MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oeq3 Structured version   Visualization version   GIF version

Theorem f1oeq3 6852
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1oeq3 (𝐴 = 𝐵 → (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1-onto𝐵))

Proof of Theorem f1oeq3
StepHypRef Expression
1 f1eq3 6814 . . 3 (𝐴 = 𝐵 → (𝐹:𝐶1-1𝐴𝐹:𝐶1-1𝐵))
2 foeq3 6832 . . 3 (𝐴 = 𝐵 → (𝐹:𝐶onto𝐴𝐹:𝐶onto𝐵))
31, 2anbi12d 631 . 2 (𝐴 = 𝐵 → ((𝐹:𝐶1-1𝐴𝐹:𝐶onto𝐴) ↔ (𝐹:𝐶1-1𝐵𝐹:𝐶onto𝐵)))
4 df-f1o 6580 . 2 (𝐹:𝐶1-1-onto𝐴 ↔ (𝐹:𝐶1-1𝐴𝐹:𝐶onto𝐴))
5 df-f1o 6580 . 2 (𝐹:𝐶1-1-onto𝐵 ↔ (𝐹:𝐶1-1𝐵𝐹:𝐶onto𝐵))
63, 4, 53bitr4g 314 1 (𝐴 = 𝐵 → (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1-onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  1-1wf1 6570  ontowfo 6571  1-1-ontowf1o 6572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732  df-ss 3993  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580
This theorem is referenced by:  f1oeq23  6853  f1oeq123d  6856  f1oeq3d  6859  f1ores  6876  resin  6884  isoeq5  7357  breng  9012  brenOLD  9014  xpcomf1o  9127  isinf  9323  isinfOLD  9324  cnfcom2  9771  fin1a2lem6  10474  pwfseqlem5  10732  pwfseq  10733  hashgf1o  14022  axdc4uzlem  14034  sumeq1  15737  prodeq1f  15954  prodeq1  15955  prodeq1i  15964  unbenlem  16955  4sqlem11  17002  gsumvalx  18714  cayley  19456  cayleyth  19457  ovolicc2lem4  25574  logf1o2  26710  uspgrf1oedg  29208  uspgredgiedg  29210  wlkiswwlks2lem4  29905  clwwlknonclwlknonf1o  30394  dlwwlknondlwlknonf1o  30397  adjbd1o  32117  rinvf1o  32649  cshf1o  32929  eulerpartgbij  34337  eulerpartlemgh  34343  derangval  35135  subfacp1lem2a  35148  subfacp1lem3  35150  subfacp1lem5  35152  mrsubff1o  35483  msubff1o  35525  cbvprodvw2  36213  bj-finsumval0  37251  f1omptsnlem  37302  f1omptsn  37303  poimirlem9  37589  poimirlem15  37595  ismtyval  37760  ismrer1  37798  lautset  40039  pautsetN  40055  hvmap1o2  41722  pwfi2f1o  43053  imasgim  43057  alephiso2  43520  f1ocof1ob2  46997  isuspgrim0lem  47755  gricushgr  47770  grtriprop  47792  grtrif1o  47793  isgrtri  47794  uspgrsprfo  47871
  Copyright terms: Public domain W3C validator