| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tocycval | Structured version Visualization version GIF version | ||
| Description: Value of the cycle builder. (Contributed by Thierry Arnoux, 22-Sep-2023.) |
| Ref | Expression |
|---|---|
| tocycval.1 | ⊢ 𝐶 = (toCyc‘𝐷) |
| Ref | Expression |
|---|---|
| tocycval | ⊢ (𝐷 ∈ 𝑉 → 𝐶 = (𝑤 ∈ {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tocycval.1 | . 2 ⊢ 𝐶 = (toCyc‘𝐷) | |
| 2 | df-tocyc 33074 | . . 3 ⊢ toCyc = (𝑑 ∈ V ↦ (𝑤 ∈ {𝑢 ∈ Word 𝑑 ∣ 𝑢:dom 𝑢–1-1→𝑑} ↦ (( I ↾ (𝑑 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤)))) | |
| 3 | wrdeq 14443 | . . . . 5 ⊢ (𝑑 = 𝐷 → Word 𝑑 = Word 𝐷) | |
| 4 | f1eq3 6716 | . . . . 5 ⊢ (𝑑 = 𝐷 → (𝑢:dom 𝑢–1-1→𝑑 ↔ 𝑢:dom 𝑢–1-1→𝐷)) | |
| 5 | 3, 4 | rabeqbidv 3413 | . . . 4 ⊢ (𝑑 = 𝐷 → {𝑢 ∈ Word 𝑑 ∣ 𝑢:dom 𝑢–1-1→𝑑} = {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷}) |
| 6 | difeq1 4069 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (𝑑 ∖ ran 𝑤) = (𝐷 ∖ ran 𝑤)) | |
| 7 | 6 | reseq2d 5928 | . . . . 5 ⊢ (𝑑 = 𝐷 → ( I ↾ (𝑑 ∖ ran 𝑤)) = ( I ↾ (𝐷 ∖ ran 𝑤))) |
| 8 | 7 | uneq1d 4117 | . . . 4 ⊢ (𝑑 = 𝐷 → (( I ↾ (𝑑 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤)) = (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤))) |
| 9 | 5, 8 | mpteq12dv 5178 | . . 3 ⊢ (𝑑 = 𝐷 → (𝑤 ∈ {𝑢 ∈ Word 𝑑 ∣ 𝑢:dom 𝑢–1-1→𝑑} ↦ (( I ↾ (𝑑 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤))) = (𝑤 ∈ {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤)))) |
| 10 | elex 3457 | . . 3 ⊢ (𝐷 ∈ 𝑉 → 𝐷 ∈ V) | |
| 11 | eqid 2731 | . . . . 5 ⊢ {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} = {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} | |
| 12 | wrdexg 14431 | . . . . 5 ⊢ (𝐷 ∈ 𝑉 → Word 𝐷 ∈ V) | |
| 13 | 11, 12 | rabexd 5278 | . . . 4 ⊢ (𝐷 ∈ 𝑉 → {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} ∈ V) |
| 14 | 13 | mptexd 7158 | . . 3 ⊢ (𝐷 ∈ 𝑉 → (𝑤 ∈ {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤))) ∈ V) |
| 15 | 2, 9, 10, 14 | fvmptd3 6952 | . 2 ⊢ (𝐷 ∈ 𝑉 → (toCyc‘𝐷) = (𝑤 ∈ {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤)))) |
| 16 | 1, 15 | eqtrid 2778 | 1 ⊢ (𝐷 ∈ 𝑉 → 𝐶 = (𝑤 ∈ {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {crab 3395 Vcvv 3436 ∖ cdif 3899 ∪ cun 3900 ↦ cmpt 5172 I cid 5510 ◡ccnv 5615 dom cdm 5616 ran crn 5617 ↾ cres 5618 ∘ ccom 5620 –1-1→wf1 6478 ‘cfv 6481 (class class class)co 7346 1c1 11007 Word cword 14420 cyclShift ccsh 14695 toCycctocyc 33073 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-tocyc 33074 |
| This theorem is referenced by: tocycfv 33076 tocycf 33084 |
| Copyright terms: Public domain | W3C validator |