| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1eq123d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for one-to-one functions. (Contributed by Mario Carneiro, 27-Jan-2017.) |
| Ref | Expression |
|---|---|
| f1eq123d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| f1eq123d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| f1eq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| f1eq123d | ⊢ (𝜑 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐺:𝐵–1-1→𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1eq123d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | f1eq1 6714 | . . 3 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐺:𝐴–1-1→𝐶)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐺:𝐴–1-1→𝐶)) |
| 4 | f1eq123d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 5 | f1eq2 6715 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐺:𝐴–1-1→𝐶 ↔ 𝐺:𝐵–1-1→𝐶)) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝐺:𝐴–1-1→𝐶 ↔ 𝐺:𝐵–1-1→𝐶)) |
| 7 | f1eq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 8 | f1eq3 6716 | . . 3 ⊢ (𝐶 = 𝐷 → (𝐺:𝐵–1-1→𝐶 ↔ 𝐺:𝐵–1-1→𝐷)) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (𝐺:𝐵–1-1→𝐶 ↔ 𝐺:𝐵–1-1→𝐷)) |
| 10 | 3, 6, 9 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐺:𝐵–1-1→𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 –1-1→wf1 6478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 |
| This theorem is referenced by: f10d 6797 fthf1 17823 cofth 17841 rngqiprngimf1 21235 istrkgld 28435 istrkg2ld 28436 isushgr 29037 isuspgr 29128 isusgr 29129 isuspgrop 29137 isusgrop 29138 ausgrusgrb 29141 ausgrusgri 29144 usgrstrrepe 29211 uspgr1e 29220 usgrres1 29291 usgrexi 29417 uspgr2wlkeq 29622 usgr2trlncl 29736 aciunf1 32640 pfxf1 32918 s1f1 32919 tocycfv 33073 tocycf 33081 tocyc01 33082 cycpmco2f1 33088 cycpmco2rn 33089 cycpmco2lem1 33090 cycpmco2lem2 33091 cycpmco2lem3 33092 cycpmco2lem4 33093 cycpmco2lem5 33094 cycpmco2lem6 33095 cycpmco2lem7 33096 cycpmco2 33097 cycpm3cl2 33100 cycpmconjv 33106 tocyccntz 33108 cyc3evpm 33114 cycpmgcl 33117 cycpmconjslem2 33119 cyc3conja 33121 dimkerim 33635 f1resfz0f1d 35146 aks6d1c2 42162 f1cof1b 47107 fundcmpsurinjALT 47442 upgrimtrls 47936 stgrusgra 47989 gpgusgra 48087 cofidf2 49151 |
| Copyright terms: Public domain | W3C validator |