MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oeq3 Structured version   Visualization version   GIF version

Theorem f1oeq3 6753
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1oeq3 (𝐴 = 𝐵 → (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1-onto𝐵))

Proof of Theorem f1oeq3
StepHypRef Expression
1 f1eq3 6716 . . 3 (𝐴 = 𝐵 → (𝐹:𝐶1-1𝐴𝐹:𝐶1-1𝐵))
2 foeq3 6733 . . 3 (𝐴 = 𝐵 → (𝐹:𝐶onto𝐴𝐹:𝐶onto𝐵))
31, 2anbi12d 632 . 2 (𝐴 = 𝐵 → ((𝐹:𝐶1-1𝐴𝐹:𝐶onto𝐴) ↔ (𝐹:𝐶1-1𝐵𝐹:𝐶onto𝐵)))
4 df-f1o 6488 . 2 (𝐹:𝐶1-1-onto𝐴 ↔ (𝐹:𝐶1-1𝐴𝐹:𝐶onto𝐴))
5 df-f1o 6488 . 2 (𝐹:𝐶1-1-onto𝐵 ↔ (𝐹:𝐶1-1𝐵𝐹:𝐶onto𝐵))
63, 4, 53bitr4g 314 1 (𝐴 = 𝐵 → (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1-onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  1-1wf1 6478  ontowfo 6479  1-1-ontowf1o 6480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2723  df-ss 3914  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488
This theorem is referenced by:  f1oeq23  6754  f1oeq123d  6757  f1oeq3d  6760  f1ores  6777  resin  6785  isoeq5  7255  breng  8878  xpcomf1o  8979  isinf  9149  cnfcom2  9592  fin1a2lem6  10296  pwfseqlem5  10554  pwfseq  10555  hashgf1o  13878  axdc4uzlem  13890  sumeq1  15596  prodeq1f  15813  prodeq1  15814  prodeq1i  15823  unbenlem  16820  4sqlem11  16867  gsumvalx  18584  cayley  19326  cayleyth  19327  ovolicc2lem4  25448  logf1o2  26586  uspgrf1oedg  29151  uspgredgiedg  29153  wlkiswwlks2lem4  29850  clwwlknonclwlknonf1o  30342  dlwwlknondlwlknonf1o  30345  adjbd1o  32065  rinvf1o  32612  cshf1o  32943  eulerpartgbij  34385  eulerpartlemgh  34391  derangval  35211  subfacp1lem2a  35224  subfacp1lem3  35226  subfacp1lem5  35228  mrsubff1o  35559  msubff1o  35601  cbvprodvw2  36291  bj-finsumval0  37329  f1omptsnlem  37380  f1omptsn  37381  poimirlem9  37679  poimirlem15  37685  ismtyval  37850  ismrer1  37888  lautset  40191  pautsetN  40207  hvmap1o2  41874  pwfi2f1o  43199  imasgim  43203  alephiso2  43661  f1ocof1ob2  47192  isuspgrim0lem  48003  gricushgr  48027  grtriprop  48051  grtrif1o  48052  isgrtri  48053  uspgrsprfo  48258
  Copyright terms: Public domain W3C validator