![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgrstrrepe | Structured version Visualization version GIF version |
Description: Replacing (or adding) the edges (between elements of the base set) of an extensible structure results in a simple graph. Instead of requiring (π β πΊ Struct π), it would be sufficient to require (π β Fun (πΊ β {β })) and (π β πΊ β V). (Contributed by AV, 13-Nov-2021.) (Proof shortened by AV, 16-Nov-2021.) |
Ref | Expression |
---|---|
usgrstrrepe.v | β’ π = (BaseβπΊ) |
usgrstrrepe.i | β’ πΌ = (.efβndx) |
usgrstrrepe.s | β’ (π β πΊ Struct π) |
usgrstrrepe.b | β’ (π β (Baseβndx) β dom πΊ) |
usgrstrrepe.w | β’ (π β πΈ β π) |
usgrstrrepe.e | β’ (π β πΈ:dom πΈβ1-1β{π₯ β π« π β£ (β―βπ₯) = 2}) |
Ref | Expression |
---|---|
usgrstrrepe | β’ (π β (πΊ sSet β¨πΌ, πΈβ©) β USGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgrstrrepe.e | . . . 4 β’ (π β πΈ:dom πΈβ1-1β{π₯ β π« π β£ (β―βπ₯) = 2}) | |
2 | usgrstrrepe.i | . . . . . . . . 9 β’ πΌ = (.efβndx) | |
3 | usgrstrrepe.s | . . . . . . . . 9 β’ (π β πΊ Struct π) | |
4 | usgrstrrepe.b | . . . . . . . . 9 β’ (π β (Baseβndx) β dom πΊ) | |
5 | usgrstrrepe.w | . . . . . . . . 9 β’ (π β πΈ β π) | |
6 | 2, 3, 4, 5 | setsvtx 28822 | . . . . . . . 8 β’ (π β (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) = (BaseβπΊ)) |
7 | usgrstrrepe.v | . . . . . . . 8 β’ π = (BaseβπΊ) | |
8 | 6, 7 | eqtr4di 2785 | . . . . . . 7 β’ (π β (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) = π) |
9 | 8 | pweqd 4615 | . . . . . 6 β’ (π β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) = π« π) |
10 | 9 | rabeqdv 3442 | . . . . 5 β’ (π β {π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2} = {π₯ β π« π β£ (β―βπ₯) = 2}) |
11 | f1eq3 6784 | . . . . 5 β’ ({π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2} = {π₯ β π« π β£ (β―βπ₯) = 2} β (πΈ:dom πΈβ1-1β{π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2} β πΈ:dom πΈβ1-1β{π₯ β π« π β£ (β―βπ₯) = 2})) | |
12 | 10, 11 | syl 17 | . . . 4 β’ (π β (πΈ:dom πΈβ1-1β{π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2} β πΈ:dom πΈβ1-1β{π₯ β π« π β£ (β―βπ₯) = 2})) |
13 | 1, 12 | mpbird 257 | . . 3 β’ (π β πΈ:dom πΈβ1-1β{π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2}) |
14 | 2, 3, 4, 5 | setsiedg 28823 | . . . 4 β’ (π β (iEdgβ(πΊ sSet β¨πΌ, πΈβ©)) = πΈ) |
15 | 14 | dmeqd 5902 | . . . 4 β’ (π β dom (iEdgβ(πΊ sSet β¨πΌ, πΈβ©)) = dom πΈ) |
16 | eqidd 2728 | . . . 4 β’ (π β {π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2} = {π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2}) | |
17 | 14, 15, 16 | f1eq123d 6825 | . . 3 β’ (π β ((iEdgβ(πΊ sSet β¨πΌ, πΈβ©)):dom (iEdgβ(πΊ sSet β¨πΌ, πΈβ©))β1-1β{π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2} β πΈ:dom πΈβ1-1β{π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2})) |
18 | 13, 17 | mpbird 257 | . 2 β’ (π β (iEdgβ(πΊ sSet β¨πΌ, πΈβ©)):dom (iEdgβ(πΊ sSet β¨πΌ, πΈβ©))β1-1β{π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2}) |
19 | ovex 7447 | . . 3 β’ (πΊ sSet β¨πΌ, πΈβ©) β V | |
20 | eqid 2727 | . . . 4 β’ (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) = (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) | |
21 | eqid 2727 | . . . 4 β’ (iEdgβ(πΊ sSet β¨πΌ, πΈβ©)) = (iEdgβ(πΊ sSet β¨πΌ, πΈβ©)) | |
22 | 20, 21 | isusgrs 28943 | . . 3 β’ ((πΊ sSet β¨πΌ, πΈβ©) β V β ((πΊ sSet β¨πΌ, πΈβ©) β USGraph β (iEdgβ(πΊ sSet β¨πΌ, πΈβ©)):dom (iEdgβ(πΊ sSet β¨πΌ, πΈβ©))β1-1β{π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2})) |
23 | 19, 22 | mp1i 13 | . 2 β’ (π β ((πΊ sSet β¨πΌ, πΈβ©) β USGraph β (iEdgβ(πΊ sSet β¨πΌ, πΈβ©)):dom (iEdgβ(πΊ sSet β¨πΌ, πΈβ©))β1-1β{π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2})) |
24 | 18, 23 | mpbird 257 | 1 β’ (π β (πΊ sSet β¨πΌ, πΈβ©) β USGraph) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1534 β wcel 2099 {crab 3427 Vcvv 3469 π« cpw 4598 β¨cop 4630 class class class wbr 5142 dom cdm 5672 β1-1βwf1 6539 βcfv 6542 (class class class)co 7414 2c2 12283 β―chash 14307 Struct cstr 17100 sSet csts 17117 ndxcnx 17147 Basecbs 17165 .efcedgf 28773 Vtxcvtx 28783 iEdgciedg 28784 USGraphcusgr 28936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7732 ax-cnex 11180 ax-resscn 11181 ax-1cn 11182 ax-icn 11183 ax-addcl 11184 ax-addrcl 11185 ax-mulcl 11186 ax-mulrcl 11187 ax-mulcom 11188 ax-addass 11189 ax-mulass 11190 ax-distr 11191 ax-i2m1 11192 ax-1ne0 11193 ax-1rid 11194 ax-rnegex 11195 ax-rrecex 11196 ax-cnre 11197 ax-pre-lttri 11198 ax-pre-lttrn 11199 ax-pre-ltadd 11200 ax-pre-mulgt0 11201 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7863 df-1st 7985 df-2nd 7986 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-oadd 8482 df-er 8716 df-en 8954 df-dom 8955 df-sdom 8956 df-fin 8957 df-dju 9910 df-card 9948 df-pnf 11266 df-mnf 11267 df-xr 11268 df-ltxr 11269 df-le 11270 df-sub 11462 df-neg 11463 df-nn 12229 df-2 12291 df-3 12292 df-4 12293 df-5 12294 df-6 12295 df-7 12296 df-8 12297 df-9 12298 df-n0 12489 df-xnn0 12561 df-z 12575 df-dec 12694 df-uz 12839 df-fz 13503 df-hash 14308 df-struct 17101 df-sets 17118 df-slot 17136 df-ndx 17148 df-base 17166 df-edgf 28774 df-vtx 28785 df-iedg 28786 df-usgr 28938 |
This theorem is referenced by: structtousgr 29232 |
Copyright terms: Public domain | W3C validator |