Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > usgrstrrepe | Structured version Visualization version GIF version |
Description: Replacing (or adding) the edges (between elements of the base set) of an extensible structure results in a simple graph. Instead of requiring (𝜑 → 𝐺 Struct 𝑋), it would be sufficient to require (𝜑 → Fun (𝐺 ∖ {∅})) and (𝜑 → 𝐺 ∈ V). (Contributed by AV, 13-Nov-2021.) (Proof shortened by AV, 16-Nov-2021.) |
Ref | Expression |
---|---|
usgrstrrepe.v | ⊢ 𝑉 = (Base‘𝐺) |
usgrstrrepe.i | ⊢ 𝐼 = (.ef‘ndx) |
usgrstrrepe.s | ⊢ (𝜑 → 𝐺 Struct 𝑋) |
usgrstrrepe.b | ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝐺) |
usgrstrrepe.w | ⊢ (𝜑 → 𝐸 ∈ 𝑊) |
usgrstrrepe.e | ⊢ (𝜑 → 𝐸:dom 𝐸–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
Ref | Expression |
---|---|
usgrstrrepe | ⊢ (𝜑 → (𝐺 sSet 〈𝐼, 𝐸〉) ∈ USGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | usgrstrrepe.e | . . . 4 ⊢ (𝜑 → 𝐸:dom 𝐸–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) | |
2 | usgrstrrepe.i | . . . . . . . . 9 ⊢ 𝐼 = (.ef‘ndx) | |
3 | usgrstrrepe.s | . . . . . . . . 9 ⊢ (𝜑 → 𝐺 Struct 𝑋) | |
4 | usgrstrrepe.b | . . . . . . . . 9 ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝐺) | |
5 | usgrstrrepe.w | . . . . . . . . 9 ⊢ (𝜑 → 𝐸 ∈ 𝑊) | |
6 | 2, 3, 4, 5 | setsvtx 27394 | . . . . . . . 8 ⊢ (𝜑 → (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) = (Base‘𝐺)) |
7 | usgrstrrepe.v | . . . . . . . 8 ⊢ 𝑉 = (Base‘𝐺) | |
8 | 6, 7 | eqtr4di 2796 | . . . . . . 7 ⊢ (𝜑 → (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) = 𝑉) |
9 | 8 | pweqd 4554 | . . . . . 6 ⊢ (𝜑 → 𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) = 𝒫 𝑉) |
10 | 9 | rabeqdv 3418 | . . . . 5 ⊢ (𝜑 → {𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
11 | f1eq3 6661 | . . . . 5 ⊢ ({𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → (𝐸:dom 𝐸–1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∣ (♯‘𝑥) = 2} ↔ 𝐸:dom 𝐸–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐸:dom 𝐸–1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∣ (♯‘𝑥) = 2} ↔ 𝐸:dom 𝐸–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})) |
13 | 1, 12 | mpbird 256 | . . 3 ⊢ (𝜑 → 𝐸:dom 𝐸–1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∣ (♯‘𝑥) = 2}) |
14 | 2, 3, 4, 5 | setsiedg 27395 | . . . 4 ⊢ (𝜑 → (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)) = 𝐸) |
15 | 14 | dmeqd 5809 | . . . 4 ⊢ (𝜑 → dom (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)) = dom 𝐸) |
16 | eqidd 2739 | . . . 4 ⊢ (𝜑 → {𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∣ (♯‘𝑥) = 2}) | |
17 | 14, 15, 16 | f1eq123d 6702 | . . 3 ⊢ (𝜑 → ((iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)):dom (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉))–1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∣ (♯‘𝑥) = 2} ↔ 𝐸:dom 𝐸–1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∣ (♯‘𝑥) = 2})) |
