom 5688  Rel wrel 5689  1-1wf1 6557  1-1-ontowf1o 6559  tpos ctpos 8251
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-1st 8015  df-2nd 8016  df-tpos 8252
This theorem is referenced by:  tposf1o2  8278
  Copyright terms: Public domain W3C validator