MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oeq3 Structured version   Visualization version   GIF version

Theorem f1oeq3 6772
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1oeq3 (𝐴 = 𝐵 → (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1-onto𝐵))

Proof of Theorem f1oeq3
StepHypRef Expression
1 f1eq3 6735 . . 3 (𝐴 = 𝐵 → (𝐹:𝐶1-1𝐴𝐹:𝐶1-1𝐵))
2 foeq3 6752 . . 3 (𝐴 = 𝐵 → (𝐹:𝐶onto𝐴𝐹:𝐶onto𝐵))
31, 2anbi12d 632 . 2 (𝐴 = 𝐵 → ((𝐹:𝐶1-1𝐴𝐹:𝐶onto𝐴) ↔ (𝐹:𝐶1-1𝐵𝐹:𝐶onto𝐵)))
4 df-f1o 6506 . 2 (𝐹:𝐶1-1-onto𝐴 ↔ (𝐹:𝐶1-1𝐴𝐹:𝐶onto𝐴))
5 df-f1o 6506 . 2 (𝐹:𝐶1-1-onto𝐵 ↔ (𝐹:𝐶1-1𝐵𝐹:𝐶onto𝐵))
63, 4, 53bitr4g 314 1 (𝐴 = 𝐵 → (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1-onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  1-1wf1 6496  ontowfo 6497  1-1-ontowf1o 6498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-cleq 2721  df-ss 3928  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506
This theorem is referenced by:  f1oeq23  6773  f1oeq123d  6776  f1oeq3d  6779  f1ores  6796  resin  6804  isoeq5  7278  breng  8904  xpcomf1o  9007  isinf  9183  isinfOLD  9184  cnfcom2  9631  fin1a2lem6  10334  pwfseqlem5  10592  pwfseq  10593  hashgf1o  13912  axdc4uzlem  13924  sumeq1  15631  prodeq1f  15848  prodeq1  15849  prodeq1i  15858  unbenlem  16855  4sqlem11  16902  gsumvalx  18585  cayley  19328  cayleyth  19329  ovolicc2lem4  25454  logf1o2  26592  uspgrf1oedg  29153  uspgredgiedg  29155  wlkiswwlks2lem4  29852  clwwlknonclwlknonf1o  30341  dlwwlknondlwlknonf1o  30344  adjbd1o  32064  rinvf1o  32604  cshf1o  32934  eulerpartgbij  34356  eulerpartlemgh  34362  derangval  35147  subfacp1lem2a  35160  subfacp1lem3  35162  subfacp1lem5  35164  mrsubff1o  35495  msubff1o  35537  cbvprodvw2  36228  bj-finsumval0  37266  f1omptsnlem  37317  f1omptsn  37318  poimirlem9  37616  poimirlem15  37622  ismtyval  37787  ismrer1  37825  lautset  40069  pautsetN  40085  hvmap1o2  41752  pwfi2f1o  43078  imasgim  43082  alephiso2  43540  f1ocof1ob2  47076  isuspgrim0lem  47886  gricushgr  47910  grtriprop  47933  grtrif1o  47934  isgrtri  47935  uspgrsprfo  48129
  Copyright terms: Public domain W3C validator