MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oeq3 Structured version   Visualization version   GIF version

Theorem f1oeq3 6793
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1oeq3 (𝐴 = 𝐵 → (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1-onto𝐵))

Proof of Theorem f1oeq3
StepHypRef Expression
1 f1eq3 6756 . . 3 (𝐴 = 𝐵 → (𝐹:𝐶1-1𝐴𝐹:𝐶1-1𝐵))
2 foeq3 6773 . . 3 (𝐴 = 𝐵 → (𝐹:𝐶onto𝐴𝐹:𝐶onto𝐵))
31, 2anbi12d 632 . 2 (𝐴 = 𝐵 → ((𝐹:𝐶1-1𝐴𝐹:𝐶onto𝐴) ↔ (𝐹:𝐶1-1𝐵𝐹:𝐶onto𝐵)))
4 df-f1o 6521 . 2 (𝐹:𝐶1-1-onto𝐴 ↔ (𝐹:𝐶1-1𝐴𝐹:𝐶onto𝐴))
5 df-f1o 6521 . 2 (𝐹:𝐶1-1-onto𝐵 ↔ (𝐹:𝐶1-1𝐵𝐹:𝐶onto𝐵))
63, 4, 53bitr4g 314 1 (𝐴 = 𝐵 → (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1-onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  1-1wf1 6511  ontowfo 6512  1-1-ontowf1o 6513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2722  df-ss 3934  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521
This theorem is referenced by:  f1oeq23  6794  f1oeq123d  6797  f1oeq3d  6800  f1ores  6817  resin  6825  isoeq5  7299  breng  8930  xpcomf1o  9035  isinf  9214  isinfOLD  9215  cnfcom2  9662  fin1a2lem6  10365  pwfseqlem5  10623  pwfseq  10624  hashgf1o  13943  axdc4uzlem  13955  sumeq1  15662  prodeq1f  15879  prodeq1  15880  prodeq1i  15889  unbenlem  16886  4sqlem11  16933  gsumvalx  18610  cayley  19351  cayleyth  19352  ovolicc2lem4  25428  logf1o2  26566  uspgrf1oedg  29107  uspgredgiedg  29109  wlkiswwlks2lem4  29809  clwwlknonclwlknonf1o  30298  dlwwlknondlwlknonf1o  30301  adjbd1o  32021  rinvf1o  32561  cshf1o  32891  eulerpartgbij  34370  eulerpartlemgh  34376  derangval  35161  subfacp1lem2a  35174  subfacp1lem3  35176  subfacp1lem5  35178  mrsubff1o  35509  msubff1o  35551  cbvprodvw2  36242  bj-finsumval0  37280  f1omptsnlem  37331  f1omptsn  37332  poimirlem9  37630  poimirlem15  37636  ismtyval  37801  ismrer1  37839  lautset  40083  pautsetN  40099  hvmap1o2  41766  pwfi2f1o  43092  imasgim  43096  alephiso2  43554  f1ocof1ob2  47087  isuspgrim0lem  47897  gricushgr  47921  grtriprop  47944  grtrif1o  47945  isgrtri  47946  uspgrsprfo  48140
  Copyright terms: Public domain W3C validator