MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1oeq3 Structured version   Visualization version   GIF version

Theorem f1oeq3 6823
Description: Equality theorem for one-to-one onto functions. (Contributed by NM, 10-Feb-1997.)
Assertion
Ref Expression
f1oeq3 (𝐴 = 𝐵 → (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1-onto𝐵))

Proof of Theorem f1oeq3
StepHypRef Expression
1 f1eq3 6784 . . 3 (𝐴 = 𝐵 → (𝐹:𝐶1-1𝐴𝐹:𝐶1-1𝐵))
2 foeq3 6803 . . 3 (𝐴 = 𝐵 → (𝐹:𝐶onto𝐴𝐹:𝐶onto𝐵))
31, 2anbi12d 631 . 2 (𝐴 = 𝐵 → ((𝐹:𝐶1-1𝐴𝐹:𝐶onto𝐴) ↔ (𝐹:𝐶1-1𝐵𝐹:𝐶onto𝐵)))
4 df-f1o 6550 . 2 (𝐹:𝐶1-1-onto𝐴 ↔ (𝐹:𝐶1-1𝐴𝐹:𝐶onto𝐴))
5 df-f1o 6550 . 2 (𝐹:𝐶1-1-onto𝐵 ↔ (𝐹:𝐶1-1𝐵𝐹:𝐶onto𝐵))
63, 4, 53bitr4g 313 1 (𝐴 = 𝐵 → (𝐹:𝐶1-1-onto𝐴𝐹:𝐶1-1-onto𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  1-1wf1 6540  ontowfo 6541  1-1-ontowf1o 6542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-v 3476  df-in 3955  df-ss 3965  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550
This theorem is referenced by:  f1oeq23  6824  f1oeq123d  6827  f1oeq3d  6830  f1ores  6847  resin  6855  isoeq5  7320  breng  8950  brenOLD  8952  xpcomf1o  9063  isinf  9262  isinfOLD  9263  cnfcom2  9699  fin1a2lem6  10402  pwfseqlem5  10660  pwfseq  10661  hashgf1o  13940  axdc4uzlem  13952  sumeq1  15639  prodeq1f  15856  unbenlem  16845  4sqlem11  16892  gsumvalx  18601  cayley  19323  cayleyth  19324  ovolicc2lem4  25261  logf1o2  26382  uspgrf1oedg  28688  wlkiswwlks2lem4  29381  clwwlknonclwlknonf1o  29870  dlwwlknondlwlknonf1o  29873  adjbd1o  31593  rinvf1o  32109  cshf1o  32381  eulerpartgbij  33657  eulerpartlemgh  33663  derangval  34444  subfacp1lem2a  34457  subfacp1lem3  34459  subfacp1lem5  34461  mrsubff1o  34792  msubff1o  34834  bj-finsumval0  36469  f1omptsnlem  36520  f1omptsn  36521  poimirlem9  36800  poimirlem15  36806  ismtyval  36971  ismrer1  37009  lautset  39256  pautsetN  39272  hvmap1o2  40939  pwfi2f1o  42140  imasgim  42144  alephiso2  42611  f1ocof1ob2  46089  isomushgr  46793  uspgrsprfo  46825
  Copyright terms: Public domain W3C validator