MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oeq3 Structured version   Visualization version   GIF version

Theorem f1oeq3 6757
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1oeq3 (𝐴 = 𝐵 → (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1-onto𝐵))

Proof of Theorem f1oeq3
StepHypRef Expression
1 f1eq3 6718 . . 3 (𝐴 = 𝐵 → (𝐹:𝐶1-1𝐴𝐹:𝐶1-1𝐵))
2 foeq3 6737 . . 3 (𝐴 = 𝐵 → (𝐹:𝐶onto𝐴𝐹:𝐶onto𝐵))
31, 2anbi12d 631 . 2 (𝐴 = 𝐵 → ((𝐹:𝐶1-1𝐴𝐹:𝐶onto𝐴) ↔ (𝐹:𝐶1-1𝐵𝐹:𝐶onto𝐵)))
4 df-f1o 6486 . 2 (𝐹:𝐶1-1-onto𝐴 ↔ (𝐹:𝐶1-1𝐴𝐹:𝐶onto𝐴))
5 df-f1o 6486 . 2 (𝐹:𝐶1-1-onto𝐵 ↔ (𝐹:𝐶1-1𝐵𝐹:𝐶onto𝐵))
63, 4, 53bitr4g 313 1 (𝐴 = 𝐵 → (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1-onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1540  1-1wf1 6476  ontowfo 6477  1-1-ontowf1o 6478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1543  df-ex 1781  df-sb 2067  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3443  df-in 3905  df-ss 3915  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486
This theorem is referenced by:  f1oeq23  6758  f1oeq123d  6761  f1oeq3d  6764  f1ores  6781  resin  6789  isoeq5  7248  breng  8813  brenOLD  8815  xpcomf1o  8926  isinf  9125  isinfOLD  9126  cnfcom2  9559  fin1a2lem6  10262  pwfseqlem5  10520  pwfseq  10521  hashgf1o  13792  axdc4uzlem  13804  sumeq1  15499  prodeq1f  15717  unbenlem  16706  4sqlem11  16753  gsumvalx  18457  cayley  19118  cayleyth  19119  ovolicc2lem4  24790  logf1o2  25911  uspgrf1oedg  27832  wlkiswwlks2lem4  28525  clwwlknonclwlknonf1o  29014  dlwwlknondlwlknonf1o  29017  adjbd1o  30735  rinvf1o  31252  cshf1o  31521  eulerpartgbij  32639  eulerpartlemgh  32645  derangval  33428  subfacp1lem2a  33441  subfacp1lem3  33443  subfacp1lem5  33445  mrsubff1o  33776  msubff1o  33818  bj-finsumval0  35561  f1omptsnlem  35612  f1omptsn  35613  poimirlem9  35891  poimirlem15  35897  ismtyval  36063  ismrer1  36101  lautset  38350  pautsetN  38366  hvmap1o2  40033  pwfi2f1o  41184  imasgim  41188  alephiso2  41487  f1ocof1ob2  44925  isomushgr  45629  uspgrsprfo  45661
  Copyright terms: Public domain W3C validator