| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1eq123d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for one-to-one functions. (Contributed by Mario Carneiro, 27-Jan-2017.) |
| Ref | Expression |
|---|---|
| f1eq123d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| f1eq123d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| f1eq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| f1eq123d | ⊢ (𝜑 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐺:𝐵–1-1→𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1eq123d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | f1eq1 6719 | . . 3 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐺:𝐴–1-1→𝐶)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐺:𝐴–1-1→𝐶)) |
| 4 | f1eq123d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 5 | f1eq2 6720 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐺:𝐴–1-1→𝐶 ↔ 𝐺:𝐵–1-1→𝐶)) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝐺:𝐴–1-1→𝐶 ↔ 𝐺:𝐵–1-1→𝐶)) |
| 7 | f1eq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 8 | f1eq3 6721 | . . 3 ⊢ (𝐶 = 𝐷 → (𝐺:𝐵–1-1→𝐶 ↔ 𝐺:𝐵–1-1→𝐷)) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (𝐺:𝐵–1-1→𝐶 ↔ 𝐺:𝐵–1-1→𝐷)) |
| 10 | 3, 6, 9 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐺:𝐵–1-1→𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 –1-1→wf1 6483 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 |
| This theorem is referenced by: f10d 6802 fthf1 17828 cofth 17846 rngqiprngimf1 21239 istrkgld 28438 istrkg2ld 28439 isushgr 29041 isuspgr 29132 isusgr 29133 isuspgrop 29141 isusgrop 29142 ausgrusgrb 29145 ausgrusgri 29148 usgrstrrepe 29215 uspgr1e 29224 usgrres1 29295 usgrexi 29421 uspgr2wlkeq 29626 usgr2trlncl 29740 aciunf1 32647 pfxf1 32930 s1f1 32931 tocycfv 33085 tocycf 33093 tocyc01 33094 cycpmco2f1 33100 cycpmco2rn 33101 cycpmco2lem1 33102 cycpmco2lem2 33103 cycpmco2lem3 33104 cycpmco2lem4 33105 cycpmco2lem5 33106 cycpmco2lem6 33107 cycpmco2lem7 33108 cycpmco2 33109 cycpm3cl2 33112 cycpmconjv 33118 tocyccntz 33120 cyc3evpm 33126 cycpmgcl 33129 cycpmconjslem2 33131 cyc3conja 33133 dimkerim 33661 f1resfz0f1d 35179 aks6d1c2 42244 f1cof1b 47202 fundcmpsurinjALT 47537 upgrimtrls 48031 stgrusgra 48084 gpgusgra 48182 cofidf2 49246 |
| Copyright terms: Public domain | W3C validator |