![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tocycval | Structured version Visualization version GIF version |
Description: Value of the cycle builder. (Contributed by Thierry Arnoux, 22-Sep-2023.) |
Ref | Expression |
---|---|
tocycval.1 | β’ πΆ = (toCycβπ·) |
Ref | Expression |
---|---|
tocycval | β’ (π· β π β πΆ = (π€ β {π’ β Word π· β£ π’:dom π’β1-1βπ·} β¦ (( I βΎ (π· β ran π€)) βͺ ((π€ cyclShift 1) β β‘π€)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tocycval.1 | . 2 β’ πΆ = (toCycβπ·) | |
2 | df-tocyc 32253 | . . 3 β’ toCyc = (π β V β¦ (π€ β {π’ β Word π β£ π’:dom π’β1-1βπ} β¦ (( I βΎ (π β ran π€)) βͺ ((π€ cyclShift 1) β β‘π€)))) | |
3 | wrdeq 14482 | . . . . 5 β’ (π = π· β Word π = Word π·) | |
4 | f1eq3 6781 | . . . . 5 β’ (π = π· β (π’:dom π’β1-1βπ β π’:dom π’β1-1βπ·)) | |
5 | 3, 4 | rabeqbidv 3449 | . . . 4 β’ (π = π· β {π’ β Word π β£ π’:dom π’β1-1βπ} = {π’ β Word π· β£ π’:dom π’β1-1βπ·}) |
6 | difeq1 4114 | . . . . . 6 β’ (π = π· β (π β ran π€) = (π· β ran π€)) | |
7 | 6 | reseq2d 5979 | . . . . 5 β’ (π = π· β ( I βΎ (π β ran π€)) = ( I βΎ (π· β ran π€))) |
8 | 7 | uneq1d 4161 | . . . 4 β’ (π = π· β (( I βΎ (π β ran π€)) βͺ ((π€ cyclShift 1) β β‘π€)) = (( I βΎ (π· β ran π€)) βͺ ((π€ cyclShift 1) β β‘π€))) |
9 | 5, 8 | mpteq12dv 5238 | . . 3 β’ (π = π· β (π€ β {π’ β Word π β£ π’:dom π’β1-1βπ} β¦ (( I βΎ (π β ran π€)) βͺ ((π€ cyclShift 1) β β‘π€))) = (π€ β {π’ β Word π· β£ π’:dom π’β1-1βπ·} β¦ (( I βΎ (π· β ran π€)) βͺ ((π€ cyclShift 1) β β‘π€)))) |
10 | elex 3492 | . . 3 β’ (π· β π β π· β V) | |
11 | eqid 2732 | . . . . 5 β’ {π’ β Word π· β£ π’:dom π’β1-1βπ·} = {π’ β Word π· β£ π’:dom π’β1-1βπ·} | |
12 | wrdexg 14470 | . . . . 5 β’ (π· β π β Word π· β V) | |
13 | 11, 12 | rabexd 5332 | . . . 4 β’ (π· β π β {π’ β Word π· β£ π’:dom π’β1-1βπ·} β V) |
14 | 13 | mptexd 7222 | . . 3 β’ (π· β π β (π€ β {π’ β Word π· β£ π’:dom π’β1-1βπ·} β¦ (( I βΎ (π· β ran π€)) βͺ ((π€ cyclShift 1) β β‘π€))) β V) |
15 | 2, 9, 10, 14 | fvmptd3 7018 | . 2 β’ (π· β π β (toCycβπ·) = (π€ β {π’ β Word π· β£ π’:dom π’β1-1βπ·} β¦ (( I βΎ (π· β ran π€)) βͺ ((π€ cyclShift 1) β β‘π€)))) |
16 | 1, 15 | eqtrid 2784 | 1 β’ (π· β π β πΆ = (π€ β {π’ β Word π· β£ π’:dom π’β1-1βπ·} β¦ (( I βΎ (π· β ran π€)) βͺ ((π€ cyclShift 1) β β‘π€)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 {crab 3432 Vcvv 3474 β cdif 3944 βͺ cun 3945 β¦ cmpt 5230 I cid 5572 β‘ccnv 5674 dom cdm 5675 ran crn 5676 βΎ cres 5677 β ccom 5679 β1-1βwf1 6537 βcfv 6540 (class class class)co 7405 1c1 11107 Word cword 14460 cyclShift ccsh 14734 toCycctocyc 32252 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 df-hash 14287 df-word 14461 df-tocyc 32253 |
This theorem is referenced by: tocycfv 32255 tocycf 32263 |
Copyright terms: Public domain | W3C validator |