MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1eq123d Structured version   Visualization version   GIF version

Theorem f1eq123d 6777
Description: Equality deduction for one-to-one functions. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
f1eq123d.1 (𝜑𝐹 = 𝐺)
f1eq123d.2 (𝜑𝐴 = 𝐵)
f1eq123d.3 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
f1eq123d (𝜑 → (𝐹:𝐴1-1𝐶𝐺:𝐵1-1𝐷))

Proof of Theorem f1eq123d
StepHypRef Expression
1 f1eq123d.1 . . 3 (𝜑𝐹 = 𝐺)
2 f1eq1 6734 . . 3 (𝐹 = 𝐺 → (𝐹:𝐴1-1𝐶𝐺:𝐴1-1𝐶))
31, 2syl 17 . 2 (𝜑 → (𝐹:𝐴1-1𝐶𝐺:𝐴1-1𝐶))
4 f1eq123d.2 . . 3 (𝜑𝐴 = 𝐵)
5 f1eq2 6735 . . 3 (𝐴 = 𝐵 → (𝐺:𝐴1-1𝐶𝐺:𝐵1-1𝐶))
64, 5syl 17 . 2 (𝜑 → (𝐺:𝐴1-1𝐶𝐺:𝐵1-1𝐶))
7 f1eq123d.3 . . 3 (𝜑𝐶 = 𝐷)
8 f1eq3 6736 . . 3 (𝐶 = 𝐷 → (𝐺:𝐵1-1𝐶𝐺:𝐵1-1𝐷))
97, 8syl 17 . 2 (𝜑 → (𝐺:𝐵1-1𝐶𝐺:𝐵1-1𝐷))
103, 6, 93bitrd 305 1 (𝜑 → (𝐹:𝐴1-1𝐶𝐺:𝐵1-1𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  1-1wf1 6494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2708
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-rab 3409  df-v 3448  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-br 5107  df-opab 5169  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502
This theorem is referenced by:  f10d  6819  fthf1  17805  cofth  17823  istrkgld  27404  istrkg2ld  27405  isushgr  28015  isuspgr  28106  isusgr  28107  isuspgrop  28115  isusgrop  28116  ausgrusgrb  28119  ausgrusgri  28122  usgrstrrepe  28186  uspgr1e  28195  usgrexmpl  28214  usgrres1  28266  usgrexi  28392  uspgr2wlkeq  28597  usgr2trlncl  28711  aciunf1  31582  pfxf1  31801  s1f1  31802  tocycfv  31961  tocycf  31969  tocyc01  31970  cycpmco2f1  31976  cycpmco2rn  31977  cycpmco2lem1  31978  cycpmco2lem2  31979  cycpmco2lem3  31980  cycpmco2lem4  31981  cycpmco2lem5  31982  cycpmco2lem6  31983  cycpmco2lem7  31984  cycpmco2  31985  cycpm3cl2  31988  cycpmconjv  31994  tocyccntz  31996  cyc3evpm  32002  cycpmgcl  32005  cycpmconjslem2  32007  cyc3conja  32009  dimkerim  32325  f1resfz0f1d  33707  f1cof1b  45316  fundcmpsurinjALT  45611
  Copyright terms: Public domain W3C validator