MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oeq3 Structured version   Visualization version   GIF version

Theorem f1oeq3 6690
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1oeq3 (𝐴 = 𝐵 → (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1-onto𝐵))

Proof of Theorem f1oeq3
StepHypRef Expression
1 f1eq3 6651 . . 3 (𝐴 = 𝐵 → (𝐹:𝐶1-1𝐴𝐹:𝐶1-1𝐵))
2 foeq3 6670 . . 3 (𝐴 = 𝐵 → (𝐹:𝐶onto𝐴𝐹:𝐶onto𝐵))
31, 2anbi12d 630 . 2 (𝐴 = 𝐵 → ((𝐹:𝐶1-1𝐴𝐹:𝐶onto𝐴) ↔ (𝐹:𝐶1-1𝐵𝐹:𝐶onto𝐵)))
4 df-f1o 6425 . 2 (𝐹:𝐶1-1-onto𝐴 ↔ (𝐹:𝐶1-1𝐴𝐹:𝐶onto𝐴))
5 df-f1o 6425 . 2 (𝐹:𝐶1-1-onto𝐵 ↔ (𝐹:𝐶1-1𝐵𝐹:𝐶onto𝐵))
63, 4, 53bitr4g 313 1 (𝐴 = 𝐵 → (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1-onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  1-1wf1 6415  ontowfo 6416  1-1-ontowf1o 6417
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425
This theorem is referenced by:  f1oeq23  6691  f1oeq123d  6694  f1oeq3d  6697  f1ores  6714  resin  6721  isoeq5  7172  breng  8700  brenOLD  8702  xpcomf1o  8801  isinf  8965  cnfcom2  9390  fin1a2lem6  10092  pwfseqlem5  10350  pwfseq  10351  hashgf1o  13619  axdc4uzlem  13631  sumeq1  15328  prodeq1f  15546  unbenlem  16537  4sqlem11  16584  gsumvalx  18275  cayley  18937  cayleyth  18938  ovolicc2lem4  24589  logf1o2  25710  uspgrf1oedg  27446  wlkiswwlks2lem4  28138  clwwlknonclwlknonf1o  28627  dlwwlknondlwlknonf1o  28630  adjbd1o  30348  rinvf1o  30866  cshf1o  31136  eulerpartgbij  32239  eulerpartlemgh  32245  derangval  33029  subfacp1lem2a  33042  subfacp1lem3  33044  subfacp1lem5  33046  mrsubff1o  33377  msubff1o  33419  bj-finsumval0  35383  f1omptsnlem  35434  f1omptsn  35435  poimirlem9  35713  poimirlem15  35719  ismtyval  35885  ismrer1  35923  lautset  38023  pautsetN  38039  hvmap1o2  39706  pwfi2f1o  40837  imasgim  40841  alephiso2  41054  f1ocof1ob2  44461  isomushgr  45166  uspgrsprfo  45198
  Copyright terms: Public domain W3C validator