![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > f1eq123d | Structured version Visualization version GIF version |
Description: Equality deduction for one-to-one functions. (Contributed by Mario Carneiro, 27-Jan-2017.) |
Ref | Expression |
---|---|
f1eq123d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
f1eq123d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
f1eq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
f1eq123d | ⊢ (𝜑 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐺:𝐵–1-1→𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1eq123d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | f1eq1 6799 | . . 3 ⊢ (𝐹 = 𝐺 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐺:𝐴–1-1→𝐶)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (𝜑 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐺:𝐴–1-1→𝐶)) |
4 | f1eq123d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
5 | f1eq2 6800 | . . 3 ⊢ (𝐴 = 𝐵 → (𝐺:𝐴–1-1→𝐶 ↔ 𝐺:𝐵–1-1→𝐶)) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (𝐺:𝐴–1-1→𝐶 ↔ 𝐺:𝐵–1-1→𝐶)) |
7 | f1eq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
8 | f1eq3 6801 | . . 3 ⊢ (𝐶 = 𝐷 → (𝐺:𝐵–1-1→𝐶 ↔ 𝐺:𝐵–1-1→𝐷)) | |
9 | 7, 8 | syl 17 | . 2 ⊢ (𝜑 → (𝐺:𝐵–1-1→𝐶 ↔ 𝐺:𝐵–1-1→𝐷)) |
10 | 3, 6, 9 | 3bitrd 305 | 1 ⊢ (𝜑 → (𝐹:𝐴–1-1→𝐶 ↔ 𝐺:𝐵–1-1→𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1536 –1-1→wf1 6559 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 |
This theorem is referenced by: f10d 6882 fthf1 17970 cofth 17988 rngqiprngimf1 21327 istrkgld 28481 istrkg2ld 28482 isushgr 29092 isuspgr 29183 isusgr 29184 isuspgrop 29192 isusgrop 29193 ausgrusgrb 29196 ausgrusgri 29199 usgrstrrepe 29266 uspgr1e 29275 usgrres1 29346 usgrexi 29472 uspgr2wlkeq 29678 usgr2trlncl 29792 aciunf1 32679 pfxf1 32910 s1f1 32911 tocycfv 33111 tocycf 33119 tocyc01 33120 cycpmco2f1 33126 cycpmco2rn 33127 cycpmco2lem1 33128 cycpmco2lem2 33129 cycpmco2lem3 33130 cycpmco2lem4 33131 cycpmco2lem5 33132 cycpmco2lem6 33133 cycpmco2lem7 33134 cycpmco2 33135 cycpm3cl2 33138 cycpmconjv 33144 tocyccntz 33146 cyc3evpm 33152 cycpmgcl 33155 cycpmconjslem2 33157 cyc3conja 33159 dimkerim 33654 f1resfz0f1d 35097 aks6d1c2 42111 f1cof1b 47026 fundcmpsurinjALT 47336 stgrusgra 47861 gpgusgra 47946 |
Copyright terms: Public domain | W3C validator |