Step | Hyp | Ref
| Expression |
1 | | simpr 484 |
. . . 4
⊢ ((Rel
𝐴 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐹:𝐴–1-1→𝐵) |
2 | | relcnv 6001 |
. . . . . . 7
⊢ Rel ◡𝐴 |
3 | | cnvf1o 7922 |
. . . . . . 7
⊢ (Rel
◡𝐴 → (𝑥 ∈ ◡𝐴 ↦ ∪ ◡{𝑥}):◡𝐴–1-1-onto→◡◡𝐴) |
4 | | f1of1 6699 |
. . . . . . 7
⊢ ((𝑥 ∈ ◡𝐴 ↦ ∪ ◡{𝑥}):◡𝐴–1-1-onto→◡◡𝐴 → (𝑥 ∈ ◡𝐴 ↦ ∪ ◡{𝑥}):◡𝐴–1-1→◡◡𝐴) |
5 | 2, 3, 4 | mp2b 10 |
. . . . . 6
⊢ (𝑥 ∈ ◡𝐴 ↦ ∪ ◡{𝑥}):◡𝐴–1-1→◡◡𝐴 |
6 | | simpl 482 |
. . . . . . . 8
⊢ ((Rel
𝐴 ∧ 𝐹:𝐴–1-1→𝐵) → Rel 𝐴) |
7 | | dfrel2 6081 |
. . . . . . . 8
⊢ (Rel
𝐴 ↔ ◡◡𝐴 = 𝐴) |
8 | 6, 7 | sylib 217 |
. . . . . . 7
⊢ ((Rel
𝐴 ∧ 𝐹:𝐴–1-1→𝐵) → ◡◡𝐴 = 𝐴) |
9 | | f1eq3 6651 |
. . . . . . 7
⊢ (◡◡𝐴 = 𝐴 → ((𝑥 ∈ ◡𝐴 ↦ ∪ ◡{𝑥}):◡𝐴–1-1→◡◡𝐴 ↔ (𝑥 ∈ ◡𝐴 ↦ ∪ ◡{𝑥}):◡𝐴–1-1→𝐴)) |
10 | 8, 9 | syl 17 |
. . . . . 6
⊢ ((Rel
𝐴 ∧ 𝐹:𝐴–1-1→𝐵) → ((𝑥 ∈ ◡𝐴 ↦ ∪ ◡{𝑥}):◡𝐴–1-1→◡◡𝐴 ↔ (𝑥 ∈ ◡𝐴 ↦ ∪ ◡{𝑥}):◡𝐴–1-1→𝐴)) |
11 | 5, 10 | mpbii 232 |
. . . . 5
⊢ ((Rel
𝐴 ∧ 𝐹:𝐴–1-1→𝐵) → (𝑥 ∈ ◡𝐴 ↦ ∪ ◡{𝑥}):◡𝐴–1-1→𝐴) |
12 | | f1dm 6658 |
. . . . . . . 8
⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
13 | 1, 12 | syl 17 |
. . . . . . 7
⊢ ((Rel
𝐴 ∧ 𝐹:𝐴–1-1→𝐵) → dom 𝐹 = 𝐴) |
14 | 13 | cnveqd 5773 |
. . . . . 6
⊢ ((Rel
𝐴 ∧ 𝐹:𝐴–1-1→𝐵) → ◡dom 𝐹 = ◡𝐴) |
15 | | mpteq1 5163 |
. . . . . 6
⊢ (◡dom 𝐹 = ◡𝐴 → (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) = (𝑥 ∈ ◡𝐴 ↦ ∪ ◡{𝑥})) |
16 | | f1eq1 6649 |
. . . . . 6
⊢ ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) = (𝑥 ∈ ◡𝐴 ↦ ∪ ◡{𝑥}) → ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}):◡𝐴–1-1→𝐴 ↔ (𝑥 ∈ ◡𝐴 ↦ ∪ ◡{𝑥}):◡𝐴–1-1→𝐴)) |
17 | 14, 15, 16 | 3syl 18 |
. . . . 5
⊢ ((Rel
𝐴 ∧ 𝐹:𝐴–1-1→𝐵) → ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}):◡𝐴–1-1→𝐴 ↔ (𝑥 ∈ ◡𝐴 ↦ ∪ ◡{𝑥}):◡𝐴–1-1→𝐴)) |
18 | 11, 17 | mpbird 256 |
. . . 4
⊢ ((Rel
𝐴 ∧ 𝐹:𝐴–1-1→𝐵) → (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}):◡𝐴–1-1→𝐴) |
19 | | f1co 6666 |
. . . 4
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}):◡𝐴–1-1→𝐴) → (𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})):◡𝐴–1-1→𝐵) |
20 | 1, 18, 19 | syl2anc 583 |
. . 3
⊢ ((Rel
𝐴 ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})):◡𝐴–1-1→𝐵) |
21 | 12 | releqd 5679 |
. . . . 5
⊢ (𝐹:𝐴–1-1→𝐵 → (Rel dom 𝐹 ↔ Rel 𝐴)) |
22 | 21 | biimparc 479 |
. . . 4
⊢ ((Rel
𝐴 ∧ 𝐹:𝐴–1-1→𝐵) → Rel dom 𝐹) |
23 | | dftpos2 8030 |
. . . 4
⊢ (Rel dom
𝐹 → tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}))) |
24 | | f1eq1 6649 |
. . . 4
⊢ (tpos
𝐹 = (𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})) → (tpos 𝐹:◡𝐴–1-1→𝐵 ↔ (𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})):◡𝐴–1-1→𝐵)) |
25 | 22, 23, 24 | 3syl 18 |
. . 3
⊢ ((Rel
𝐴 ∧ 𝐹:𝐴–1-1→𝐵) → (tpos 𝐹:◡𝐴–1-1→𝐵 ↔ (𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})):◡𝐴–1-1→𝐵)) |
26 | 20, 25 | mpbird 256 |
. 2
⊢ ((Rel
𝐴 ∧ 𝐹:𝐴–1-1→𝐵) → tpos 𝐹:◡𝐴–1-1→𝐵) |
27 | 26 | ex 412 |
1
⊢ (Rel
𝐴 → (𝐹:𝐴–1-1→𝐵 → tpos 𝐹:◡𝐴–1-1→𝐵)) |