![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > usgrstrrepe | Structured version Visualization version GIF version |
Description: Replacing (or adding) the edges (between elements of the base set) of an extensible structure results in a simple graph. Instead of requiring (π β πΊ Struct π), it would be sufficient to require (π β Fun (πΊ β {β })) and (π β πΊ β V). (Contributed by AV, 13-Nov-2021.) (Proof shortened by AV, 16-Nov-2021.) |
Ref | Expression |
---|---|
usgrstrrepe.v | β’ π = (BaseβπΊ) |
usgrstrrepe.i | β’ πΌ = (.efβndx) |
usgrstrrepe.s | β’ (π β πΊ Struct π) |
usgrstrrepe.b | β’ (π β (Baseβndx) β dom πΊ) |
usgrstrrepe.w | β’ (π β πΈ β π) |
usgrstrrepe.e | β’ (π β πΈ:dom πΈβ1-1β{π₯ β π« π β£ (β―βπ₯) = 2}) |
Ref | Expression |
---|---|
usgrstrrepe | β’ (π β (πΊ sSet β¨πΌ, πΈβ©) β USGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgrstrrepe.e | . . . 4 β’ (π β πΈ:dom πΈβ1-1β{π₯ β π« π β£ (β―βπ₯) = 2}) | |
2 | usgrstrrepe.i | . . . . . . . . 9 β’ πΌ = (.efβndx) | |
3 | usgrstrrepe.s | . . . . . . . . 9 β’ (π β πΊ Struct π) | |
4 | usgrstrrepe.b | . . . . . . . . 9 β’ (π β (Baseβndx) β dom πΊ) | |
5 | usgrstrrepe.w | . . . . . . . . 9 β’ (π β πΈ β π) | |
6 | 2, 3, 4, 5 | setsvtx 28890 | . . . . . . . 8 β’ (π β (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) = (BaseβπΊ)) |
7 | usgrstrrepe.v | . . . . . . . 8 β’ π = (BaseβπΊ) | |
8 | 6, 7 | eqtr4di 2783 | . . . . . . 7 β’ (π β (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) = π) |
9 | 8 | pweqd 4615 | . . . . . 6 β’ (π β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) = π« π) |
10 | 9 | rabeqdv 3435 | . . . . 5 β’ (π β {π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2} = {π₯ β π« π β£ (β―βπ₯) = 2}) |
11 | f1eq3 6784 | . . . . 5 β’ ({π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2} = {π₯ β π« π β£ (β―βπ₯) = 2} β (πΈ:dom πΈβ1-1β{π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2} β πΈ:dom πΈβ1-1β{π₯ β π« π β£ (β―βπ₯) = 2})) | |
12 | 10, 11 | syl 17 | . . . 4 β’ (π β (πΈ:dom πΈβ1-1β{π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2} β πΈ:dom πΈβ1-1β{π₯ β π« π β£ (β―βπ₯) = 2})) |
13 | 1, 12 | mpbird 256 | . . 3 β’ (π β πΈ:dom πΈβ1-1β{π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2}) |
14 | 2, 3, 4, 5 | setsiedg 28891 | . . . 4 β’ (π β (iEdgβ(πΊ sSet β¨πΌ, πΈβ©)) = πΈ) |
15 | 14 | dmeqd 5902 | . . . 4 β’ (π β dom (iEdgβ(πΊ sSet β¨πΌ, πΈβ©)) = dom πΈ) |
16 | eqidd 2726 | . . . 4 β’ (π β {π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2} = {π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2}) | |
17 | 14, 15, 16 | f1eq123d 6825 | . . 3 β’ (π β ((iEdgβ(πΊ sSet β¨πΌ, πΈβ©)):dom (iEdgβ(πΊ sSet β¨πΌ, πΈβ©))β1-1β{π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2} β πΈ:dom πΈβ1-1β{π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2})) |
18 | 13, 17 | mpbird 256 | . 2 β’ (π β (iEdgβ(πΊ sSet β¨πΌ, πΈβ©)):dom (iEdgβ(πΊ sSet β¨πΌ, πΈβ©))β1-1β{π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2}) |
19 | ovex 7448 | . . 3 β’ (πΊ sSet β¨πΌ, πΈβ©) β V | |
20 | eqid 2725 | . . . 4 β’ (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) = (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) | |
21 | eqid 2725 | . . . 4 β’ (iEdgβ(πΊ sSet β¨πΌ, πΈβ©)) = (iEdgβ(πΊ sSet β¨πΌ, πΈβ©)) | |
22 | 20, 21 | isusgrs 29011 | . . 3 β’ ((πΊ sSet β¨πΌ, πΈβ©) β V β ((πΊ sSet β¨πΌ, πΈβ©) β USGraph β (iEdgβ(πΊ sSet β¨πΌ, πΈβ©)):dom (iEdgβ(πΊ sSet β¨πΌ, πΈβ©))β1-1β{π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2})) |
23 | 19, 22 | mp1i 13 | . 2 β’ (π β ((πΊ sSet β¨πΌ, πΈβ©) β USGraph β (iEdgβ(πΊ sSet β¨πΌ, πΈβ©)):dom (iEdgβ(πΊ sSet β¨πΌ, πΈβ©))β1-1β{π₯ β π« (Vtxβ(πΊ sSet β¨πΌ, πΈβ©)) β£ (β―βπ₯) = 2})) |
24 | 18, 23 | mpbird 256 | 1 β’ (π β (πΊ sSet β¨πΌ, πΈβ©) β USGraph) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 = wceq 1533 β wcel 2098 {crab 3419 Vcvv 3463 π« cpw 4598 β¨cop 4630 class class class wbr 5143 dom cdm 5672 β1-1βwf1 6539 βcfv 6542 (class class class)co 7415 2c2 12295 β―chash 14319 Struct cstr 17112 sSet csts 17129 ndxcnx 17159 Basecbs 17177 .efcedgf 28841 Vtxcvtx 28851 iEdgciedg 28852 USGraphcusgr 29004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-oadd 8487 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-dju 9922 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12501 df-xnn0 12573 df-z 12587 df-dec 12706 df-uz 12851 df-fz 13515 df-hash 14320 df-struct 17113 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-edgf 28842 df-vtx 28853 df-iedg 28854 df-usgr 29006 |
This theorem is referenced by: structtousgr 29300 |
Copyright terms: Public domain | W3C validator |