| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1eq123d | Structured version Visualization version GIF version | ||
| Description: Equality deduction for one-to-one functions. (Contributed by Mario Carneiro, 27-Jan-2017.) |
| Ref | Expression |
|---|---|
| f1eq123d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
| f1eq123d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| f1eq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| f1eq123d | ⊢ (𝜑 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐺:𝐵–1-1→𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1eq123d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
| 2 | f1eq1 6769 | . . 3 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐺:𝐴–1-1→𝐶)) | |
| 3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐺:𝐴–1-1→𝐶)) |
| 4 | f1eq123d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 5 | f1eq2 6770 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐺:𝐴–1-1→𝐶 ↔ 𝐺:𝐵–1-1→𝐶)) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝐺:𝐴–1-1→𝐶 ↔ 𝐺:𝐵–1-1→𝐶)) |
| 7 | f1eq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
| 8 | f1eq3 6771 | . . 3 ⊢ (𝐶 = 𝐷 → (𝐺:𝐵–1-1→𝐶 ↔ 𝐺:𝐵–1-1→𝐷)) | |
| 9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (𝐺:𝐵–1-1→𝐶 ↔ 𝐺:𝐵–1-1→𝐷)) |
| 10 | 3, 6, 9 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐺:𝐵–1-1→𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 –1-1→wf1 6528 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 |
| This theorem is referenced by: f10d 6852 fthf1 17932 cofth 17950 rngqiprngimf1 21261 istrkgld 28438 istrkg2ld 28439 isushgr 29040 isuspgr 29131 isusgr 29132 isuspgrop 29140 isusgrop 29141 ausgrusgrb 29144 ausgrusgri 29147 usgrstrrepe 29214 uspgr1e 29223 usgrres1 29294 usgrexi 29420 uspgr2wlkeq 29626 usgr2trlncl 29742 aciunf1 32641 pfxf1 32917 s1f1 32918 tocycfv 33120 tocycf 33128 tocyc01 33129 cycpmco2f1 33135 cycpmco2rn 33136 cycpmco2lem1 33137 cycpmco2lem2 33138 cycpmco2lem3 33139 cycpmco2lem4 33140 cycpmco2lem5 33141 cycpmco2lem6 33142 cycpmco2lem7 33143 cycpmco2 33144 cycpm3cl2 33147 cycpmconjv 33153 tocyccntz 33155 cyc3evpm 33161 cycpmgcl 33164 cycpmconjslem2 33166 cyc3conja 33168 dimkerim 33667 f1resfz0f1d 35136 aks6d1c2 42143 f1cof1b 47106 fundcmpsurinjALT 47426 upgrimtrls 47919 stgrusgra 47971 gpgusgra 48061 |
| Copyright terms: Public domain | W3C validator |