MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oeq3 Structured version   Visualization version   GIF version

Theorem f1oeq3 6706
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1oeq3 (𝐴 = 𝐵 → (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1-onto𝐵))

Proof of Theorem f1oeq3
StepHypRef Expression
1 f1eq3 6667 . . 3 (𝐴 = 𝐵 → (𝐹:𝐶1-1𝐴𝐹:𝐶1-1𝐵))
2 foeq3 6686 . . 3 (𝐴 = 𝐵 → (𝐹:𝐶onto𝐴𝐹:𝐶onto𝐵))
31, 2anbi12d 631 . 2 (𝐴 = 𝐵 → ((𝐹:𝐶1-1𝐴𝐹:𝐶onto𝐴) ↔ (𝐹:𝐶1-1𝐵𝐹:𝐶onto𝐵)))
4 df-f1o 6440 . 2 (𝐹:𝐶1-1-onto𝐴 ↔ (𝐹:𝐶1-1𝐴𝐹:𝐶onto𝐴))
5 df-f1o 6440 . 2 (𝐹:𝐶1-1-onto𝐵 ↔ (𝐹:𝐶1-1𝐵𝐹:𝐶onto𝐵))
63, 4, 53bitr4g 314 1 (𝐴 = 𝐵 → (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1-onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  1-1wf1 6430  ontowfo 6431  1-1-ontowf1o 6432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-ss 3904  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440
This theorem is referenced by:  f1oeq23  6707  f1oeq123d  6710  f1oeq3d  6713  f1ores  6730  resin  6738  isoeq5  7192  breng  8742  brenOLD  8744  xpcomf1o  8848  isinf  9036  cnfcom2  9460  fin1a2lem6  10161  pwfseqlem5  10419  pwfseq  10420  hashgf1o  13691  axdc4uzlem  13703  sumeq1  15400  prodeq1f  15618  unbenlem  16609  4sqlem11  16656  gsumvalx  18360  cayley  19022  cayleyth  19023  ovolicc2lem4  24684  logf1o2  25805  uspgrf1oedg  27543  wlkiswwlks2lem4  28237  clwwlknonclwlknonf1o  28726  dlwwlknondlwlknonf1o  28729  adjbd1o  30447  rinvf1o  30965  cshf1o  31234  eulerpartgbij  32339  eulerpartlemgh  32345  derangval  33129  subfacp1lem2a  33142  subfacp1lem3  33144  subfacp1lem5  33146  mrsubff1o  33477  msubff1o  33519  bj-finsumval0  35456  f1omptsnlem  35507  f1omptsn  35508  poimirlem9  35786  poimirlem15  35792  ismtyval  35958  ismrer1  35996  lautset  38096  pautsetN  38112  hvmap1o2  39779  pwfi2f1o  40921  imasgim  40925  alephiso2  41165  f1ocof1ob2  44574  isomushgr  45278  uspgrsprfo  45310
  Copyright terms: Public domain W3C validator