Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrstrrepe Structured version   Visualization version   GIF version

Theorem usgrstrrepe 27000
 Description: Replacing (or adding) the edges (between elements of the base set) of an extensible structure results in a simple graph. Instead of requiring (𝜑 → 𝐺 Struct 𝑋), it would be sufficient to require (𝜑 → Fun (𝐺 ∖ {∅})) and (𝜑 → 𝐺 ∈ V). (Contributed by AV, 13-Nov-2021.) (Proof shortened by AV, 16-Nov-2021.)
Hypotheses
Ref Expression
usgrstrrepe.v 𝑉 = (Base‘𝐺)
usgrstrrepe.i 𝐼 = (.ef‘ndx)
usgrstrrepe.s (𝜑𝐺 Struct 𝑋)
usgrstrrepe.b (𝜑 → (Base‘ndx) ∈ dom 𝐺)
usgrstrrepe.w (𝜑𝐸𝑊)
usgrstrrepe.e (𝜑𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
Assertion
Ref Expression
usgrstrrepe (𝜑 → (𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ USGraph)
Distinct variable groups:   𝑥,𝐺   𝑥,𝐸   𝑥,𝐼   𝑥,𝑉   𝜑,𝑥
Allowed substitution hints:   𝑊(𝑥)   𝑋(𝑥)

Proof of Theorem usgrstrrepe
StepHypRef Expression
1 usgrstrrepe.e . . . 4 (𝜑𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
2 usgrstrrepe.i . . . . . . . . 9 𝐼 = (.ef‘ndx)
3 usgrstrrepe.s . . . . . . . . 9 (𝜑𝐺 Struct 𝑋)
4 usgrstrrepe.b . . . . . . . . 9 (𝜑 → (Base‘ndx) ∈ dom 𝐺)
5 usgrstrrepe.w . . . . . . . . 9 (𝜑𝐸𝑊)
62, 3, 4, 5setsvtx 26803 . . . . . . . 8 (𝜑 → (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = (Base‘𝐺))
7 usgrstrrepe.v . . . . . . . 8 𝑉 = (Base‘𝐺)
86, 7syl6eqr 2873 . . . . . . 7 (𝜑 → (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = 𝑉)
98pweqd 4530 . . . . . 6 (𝜑 → 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = 𝒫 𝑉)
109rabeqdv 3460 . . . . 5 (𝜑 → {𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
11 f1eq3 6544 . . . . 5 ({𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} → (𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (♯‘𝑥) = 2} ↔ 𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
1210, 11syl 17 . . . 4 (𝜑 → (𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (♯‘𝑥) = 2} ↔ 𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}))
131, 12mpbird 259 . . 3 (𝜑𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (♯‘𝑥) = 2})
142, 3, 4, 5setsiedg 26804 . . . 4 (𝜑 → (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = 𝐸)
1514dmeqd 5746 . . . 4 (𝜑 → dom (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = dom 𝐸)
16 eqidd 2821 . . . 4 (𝜑 → {𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (♯‘𝑥) = 2} = {𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (♯‘𝑥) = 2})
1714, 15, 16f1eq123d 6580 . . 3 (𝜑 → ((iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)):dom (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩))–1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (♯‘𝑥) = 2} ↔ 𝐸:dom 𝐸1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (♯‘𝑥) = 2}))
1813, 17mpbird 259 . 2 (𝜑 → (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)):dom (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩))–1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (♯‘𝑥) = 2})
19 ovex 7162 . . 3 (𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ V
20 eqid 2820 . . . 4 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩))
21 eqid 2820 . . . 4 (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) = (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩))
2220, 21isusgrs 26924 . . 3 ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ V → ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ USGraph ↔ (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)):dom (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩))–1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (♯‘𝑥) = 2}))
2319, 22mp1i 13 . 2 (𝜑 → ((𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ USGraph ↔ (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩)):dom (iEdg‘(𝐺 sSet ⟨𝐼, 𝐸⟩))–1-1→{𝑥 ∈ 𝒫 (Vtx‘(𝐺 sSet ⟨𝐼, 𝐸⟩)) ∣ (♯‘𝑥) = 2}))
2418, 23mpbird 259 1 (𝜑 → (𝐺 sSet ⟨𝐼, 𝐸⟩) ∈ USGraph)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 208   = wceq 1537   ∈ wcel 2114  {crab 3129  Vcvv 3470  𝒫 cpw 4511  ⟨cop 4545   class class class wbr 5038  dom cdm 5527  –1-1→wf1 6324  ‘cfv 6327  (class class class)co 7129  2c2 11667  ♯chash 13671   Struct cstr 16454  ndxcnx 16455   sSet csts 16456  Basecbs 16458  .efcedgf 26757  Vtxcvtx 26764  iEdgciedg 26765  USGraphcusgr 26917 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5162  ax-sep 5175  ax-nul 5182  ax-pow 5238  ax-pr 5302  ax-un 7435  ax-cnex 10567  ax-resscn 10568  ax-1cn 10569  ax-icn 10570  ax-addcl 10571  ax-addrcl 10572  ax-mulcl 10573  ax-mulrcl 10574  ax-mulcom 10575  ax-addass 10576  ax-mulass 10577  ax-distr 10578  ax-i2m1 10579  ax-1ne0 10580  ax-1rid 10581  ax-rnegex 10582  ax-rrecex 10583  ax-cnre 10584  ax-pre-lttri 10585  ax-pre-lttrn 10586  ax-pre-ltadd 10587  ax-pre-mulgt0 10588 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3472  df-sbc 3749  df-csb 3857  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4811  df-int 4849  df-iun 4893  df-br 5039  df-opab 5101  df-mpt 5119  df-tr 5145  df-id 5432  df-eprel 5437  df-po 5446  df-so 5447  df-fr 5486  df-we 5488  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-riota 7087  df-ov 7132  df-oprab 7133  df-mpo 7134  df-om 7555  df-1st 7663  df-2nd 7664  df-wrecs 7921  df-recs 7982  df-rdg 8020  df-1o 8076  df-oadd 8080  df-er 8263  df-en 8484  df-dom 8485  df-sdom 8486  df-fin 8487  df-dju 9304  df-card 9342  df-pnf 10651  df-mnf 10652  df-xr 10653  df-ltxr 10654  df-le 10655  df-sub 10846  df-neg 10847  df-nn 11613  df-2 11675  df-3 11676  df-4 11677  df-5 11678  df-6 11679  df-7 11680  df-8 11681  df-9 11682  df-n0 11873  df-xnn0 11943  df-z 11957  df-dec 12074  df-uz 12219  df-fz 12873  df-hash 13672  df-struct 16460  df-ndx 16461  df-slot 16462  df-base 16464  df-sets 16465  df-edgf 26758  df-vtx 26766  df-iedg 26767  df-usgr 26919 This theorem is referenced by:  structtousgr  27210
 Copyright terms: Public domain W3C validator