Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1eq123d | Structured version Visualization version GIF version |
Description: Equality deduction for one-to-one functions. (Contributed by Mario Carneiro, 27-Jan-2017.) |
Ref | Expression |
---|---|
f1eq123d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
f1eq123d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
f1eq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
f1eq123d | ⊢ (𝜑 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐺:𝐵–1-1→𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1eq123d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | f1eq1 6649 | . . 3 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐺:𝐴–1-1→𝐶)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐺:𝐴–1-1→𝐶)) |
4 | f1eq123d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
5 | f1eq2 6650 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐺:𝐴–1-1→𝐶 ↔ 𝐺:𝐵–1-1→𝐶)) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝐺:𝐴–1-1→𝐶 ↔ 𝐺:𝐵–1-1→𝐶)) |
7 | f1eq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
8 | f1eq3 6651 | . . 3 ⊢ (𝐶 = 𝐷 → (𝐺:𝐵–1-1→𝐶 ↔ 𝐺:𝐵–1-1→𝐷)) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (𝐺:𝐵–1-1→𝐶 ↔ 𝐺:𝐵–1-1→𝐷)) |
10 | 3, 6, 9 | 3bitrd 304 | 1 ⊢ (𝜑 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐺:𝐵–1-1→𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 –1-1→wf1 6415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 |
This theorem is referenced by: f10d 6733 fthf1 17549 cofth 17567 istrkgld 26724 istrkg2ld 26725 isushgr 27334 isuspgr 27425 isusgr 27426 isuspgrop 27434 isusgrop 27435 ausgrusgrb 27438 ausgrusgri 27441 usgrstrrepe 27505 uspgr1e 27514 usgrexmpl 27533 usgrres1 27585 usgrexi 27711 uspgr2wlkeq 27915 usgr2trlncl 28029 aciunf1 30902 pfxf1 31118 s1f1 31119 tocycfv 31278 tocycf 31286 tocyc01 31287 cycpmco2f1 31293 cycpmco2rn 31294 cycpmco2lem1 31295 cycpmco2lem2 31296 cycpmco2lem3 31297 cycpmco2lem4 31298 cycpmco2lem5 31299 cycpmco2lem6 31300 cycpmco2lem7 31301 cycpmco2 31302 cycpm3cl2 31305 cycpmconjv 31311 tocyccntz 31313 cyc3evpm 31319 cycpmgcl 31322 cycpmconjslem2 31324 cyc3conja 31326 dimkerim 31610 f1resfz0f1d 32972 f1cof1b 44456 fundcmpsurinjALT 44752 |
Copyright terms: Public domain | W3C validator |