MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oeq3 Structured version   Visualization version   GIF version

Theorem f1oeq3 6807
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1oeq3 (𝐴 = 𝐵 → (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1-onto𝐵))

Proof of Theorem f1oeq3
StepHypRef Expression
1 f1eq3 6770 . . 3 (𝐴 = 𝐵 → (𝐹:𝐶1-1𝐴𝐹:𝐶1-1𝐵))
2 foeq3 6787 . . 3 (𝐴 = 𝐵 → (𝐹:𝐶onto𝐴𝐹:𝐶onto𝐵))
31, 2anbi12d 632 . 2 (𝐴 = 𝐵 → ((𝐹:𝐶1-1𝐴𝐹:𝐶onto𝐴) ↔ (𝐹:𝐶1-1𝐵𝐹:𝐶onto𝐵)))
4 df-f1o 6537 . 2 (𝐹:𝐶1-1-onto𝐴 ↔ (𝐹:𝐶1-1𝐴𝐹:𝐶onto𝐴))
5 df-f1o 6537 . 2 (𝐹:𝐶1-1-onto𝐵 ↔ (𝐹:𝐶1-1𝐵𝐹:𝐶onto𝐵))
63, 4, 53bitr4g 314 1 (𝐴 = 𝐵 → (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1-onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  1-1wf1 6527  ontowfo 6528  1-1-ontowf1o 6529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2727  df-ss 3943  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537
This theorem is referenced by:  f1oeq23  6808  f1oeq123d  6811  f1oeq3d  6814  f1ores  6831  resin  6839  isoeq5  7313  breng  8966  xpcomf1o  9073  isinf  9266  isinfOLD  9267  cnfcom2  9714  fin1a2lem6  10417  pwfseqlem5  10675  pwfseq  10676  hashgf1o  13987  axdc4uzlem  13999  sumeq1  15703  prodeq1f  15920  prodeq1  15921  prodeq1i  15930  unbenlem  16926  4sqlem11  16973  gsumvalx  18652  cayley  19393  cayleyth  19394  ovolicc2lem4  25471  logf1o2  26609  uspgrf1oedg  29098  uspgredgiedg  29100  wlkiswwlks2lem4  29800  clwwlknonclwlknonf1o  30289  dlwwlknondlwlknonf1o  30292  adjbd1o  32012  rinvf1o  32554  cshf1o  32884  eulerpartgbij  34350  eulerpartlemgh  34356  derangval  35135  subfacp1lem2a  35148  subfacp1lem3  35150  subfacp1lem5  35152  mrsubff1o  35483  msubff1o  35525  cbvprodvw2  36211  bj-finsumval0  37249  f1omptsnlem  37300  f1omptsn  37301  poimirlem9  37599  poimirlem15  37605  ismtyval  37770  ismrer1  37808  lautset  40047  pautsetN  40063  hvmap1o2  41730  pwfi2f1o  43067  imasgim  43071  alephiso2  43529  f1ocof1ob2  47059  isuspgrim0lem  47854  gricushgr  47878  grtriprop  47901  grtrif1o  47902  isgrtri  47903  uspgrsprfo  48071
  Copyright terms: Public domain W3C validator