| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . 4
⊢ ((Rel
𝐴 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐹:𝐴–1-1→𝐵) |
| 2 | | relcnv 6096 |
. . . . . . 7
⊢ Rel ◡𝐴 |
| 3 | | cnvf1o 8115 |
. . . . . . 7
⊢ (Rel
◡𝐴 → (𝑥 ∈ ◡𝐴 ↦ ∪ ◡{𝑥}):◡𝐴–1-1-onto→◡◡𝐴) |
| 4 | | f1of1 6822 |
. . . . . . 7
⊢ ((𝑥 ∈ ◡𝐴 ↦ ∪ ◡{𝑥}):◡𝐴–1-1-onto→◡◡𝐴 → (𝑥 ∈ ◡𝐴 ↦ ∪ ◡{𝑥}):◡𝐴–1-1→◡◡𝐴) |
| 5 | 2, 3, 4 | mp2b 10 |
. . . . . 6
⊢ (𝑥 ∈ ◡𝐴 ↦ ∪ ◡{𝑥}):◡𝐴–1-1→◡◡𝐴 |
| 6 | | simpl 482 |
. . . . . . . 8
⊢ ((Rel
𝐴 ∧ 𝐹:𝐴–1-1→𝐵) → Rel 𝐴) |
| 7 | | dfrel2 6183 |
. . . . . . . 8
⊢ (Rel
𝐴 ↔ ◡◡𝐴 = 𝐴) |
| 8 | 6, 7 | sylib 218 |
. . . . . . 7
⊢ ((Rel
𝐴 ∧ 𝐹:𝐴–1-1→𝐵) → ◡◡𝐴 = 𝐴) |
| 9 | | f1eq3 6776 |
. . . . . . 7
⊢ (◡◡𝐴 = 𝐴 → ((𝑥 ∈ ◡𝐴 ↦ ∪ ◡{𝑥}):◡𝐴–1-1→◡◡𝐴 ↔ (𝑥 ∈ ◡𝐴 ↦ ∪ ◡{𝑥}):◡𝐴–1-1→𝐴)) |
| 10 | 8, 9 | syl 17 |
. . . . . 6
⊢ ((Rel
𝐴 ∧ 𝐹:𝐴–1-1→𝐵) → ((𝑥 ∈ ◡𝐴 ↦ ∪ ◡{𝑥}):◡𝐴–1-1→◡◡𝐴 ↔ (𝑥 ∈ ◡𝐴 ↦ ∪ ◡{𝑥}):◡𝐴–1-1→𝐴)) |
| 11 | 5, 10 | mpbii 233 |
. . . . 5
⊢ ((Rel
𝐴 ∧ 𝐹:𝐴–1-1→𝐵) → (𝑥 ∈ ◡𝐴 ↦ ∪ ◡{𝑥}):◡𝐴–1-1→𝐴) |
| 12 | | f1dm 6783 |
. . . . . . . 8
⊢ (𝐹:𝐴–1-1→𝐵 → dom 𝐹 = 𝐴) |
| 13 | 1, 12 | syl 17 |
. . . . . . 7
⊢ ((Rel
𝐴 ∧ 𝐹:𝐴–1-1→𝐵) → dom 𝐹 = 𝐴) |
| 14 | 13 | cnveqd 5860 |
. . . . . 6
⊢ ((Rel
𝐴 ∧ 𝐹:𝐴–1-1→𝐵) → ◡dom 𝐹 = ◡𝐴) |
| 15 | | mpteq1 5214 |
. . . . . 6
⊢ (◡dom 𝐹 = ◡𝐴 → (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) = (𝑥 ∈ ◡𝐴 ↦ ∪ ◡{𝑥})) |
| 16 | | f1eq1 6774 |
. . . . . 6
⊢ ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) = (𝑥 ∈ ◡𝐴 ↦ ∪ ◡{𝑥}) → ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}):◡𝐴–1-1→𝐴 ↔ (𝑥 ∈ ◡𝐴 ↦ ∪ ◡{𝑥}):◡𝐴–1-1→𝐴)) |
| 17 | 14, 15, 16 | 3syl 18 |
. . . . 5
⊢ ((Rel
𝐴 ∧ 𝐹:𝐴–1-1→𝐵) → ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}):◡𝐴–1-1→𝐴 ↔ (𝑥 ∈ ◡𝐴 ↦ ∪ ◡{𝑥}):◡𝐴–1-1→𝐴)) |
| 18 | 11, 17 | mpbird 257 |
. . . 4
⊢ ((Rel
𝐴 ∧ 𝐹:𝐴–1-1→𝐵) → (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}):◡𝐴–1-1→𝐴) |
| 19 | | f1co 6790 |
. . . 4
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}):◡𝐴–1-1→𝐴) → (𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})):◡𝐴–1-1→𝐵) |
| 20 | 1, 18, 19 | syl2anc 584 |
. . 3
⊢ ((Rel
𝐴 ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})):◡𝐴–1-1→𝐵) |
| 21 | 12 | releqd 5762 |
. . . . 5
⊢ (𝐹:𝐴–1-1→𝐵 → (Rel dom 𝐹 ↔ Rel 𝐴)) |
| 22 | 21 | biimparc 479 |
. . . 4
⊢ ((Rel
𝐴 ∧ 𝐹:𝐴–1-1→𝐵) → Rel dom 𝐹) |
| 23 | | dftpos2 8247 |
. . . 4
⊢ (Rel dom
𝐹 → tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}))) |
| 24 | | f1eq1 6774 |
. . . 4
⊢ (tpos
𝐹 = (𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})) → (tpos 𝐹:◡𝐴–1-1→𝐵 ↔ (𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})):◡𝐴–1-1→𝐵)) |
| 25 | 22, 23, 24 | 3syl 18 |
. . 3
⊢ ((Rel
𝐴 ∧ 𝐹:𝐴–1-1→𝐵) → (tpos 𝐹:◡𝐴–1-1→𝐵 ↔ (𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})):◡𝐴–1-1→𝐵)) |
| 26 | 20, 25 | mpbird 257 |
. 2
⊢ ((Rel
𝐴 ∧ 𝐹:𝐴–1-1→𝐵) → tpos 𝐹:◡𝐴–1-1→𝐵) |
| 27 | 26 | ex 412 |
1
⊢ (Rel
𝐴 → (𝐹:𝐴–1-1→𝐵 → tpos 𝐹:◡𝐴–1-1→𝐵)) |