18 | 13, 17 | mpbird 256 | . 2 ⊢ (𝜑 → (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)):dom (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉))–1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∣ (♯‘𝑥) = 2}) |
19 | ovex 7302 | . . 3 ⊢ (𝐺 sSet 〈𝐼, 𝐸〉) ∈ V | |
20 | eqid 2738 | . . . 4 ⊢ (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) = (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) | |
21 | eqid 2738 | . . . 4 ⊢ (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)) = (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)) | |
22 | 20, 21 | isusgrs 27515 | . . 3 ⊢ ((𝐺 sSet 〈𝐼, 𝐸〉) ∈ V → ((𝐺 sSet 〈𝐼, 𝐸〉) ∈ USGraph ↔ (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)):dom (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉))–1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∣ (♯‘𝑥) = 2})) |
23 | 19, 22 | mp1i 13 | . 2 ⊢ (𝜑 → ((𝐺 sSet 〈𝐼, 𝐸〉) ∈ USGraph ↔ (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉)):dom (iEdg‘(𝐺 sSet 〈𝐼, 𝐸〉))–1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet 〈𝐼, 𝐸〉)) ∣ (♯‘𝑥) = 2})) |
24 | 18, 23 | mpbird 256 | 1 ⊢ (𝜑 → (𝐺 sSet 〈𝐼, 𝐸〉) ∈ USGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 {crab 3068 Vcvv 3431 𝒫 cpw 4535 〈cop 4569 class class class wbr 5075 dom cdm 5586 –1-1→wf1 6425 ‘cfv 6428 (class class class)co 7269 2c2 12017 ♯chash 14033 Struct cstr 16836 sSet csts 16853 ndxcnx 16883 Basecbs 16901 .efcedgf 27345 Vtxcvtx 27355 iEdgciedg 27356 USGraphcusgr 27508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7580 ax-cnex 10916 ax-resscn 10917 ax-1cn 10918 ax-icn 10919 ax-addcl 10920 ax-addrcl 10921 ax-mulcl 10922 ax-mulrcl 10923 ax-mulcom 10924 ax-addass 10925 ax-mulass 10926 ax-distr 10927 ax-i2m1 10928 ax-1ne0 10929 ax-1rid 10930 ax-rnegex 10931 ax-rrecex 10932 ax-cnre 10933 ax-pre-lttri 10934 ax-pre-lttrn 10935 ax-pre-ltadd 10936 ax-pre-mulgt0 10937 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-int 4882 df-iun 4928 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5486 df-eprel 5492 df-po 5500 df-so 5501 df-fr 5541 df-we 5543 df-xp 5592 df-rel 5593 df-cnv 5594 df-co 5595 df-dm 5596 df-rn 5597 df-res 5598 df-ima 5599 df-pred 6197 df-ord 6264 df-on 6265 df-lim 6266 df-suc 6267 df-iota 6386 df-fun 6430 df-fn 6431 df-f 6432 df-f1 6433 df-fo 6434 df-f1o 6435 df-fv 6436 df-riota 7226 df-ov 7272 df-oprab 7273 df-mpo 7274 df-om 7705 df-1st 7822 df-2nd 7823 df-frecs 8086 df-wrecs 8117 df-recs 8191 df-rdg 8230 df-1o 8286 df-oadd 8290 df-er 8487 df-en 8723 df-dom 8724 df-sdom 8725 df-fin 8726 df-dju 9648 df-card 9686 df-pnf 11000 df-mnf 11001 df-xr 11002 df-ltxr 11003 df-le 11004 df-sub 11196 df-neg 11197 df-nn 11963 df-2 12025 df-3 12026 df-4 12027 df-5 12028 df-6 12029 df-7 12030 df-8 12031 df-9 12032 df-n0 12223 df-xnn0 12295 df-z 12309 df-dec 12427 df-uz 12572 df-fz 13229 df-hash 14034 df-struct 16837 df-sets 16854 df-slot 16872 df-ndx 16884 df-base 16902 df-edgf 27346 df-vtx 27357 df-iedg 27358 df-usgr 27510 |
This theorem is referenced by: structtousgr 27801 |
Copyright terms: Public domain | W3C validator |