MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oeq3 Structured version   Visualization version   GIF version

Theorem f1oeq3 6838
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1oeq3 (𝐴 = 𝐵 → (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1-onto𝐵))

Proof of Theorem f1oeq3
StepHypRef Expression
1 f1eq3 6801 . . 3 (𝐴 = 𝐵 → (𝐹:𝐶1-1𝐴𝐹:𝐶1-1𝐵))
2 foeq3 6818 . . 3 (𝐴 = 𝐵 → (𝐹:𝐶onto𝐴𝐹:𝐶onto𝐵))
31, 2anbi12d 632 . 2 (𝐴 = 𝐵 → ((𝐹:𝐶1-1𝐴𝐹:𝐶onto𝐴) ↔ (𝐹:𝐶1-1𝐵𝐹:𝐶onto𝐵)))
4 df-f1o 6569 . 2 (𝐹:𝐶1-1-onto𝐴 ↔ (𝐹:𝐶1-1𝐴𝐹:𝐶onto𝐴))
5 df-f1o 6569 . 2 (𝐹:𝐶1-1-onto𝐵 ↔ (𝐹:𝐶1-1𝐵𝐹:𝐶onto𝐵))
63, 4, 53bitr4g 314 1 (𝐴 = 𝐵 → (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1-onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1536  1-1wf1 6559  ontowfo 6560  1-1-ontowf1o 6561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-9 2115  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1776  df-cleq 2726  df-ss 3979  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569
This theorem is referenced by:  f1oeq23  6839  f1oeq123d  6842  f1oeq3d  6845  f1ores  6862  resin  6870  isoeq5  7340  breng  8992  xpcomf1o  9099  isinf  9293  isinfOLD  9294  cnfcom2  9739  fin1a2lem6  10442  pwfseqlem5  10700  pwfseq  10701  hashgf1o  14008  axdc4uzlem  14020  sumeq1  15721  prodeq1f  15938  prodeq1  15939  prodeq1i  15948  unbenlem  16941  4sqlem11  16988  gsumvalx  18701  cayley  19446  cayleyth  19447  ovolicc2lem4  25568  logf1o2  26706  uspgrf1oedg  29204  uspgredgiedg  29206  wlkiswwlks2lem4  29901  clwwlknonclwlknonf1o  30390  dlwwlknondlwlknonf1o  30393  adjbd1o  32113  rinvf1o  32646  cshf1o  32931  eulerpartgbij  34353  eulerpartlemgh  34359  derangval  35151  subfacp1lem2a  35164  subfacp1lem3  35166  subfacp1lem5  35168  mrsubff1o  35499  msubff1o  35541  cbvprodvw2  36229  bj-finsumval0  37267  f1omptsnlem  37318  f1omptsn  37319  poimirlem9  37615  poimirlem15  37621  ismtyval  37786  ismrer1  37824  lautset  40064  pautsetN  40080  hvmap1o2  41747  pwfi2f1o  43084  imasgim  43088  alephiso2  43547  f1ocof1ob2  47031  isuspgrim0lem  47808  gricushgr  47823  grtriprop  47845  grtrif1o  47846  isgrtri  47847  uspgrsprfo  47991
  Copyright terms: Public domain W3C validator