MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oeq3 Structured version   Visualization version   GIF version

Theorem f1oeq3 6790
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1oeq3 (𝐴 = 𝐵 → (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1-onto𝐵))

Proof of Theorem f1oeq3
StepHypRef Expression
1 f1eq3 6753 . . 3 (𝐴 = 𝐵 → (𝐹:𝐶1-1𝐴𝐹:𝐶1-1𝐵))
2 foeq3 6770 . . 3 (𝐴 = 𝐵 → (𝐹:𝐶onto𝐴𝐹:𝐶onto𝐵))
31, 2anbi12d 632 . 2 (𝐴 = 𝐵 → ((𝐹:𝐶1-1𝐴𝐹:𝐶onto𝐴) ↔ (𝐹:𝐶1-1𝐵𝐹:𝐶onto𝐵)))
4 df-f1o 6518 . 2 (𝐹:𝐶1-1-onto𝐴 ↔ (𝐹:𝐶1-1𝐴𝐹:𝐶onto𝐴))
5 df-f1o 6518 . 2 (𝐹:𝐶1-1-onto𝐵 ↔ (𝐹:𝐶1-1𝐵𝐹:𝐶onto𝐵))
63, 4, 53bitr4g 314 1 (𝐴 = 𝐵 → (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1-onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  1-1wf1 6508  ontowfo 6509  1-1-ontowf1o 6510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-ss 3931  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518
This theorem is referenced by:  f1oeq23  6791  f1oeq123d  6794  f1oeq3d  6797  f1ores  6814  resin  6822  isoeq5  7296  breng  8927  xpcomf1o  9030  isinf  9207  isinfOLD  9208  cnfcom2  9655  fin1a2lem6  10358  pwfseqlem5  10616  pwfseq  10617  hashgf1o  13936  axdc4uzlem  13948  sumeq1  15655  prodeq1f  15872  prodeq1  15873  prodeq1i  15882  unbenlem  16879  4sqlem11  16926  gsumvalx  18603  cayley  19344  cayleyth  19345  ovolicc2lem4  25421  logf1o2  26559  uspgrf1oedg  29100  uspgredgiedg  29102  wlkiswwlks2lem4  29802  clwwlknonclwlknonf1o  30291  dlwwlknondlwlknonf1o  30294  adjbd1o  32014  rinvf1o  32554  cshf1o  32884  eulerpartgbij  34363  eulerpartlemgh  34369  derangval  35154  subfacp1lem2a  35167  subfacp1lem3  35169  subfacp1lem5  35171  mrsubff1o  35502  msubff1o  35544  cbvprodvw2  36235  bj-finsumval0  37273  f1omptsnlem  37324  f1omptsn  37325  poimirlem9  37623  poimirlem15  37629  ismtyval  37794  ismrer1  37832  lautset  40076  pautsetN  40092  hvmap1o2  41759  pwfi2f1o  43085  imasgim  43089  alephiso2  43547  f1ocof1ob2  47083  isuspgrim0lem  47893  gricushgr  47917  grtriprop  47940  grtrif1o  47941  isgrtri  47942  uspgrsprfo  48136
  Copyright terms: Public domain W3C validator