![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgrstrrepe | Structured version Visualization version GIF version |
Description: Replacing (or adding) the edges (between elements of the base set) of an extensible structure results in a simple graph. Instead of requiring (π β πΊ Struct π), it would be sufficient to require (π β Fun (πΊ β {β })) and (π β πΊ β V). (Contributed by AV, 13-Nov-2021.) (Proof shortened by AV, 16-Nov-2021.) |
Ref | Expression |
---|---|
usgrstrrepe.v | β’ π = (BaseβπΊ) |
usgrstrrepe.i | β’ πΌ = (.efβndx) |
usgrstrrepe.s | β’ (π β πΊ Struct π) |
usgrstrrepe.b | β’ (π β (Baseβndx) β dom πΊ) |
usgrstrrepe.w | β’ (π β πΈ β π) |
usgrstrrepe.e | β’ (π β πΈ:dom πΈβ1-1β{π₯ β π« π β£ (β―βπ₯) = 2}) |
Ref | Expression |
---|---|
usgrstrrepe | β’ (π β (πΊ sSet β¨πΌ, πΈβ©) β USGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgrstrrepe.e | . . . 4 β’ (π β πΈ:dom πΈβ1-1β{π₯ β π« π β£ (β―βπ₯) = 2}) | |
2 | usgrstrrepe.i | . . . . . . . . 9 β’ πΌ = (.efβndx) | |
3 | usgrstrrepe.s | . . . . . . . . 9 β’ (π β πΊ Struct π) | |
4 | usgrstrrepe.b | . . . . . . . . 9 β’ (π β (Baseβndx) β dom πΊ) | |
5 | usgrstrrepe.w | . . . . . . . . 9 β’ (π β πΈ β π) | |
6 | 2, 3, 4, 5 | setsvtx 28284 | . . . . . . . 8 β’ (π β (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) = (BaseβπΊ)) |
7 | usgrstrrepe.v | . . . . . . . 8 β’ π = (BaseβπΊ) | |
8 | 6, 7 | eqtr4di 2790 | . . . . . . 7 β’ (π β (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) = π) |
9 | 8 | pweqd 4618 | . . . . . 6 β’ (π β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) = π« π) |
10 | 9 | rabeqdv 3447 | . . . . 5 β’ (π β {π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2} = {π₯ β π« π β£ (β―βπ₯) = 2}) |
11 | f1eq3 6781 | . . . . 5 β’ ({π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2} = {π₯ β π« π β£ (β―βπ₯) = 2} β (πΈ:dom πΈβ1-1β{π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2} β πΈ:dom πΈβ1-1β{π₯ β π« π β£ (β―βπ₯) = 2})) | |
12 | 10, 11 | syl 17 | . . . 4 β’ (π β (πΈ:dom πΈβ1-1β{π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2} β πΈ:dom πΈβ1-1β{π₯ β π« π β£ (β―βπ₯) = 2})) |
13 | 1, 12 | mpbird 256 | . . 3 β’ (π β πΈ:dom πΈβ1-1β{π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2}) |
14 | 2, 3, 4, 5 | setsiedg 28285 | . . . 4 β’ (π β (iEdgβ(πΊ sSet β¨πΌ, πΈβ©)) = πΈ) |
15 | 14 | dmeqd 5903 | . . . 4 β’ (π β dom (iEdgβ(πΊ sSet β¨πΌ, πΈβ©)) = dom πΈ) |
16 | eqidd 2733 | . . . 4 β’ (π β {π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2} = {π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2}) | |
17 | 14, 15, 16 | f1eq123d 6822 | . . 3 β’ (π β ((iEdgβ(πΊ sSet β¨πΌ, πΈβ©)):dom (iEdgβ(πΊ sSet β¨πΌ, πΈβ©))β1-1β{π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2} β πΈ:dom πΈβ1-1β{π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2})) |
18 | 13, 17 | mpbird 256 | . 2 β’ (π β (iEdgβ(πΊ sSet β¨πΌ, πΈβ©)):dom (iEdgβ(πΊ sSet β¨πΌ, πΈβ©))β1-1β{π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2}) |
19 | ovex 7438 | . . 3 β’ (πΊ sSet β¨πΌ, πΈβ©) β V | |
20 | eqid 2732 | . . . 4 β’ (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) = (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) | |
21 | eqid 2732 | . . . 4 β’ (iEdgβ(πΊ sSet β¨πΌ, πΈβ©)) = (iEdgβ(πΊ sSet β¨πΌ, πΈβ©)) | |
22 | 20, 21 | isusgrs 28405 | . . 3 β’ ((πΊ sSet β¨πΌ, πΈβ©) β V β ((πΊ sSet β¨πΌ, πΈβ©) β USGraph β (iEdgβ(πΊ sSet β¨πΌ, πΈβ©)):dom (iEdgβ(πΊ sSet β¨πΌ, πΈβ©))β1-1β{π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2})) |
23 | 19, 22 | mp1i 13 | . 2 β’ (π β ((πΊ sSet β¨πΌ, πΈβ©) β USGraph β (iEdgβ(πΊ sSet β¨πΌ, πΈβ©)):dom (iEdgβ(πΊ sSet β¨πΌ, πΈβ©))β1-1β{π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2})) |
24 | 18, 23 | mpbird 256 | 1 β’ (π β (πΊ sSet β¨πΌ, πΈβ©) β USGraph) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1541 β wcel 2106 {crab 3432 Vcvv 3474 π« cpw 4601 β¨cop 4633 class class class wbr 5147 dom cdm 5675 β1-1βwf1 6537 βcfv 6540 (class class class)co 7405 2c2 12263 β―chash 14286 Struct cstr 17075 sSet csts 17092 ndxcnx 17122 Basecbs 17140 .efcedgf 28235 Vtxcvtx 28245 iEdgciedg 28246 USGraphcusgr 28398 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-oadd 8466 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-dju 9892 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-xnn0 12541 df-z 12555 df-dec 12674 df-uz 12819 df-fz 13481 df-hash 14287 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-edgf 28236 df-vtx 28247 df-iedg 28248 df-usgr 28400 |
This theorem is referenced by: structtousgr 28691 |
Copyright terms: Public domain | W3C validator |