MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposf12 Structured version   Visualization version   GIF version

Theorem tposf12 7904
Description: Condition for an injective transposition. (Contributed by NM, 10-Sep-2015.)
Assertion
Ref Expression
tposf12 (Rel 𝐴 → (𝐹:𝐴1-1𝐵 → tpos 𝐹:𝐴1-1𝐵))

Proof of Theorem tposf12
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 488 . . . 4 ((Rel 𝐴𝐹:𝐴1-1𝐵) → 𝐹:𝐴1-1𝐵)
2 relcnv 5945 . . . . . . 7 Rel 𝐴
3 cnvf1o 7793 . . . . . . 7 (Rel 𝐴 → (𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴)
4 f1of1 6596 . . . . . . 7 ((𝑥𝐴 {𝑥}):𝐴1-1-onto𝐴 → (𝑥𝐴 {𝑥}):𝐴1-1𝐴)
52, 3, 4mp2b 10 . . . . . 6 (𝑥𝐴 {𝑥}):𝐴1-1𝐴
6 simpl 486 . . . . . . . 8 ((Rel 𝐴𝐹:𝐴1-1𝐵) → Rel 𝐴)
7 dfrel2 6024 . . . . . . . 8 (Rel 𝐴𝐴 = 𝐴)
86, 7sylib 221 . . . . . . 7 ((Rel 𝐴𝐹:𝐴1-1𝐵) → 𝐴 = 𝐴)
9 f1eq3 6553 . . . . . . 7 (𝐴 = 𝐴 → ((𝑥𝐴 {𝑥}):𝐴1-1𝐴 ↔ (𝑥𝐴 {𝑥}):𝐴1-1𝐴))
108, 9syl 17 . . . . . 6 ((Rel 𝐴𝐹:𝐴1-1𝐵) → ((𝑥𝐴 {𝑥}):𝐴1-1𝐴 ↔ (𝑥𝐴 {𝑥}):𝐴1-1𝐴))
115, 10mpbii 236 . . . . 5 ((Rel 𝐴𝐹:𝐴1-1𝐵) → (𝑥𝐴 {𝑥}):𝐴1-1𝐴)
12 f1dm 6560 . . . . . . . 8 (𝐹:𝐴1-1𝐵 → dom 𝐹 = 𝐴)
131, 12syl 17 . . . . . . 7 ((Rel 𝐴𝐹:𝐴1-1𝐵) → dom 𝐹 = 𝐴)
1413cnveqd 5723 . . . . . 6 ((Rel 𝐴𝐹:𝐴1-1𝐵) → dom 𝐹 = 𝐴)
15 mpteq1 5130 . . . . . 6 (dom 𝐹 = 𝐴 → (𝑥dom 𝐹 {𝑥}) = (𝑥𝐴 {𝑥}))
16 f1eq1 6551 . . . . . 6 ((𝑥dom 𝐹 {𝑥}) = (𝑥𝐴 {𝑥}) → ((𝑥dom 𝐹 {𝑥}):𝐴1-1𝐴 ↔ (𝑥𝐴 {𝑥}):𝐴1-1𝐴))
1714, 15, 163syl 18 . . . . 5 ((Rel 𝐴𝐹:𝐴1-1𝐵) → ((𝑥dom 𝐹 {𝑥}):𝐴1-1𝐴 ↔ (𝑥𝐴 {𝑥}):𝐴1-1𝐴))
1811, 17mpbird 260 . . . 4 ((Rel 𝐴𝐹:𝐴1-1𝐵) → (𝑥dom 𝐹 {𝑥}):𝐴1-1𝐴)
19 f1co 6567 . . . 4 ((𝐹:𝐴1-1𝐵 ∧ (𝑥dom 𝐹 {𝑥}):𝐴1-1𝐴) → (𝐹 ∘ (𝑥dom 𝐹 {𝑥})):𝐴1-1𝐵)
201, 18, 19syl2anc 587 . . 3 ((Rel 𝐴𝐹:𝐴1-1𝐵) → (𝐹 ∘ (𝑥dom 𝐹 {𝑥})):𝐴1-1𝐵)
2112releqd 5630 . . . . 5 (𝐹:𝐴1-1𝐵 → (Rel dom 𝐹 ↔ Rel 𝐴))
2221biimparc 483 . . . 4 ((Rel 𝐴𝐹:𝐴1-1𝐵) → Rel dom 𝐹)
23 dftpos2 7896 . . . 4 (Rel dom 𝐹 → tpos 𝐹 = (𝐹 ∘ (𝑥dom 𝐹 {𝑥})))
24 f1eq1 6551 . . . 4 (tpos 𝐹 = (𝐹 ∘ (𝑥dom 𝐹 {𝑥})) → (tpos 𝐹:𝐴1-1𝐵 ↔ (𝐹 ∘ (𝑥dom 𝐹 {𝑥})):𝐴1-1𝐵))
2522, 23, 243syl 18 . . 3 ((Rel 𝐴𝐹:𝐴1-1𝐵) → (tpos 𝐹:𝐴1-1𝐵 ↔ (𝐹 ∘ (𝑥dom 𝐹 {𝑥})):𝐴1-1𝐵))
2620, 25mpbird 260 . 2 ((Rel 𝐴𝐹:𝐴1-1𝐵) → tpos 𝐹:𝐴1-1𝐵)
2726ex 416 1 (Rel 𝐴 → (𝐹:𝐴1-1𝐵 → tpos 𝐹:𝐴1-1𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  {csn 4539   cuni 4813  cmpt 5122  ccnv 5531  dom cdm 5532  ccom 5536  Rel wrel 5537  1-1wf1 6331  1-1-ontowf1o 6333  tpos ctpos 7878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-ral 3135  df-rex 3136  df-rab 3139  df-v 3471  df-sbc 3748  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-op 4546  df-uni 4814  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5437  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-1st 7675  df-2nd 7676  df-tpos 7879
This theorem is referenced by:  tposf1o2  7905
  Copyright terms: Public domain W3C validator