MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oeq3 Structured version   Visualization version   GIF version

Theorem f1oeq3 6824
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1oeq3 (𝐴 = 𝐵 → (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1-onto𝐵))

Proof of Theorem f1oeq3
StepHypRef Expression
1 f1eq3 6785 . . 3 (𝐴 = 𝐵 → (𝐹:𝐶1-1𝐴𝐹:𝐶1-1𝐵))
2 foeq3 6804 . . 3 (𝐴 = 𝐵 → (𝐹:𝐶onto𝐴𝐹:𝐶onto𝐵))
31, 2anbi12d 632 . 2 (𝐴 = 𝐵 → ((𝐹:𝐶1-1𝐴𝐹:𝐶onto𝐴) ↔ (𝐹:𝐶1-1𝐵𝐹:𝐶onto𝐵)))
4 df-f1o 6551 . 2 (𝐹:𝐶1-1-onto𝐴 ↔ (𝐹:𝐶1-1𝐴𝐹:𝐶onto𝐴))
5 df-f1o 6551 . 2 (𝐹:𝐶1-1-onto𝐵 ↔ (𝐹:𝐶1-1𝐵𝐹:𝐶onto𝐵))
63, 4, 53bitr4g 314 1 (𝐴 = 𝐵 → (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1-onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  1-1wf1 6541  ontowfo 6542  1-1-ontowf1o 6543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1545  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-v 3477  df-in 3956  df-ss 3966  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551
This theorem is referenced by:  f1oeq23  6825  f1oeq123d  6828  f1oeq3d  6831  f1ores  6848  resin  6856  isoeq5  7318  breng  8948  brenOLD  8950  xpcomf1o  9061  isinf  9260  isinfOLD  9261  cnfcom2  9697  fin1a2lem6  10400  pwfseqlem5  10658  pwfseq  10659  hashgf1o  13936  axdc4uzlem  13948  sumeq1  15635  prodeq1f  15852  unbenlem  16841  4sqlem11  16888  gsumvalx  18595  cayley  19282  cayleyth  19283  ovolicc2lem4  25037  logf1o2  26158  uspgrf1oedg  28464  wlkiswwlks2lem4  29157  clwwlknonclwlknonf1o  29646  dlwwlknondlwlknonf1o  29649  adjbd1o  31369  rinvf1o  31885  cshf1o  32157  eulerpartgbij  33402  eulerpartlemgh  33408  derangval  34189  subfacp1lem2a  34202  subfacp1lem3  34204  subfacp1lem5  34206  mrsubff1o  34537  msubff1o  34579  bj-finsumval0  36214  f1omptsnlem  36265  f1omptsn  36266  poimirlem9  36545  poimirlem15  36551  ismtyval  36716  ismrer1  36754  lautset  39001  pautsetN  39017  hvmap1o2  40684  pwfi2f1o  41886  imasgim  41890  alephiso2  42357  f1ocof1ob2  45838  isomushgr  46542  uspgrsprfo  46574
  Copyright terms: Public domain W3C validator