MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrstrrepe Structured version   Visualization version   GIF version

Theorem usgrstrrepe 29138
Description: Replacing (or adding) the edges (between elements of the base set) of an extensible structure results in a simple graph. Instead of requiring (𝜑𝐺 Struct 𝑋), it would be sufficient to require (𝜑 → Fun (𝐺 ∖ {∅})) and (𝜑𝐺 ∈ V). (Contributed by AV, 13-Nov-2021.) (Proof shortened by AV, 16-Nov-2021.)
Hypotheses
Ref Expression
usgrstrrepe.v 𝑉 = (Base‘𝐺)
usgrstrrepe.i 𝐼 = (.ef‘ndx)
usgrstrrepe.s (𝜑𝐺 Struct 𝑋)
usgrstrrepe.b (𝜑 → (Base‘ndx) ∈ dom 𝐺)
usgrstrrepe.w (𝜑𝐸𝑊)
usgrstrrepe.e (𝜑𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
Assertion
Ref Expression
usgrstrrepe (𝜑 → (𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ USGraph)
Distinct variable groups:   𝑥,𝐺   𝑥,𝐸   𝑥,𝐼   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝑊(𝑥)   𝑋(𝑥)

Proof of Theorem usgrstrrepe
StepHypRef Expression
1 usgrstrrepe.e . . . 4 (𝜑𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
2 usgrstrrepe.i . . . . . . . . 9 𝐼 = (.ef‘ndx)
3 usgrstrrepe.s . . . . . . . . 9 (𝜑𝐺 Struct 𝑋)
4 usgrstrrepe.b . . . . . . . . 9 (𝜑 → (Base‘ndx) ∈ dom 𝐺)
5 usgrstrrepe.w . . . . . . . . 9 (𝜑𝐸𝑊)
62, 3, 4, 5setsvtx 28938 . . . . . . . 8 (𝜑 → (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = (Base‘𝐺))
7 usgrstrrepe.v . . . . . . . 8 𝑉 = (Base‘𝐺)
86, 7eqtr4di 2782 . . . . . . 7 (𝜑 → (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = 𝑉)
98pweqd 4576 . . . . . 6 (𝜑 → 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = 𝒫 𝑉)
109rabeqdv 3418 . . . . 5 (𝜑 → {𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
11 f1eq3 6735 . . . . 5 ({𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → (𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (♯‘𝑥) = 2} ↔ 𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
1210, 11syl 17 . . . 4 (𝜑 → (𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (♯‘𝑥) = 2} ↔ 𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
131, 12mpbird 257 . . 3 (𝜑𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (♯‘𝑥) = 2})
142, 3, 4, 5setsiedg 28939 . . . 4 (𝜑 → (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = 𝐸)
1514dmeqd 5859 . . . 4 (𝜑 → dom (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = dom 𝐸)
16 eqidd 2730 . . . 4 (𝜑 → {𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (♯‘𝑥) = 2})
1714, 15, 16f1eq123d 6774 . . 3 (𝜑 → ((iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)):dom (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩))–1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (♯‘𝑥) = 2} ↔ 𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (♯‘𝑥) = 2}))
1813, 17mpbird 257 . 2 (𝜑 → (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)):dom (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩))–1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (♯‘𝑥) = 2})
19 ovex 7402 . . 3 (𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ V
20 eqid 2729 . . . 4 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩))
21 eqid 2729 . . . 4 (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩))
2220, 21isusgrs 29059 . . 3 ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ V → ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ USGraph ↔ (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)):dom (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩))–1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (♯‘𝑥) = 2}))
2319, 22mp1i 13 . 2 (𝜑 → ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ USGraph ↔ (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)):dom (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩))–1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (♯‘𝑥) = 2}))
2418, 23mpbird 257 1 (𝜑 → (𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {crab 3402  Vcvv 3444  𝒫 cpw 4559  cop 4591   class class class wbr 5102  dom cdm 5631  1-1wf1 6496  cfv 6499  (class class class)co 7369  2c2 12217  chash 14271   Struct cstr 17092   sSet csts 17109  ndxcnx 17139  Basecbs 17155  .efcedgf 28891  Vtxcvtx 28899  iEdgciedg 28900  USGraphcusgr 29052
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-xnn0 12492  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-hash 14272  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-edgf 28892  df-vtx 28901  df-iedg 28902  df-usgr 29054
This theorem is referenced by:  structtousgr  29348
  Copyright terms: Public domain W3C validator