MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposf12 Structured version   Visualization version   GIF version

Theorem tposf12 8232
Description: Condition for an injective transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposf12 (Rel 𝐴 → (𝐹:𝐴1-1𝐵 → tpos 𝐹:𝐴1-1𝐵))

Proof of Theorem tposf12
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . 4 ((Rel 𝐴𝐹:𝐴1-1𝐵) → 𝐹:𝐴1-1𝐵)
2 relcnv 6094 . . . . . . 7 Rel 𝐴
3 cnvf1o 8092 . . . . . . 7 (Rel 𝐴 → (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴)
4 f1of1 6823 . . . . . . 7 ((𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴 → (𝑥𝐴 {𝑥}):𝐴1-1𝐴)
52, 3, 4mp2b 10 . . . . . 6 (𝑥𝐴 {𝑥}):𝐴1-1𝐴
6 simpl 482 . . . . . . . 8 ((Rel 𝐴𝐹:𝐴1-1𝐵) → Rel 𝐴)
7 dfrel2 6179 . . . . . . . 8 (Rel 𝐴𝐴 = 𝐴)
86, 7sylib 217 . . . . . . 7 ((Rel 𝐴𝐹:𝐴1-1𝐵) → 𝐴 = 𝐴)
9 f1eq3 6775 . . . . . . 7 (𝐴 = 𝐴 → ((𝑥𝐴 {𝑥}):𝐴1-1𝐴 ↔ (𝑥𝐴 {𝑥}):𝐴1-1𝐴))
108, 9syl 17 . . . . . 6 ((Rel 𝐴𝐹:𝐴1-1𝐵) → ((𝑥𝐴 {𝑥}):𝐴1-1𝐴 ↔ (𝑥𝐴 {𝑥}):𝐴1-1𝐴))
115, 10mpbii 232 . . . . 5 ((Rel 𝐴𝐹:𝐴1-1𝐵) → (𝑥𝐴 {𝑥}):𝐴1-1𝐴)
12 f1dm 6782 . . . . . . . 8 (𝐹:𝐴1-1𝐵 → dom 𝐹 = 𝐴)
131, 12syl 17 . . . . . . 7 ((Rel 𝐴𝐹:𝐴1-1𝐵) → dom 𝐹 = 𝐴)
1413cnveqd 5866 . . . . . 6 ((Rel 𝐴𝐹:𝐴1-1𝐵) → dom 𝐹 = 𝐴)
15 mpteq1 5232 . . . . . 6 (dom 𝐹 = 𝐴 → (𝑥dom 𝐹 {𝑥}) = (𝑥𝐴 {𝑥}))
16 f1eq1 6773 . . . . . 6 ((𝑥dom 𝐹 {𝑥}) = (𝑥𝐴 {𝑥}) → ((𝑥dom 𝐹 {𝑥}):𝐴1-1𝐴 ↔ (𝑥𝐴 {𝑥}):𝐴1-1𝐴))
1714, 15, 163syl 18 . . . . 5 ((Rel 𝐴𝐹:𝐴1-1𝐵) → ((𝑥dom 𝐹 {𝑥}):𝐴1-1𝐴 ↔ (𝑥𝐴 {𝑥}):𝐴1-1𝐴))
1811, 17mpbird 257 . . . 4 ((Rel 𝐴𝐹:𝐴1-1𝐵) → (𝑥dom 𝐹 {𝑥}):𝐴1-1𝐴)
19 f1co 6790 . . . 4 ((𝐹:𝐴1-1𝐵 ∧ (𝑥dom 𝐹 {𝑥}):𝐴1-1𝐴) → (𝐹 ∘ (𝑥dom 𝐹 {𝑥})):𝐴1-1𝐵)
201, 18, 19syl2anc 583 . . 3 ((Rel 𝐴𝐹:𝐴1-1𝐵) → (𝐹 ∘ (𝑥dom 𝐹 {𝑥})):𝐴1-1𝐵)
2112releqd 5769 . . . . 5 (𝐹:𝐴1-1𝐵 → (Rel dom 𝐹 ↔ Rel 𝐴))
2221biimparc 479 . . . 4 ((Rel 𝐴𝐹:𝐴1-1𝐵) → Rel dom 𝐹)
23 dftpos2 8224 . . . 4 (Rel dom 𝐹 → tpos 𝐹 = (𝐹 ∘ (𝑥dom 𝐹 {𝑥})))
24 f1eq1 6773 . . . 4 (tpos 𝐹 = (𝐹 ∘ (𝑥dom 𝐹 {𝑥})) → (tpos 𝐹:𝐴1-1𝐵 ↔ (𝐹 ∘ (𝑥dom 𝐹 {𝑥})):𝐴1-1𝐵))
2522, 23, 243syl 18 . . 3 ((Rel 𝐴𝐹:𝐴1-1𝐵) → (tpos 𝐹:𝐴1-1𝐵 ↔ (𝐹 ∘ (𝑥dom 𝐹 {𝑥})):𝐴1-1𝐵))
2620, 25mpbird 257 . 2 ((Rel 𝐴𝐹:𝐴1-1𝐵) → tpos 𝐹:𝐴1-1𝐵)
2726ex 412 1 (Rel 𝐴 → (𝐹:𝐴1-1𝐵 → tpos 𝐹:𝐴1-1𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  {csn 4621   cuni 4900  cmpt 5222  ccnv 5666  dom cdm 5667  ccom 5671  Rel wrel 5672  1-1wf1 6531  1-1-ontowf1o 6533  tpos ctpos 8206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-op 4628  df-uni 4901  df-br 5140  df-opab 5202  df-mpt 5223  df-id 5565  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-1st 7969  df-2nd 7970  df-tpos 8207
This theorem is referenced by:  tposf1o2  8233
  Copyright terms: Public domain W3C validator