MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oeq3 Structured version   Visualization version   GIF version

Theorem f1oeq3 6754
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1oeq3 (𝐴 = 𝐵 → (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1-onto𝐵))

Proof of Theorem f1oeq3
StepHypRef Expression
1 f1eq3 6717 . . 3 (𝐴 = 𝐵 → (𝐹:𝐶1-1𝐴𝐹:𝐶1-1𝐵))
2 foeq3 6734 . . 3 (𝐴 = 𝐵 → (𝐹:𝐶onto𝐴𝐹:𝐶onto𝐵))
31, 2anbi12d 632 . 2 (𝐴 = 𝐵 → ((𝐹:𝐶1-1𝐴𝐹:𝐶onto𝐴) ↔ (𝐹:𝐶1-1𝐵𝐹:𝐶onto𝐵)))
4 df-f1o 6489 . 2 (𝐹:𝐶1-1-onto𝐴 ↔ (𝐹:𝐶1-1𝐴𝐹:𝐶onto𝐴))
5 df-f1o 6489 . 2 (𝐹:𝐶1-1-onto𝐵 ↔ (𝐹:𝐶1-1𝐵𝐹:𝐶onto𝐵))
63, 4, 53bitr4g 314 1 (𝐴 = 𝐵 → (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1-onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  1-1wf1 6479  ontowfo 6480  1-1-ontowf1o 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-ss 3920  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489
This theorem is referenced by:  f1oeq23  6755  f1oeq123d  6758  f1oeq3d  6761  f1ores  6778  resin  6786  isoeq5  7258  breng  8881  xpcomf1o  8983  isinf  9154  cnfcom2  9598  fin1a2lem6  10299  pwfseqlem5  10557  pwfseq  10558  hashgf1o  13878  axdc4uzlem  13890  sumeq1  15596  prodeq1f  15813  prodeq1  15814  prodeq1i  15823  unbenlem  16820  4sqlem11  16867  gsumvalx  18550  cayley  19293  cayleyth  19294  ovolicc2lem4  25419  logf1o2  26557  uspgrf1oedg  29118  uspgredgiedg  29120  wlkiswwlks2lem4  29817  clwwlknonclwlknonf1o  30306  dlwwlknondlwlknonf1o  30309  adjbd1o  32029  rinvf1o  32574  cshf1o  32905  eulerpartgbij  34346  eulerpartlemgh  34352  derangval  35150  subfacp1lem2a  35163  subfacp1lem3  35165  subfacp1lem5  35167  mrsubff1o  35498  msubff1o  35540  cbvprodvw2  36231  bj-finsumval0  37269  f1omptsnlem  37320  f1omptsn  37321  poimirlem9  37619  poimirlem15  37625  ismtyval  37790  ismrer1  37828  lautset  40071  pautsetN  40087  hvmap1o2  41754  pwfi2f1o  43079  imasgim  43083  alephiso2  43541  f1ocof1ob2  47076  isuspgrim0lem  47887  gricushgr  47911  grtriprop  47935  grtrif1o  47936  isgrtri  47937  uspgrsprfo  48142
  Copyright terms: Public domain W3C validator