Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tocycval | Structured version Visualization version GIF version |
Description: Value of the cycle builder. (Contributed by Thierry Arnoux, 22-Sep-2023.) |
Ref | Expression |
---|---|
tocycval.1 | ⊢ 𝐶 = (toCyc‘𝐷) |
Ref | Expression |
---|---|
tocycval | ⊢ (𝐷 ∈ 𝑉 → 𝐶 = (𝑤 ∈ {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tocycval.1 | . 2 ⊢ 𝐶 = (toCyc‘𝐷) | |
2 | df-tocyc 31374 | . . 3 ⊢ toCyc = (𝑑 ∈ V ↦ (𝑤 ∈ {𝑢 ∈ Word 𝑑 ∣ 𝑢:dom 𝑢–1-1→𝑑} ↦ (( I ↾ (𝑑 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤)))) | |
3 | wrdeq 14239 | . . . . 5 ⊢ (𝑑 = 𝐷 → Word 𝑑 = Word 𝐷) | |
4 | f1eq3 6667 | . . . . 5 ⊢ (𝑑 = 𝐷 → (𝑢:dom 𝑢–1-1→𝑑 ↔ 𝑢:dom 𝑢–1-1→𝐷)) | |
5 | 3, 4 | rabeqbidv 3420 | . . . 4 ⊢ (𝑑 = 𝐷 → {𝑢 ∈ Word 𝑑 ∣ 𝑢:dom 𝑢–1-1→𝑑} = {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷}) |
6 | difeq1 4050 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (𝑑 ∖ ran 𝑤) = (𝐷 ∖ ran 𝑤)) | |
7 | 6 | reseq2d 5891 | . . . . 5 ⊢ (𝑑 = 𝐷 → ( I ↾ (𝑑 ∖ ran 𝑤)) = ( I ↾ (𝐷 ∖ ran 𝑤))) |
8 | 7 | uneq1d 4096 | . . . 4 ⊢ (𝑑 = 𝐷 → (( I ↾ (𝑑 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤)) = (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤))) |
9 | 5, 8 | mpteq12dv 5165 | . . 3 ⊢ (𝑑 = 𝐷 → (𝑤 ∈ {𝑢 ∈ Word 𝑑 ∣ 𝑢:dom 𝑢–1-1→𝑑} ↦ (( I ↾ (𝑑 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤))) = (𝑤 ∈ {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤)))) |
10 | elex 3450 | . . 3 ⊢ (𝐷 ∈ 𝑉 → 𝐷 ∈ V) | |
11 | eqid 2738 | . . . . 5 ⊢ {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} = {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} | |
12 | wrdexg 14227 | . . . . 5 ⊢ (𝐷 ∈ 𝑉 → Word 𝐷 ∈ V) | |
13 | 11, 12 | rabexd 5257 | . . . 4 ⊢ (𝐷 ∈ 𝑉 → {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} ∈ V) |
14 | 13 | mptexd 7100 | . . 3 ⊢ (𝐷 ∈ 𝑉 → (𝑤 ∈ {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤))) ∈ V) |
15 | 2, 9, 10, 14 | fvmptd3 6898 | . 2 ⊢ (𝐷 ∈ 𝑉 → (toCyc‘𝐷) = (𝑤 ∈ {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤)))) |
16 | 1, 15 | eqtrid 2790 | 1 ⊢ (𝐷 ∈ 𝑉 → 𝐶 = (𝑤 ∈ {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {crab 3068 Vcvv 3432 ∖ cdif 3884 ∪ cun 3885 ↦ cmpt 5157 I cid 5488 ◡ccnv 5588 dom cdm 5589 ran crn 5590 ↾ cres 5591 ∘ ccom 5593 –1-1→wf1 6430 ‘cfv 6433 (class class class)co 7275 1c1 10872 Word cword 14217 cyclShift ccsh 14501 toCycctocyc 31373 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-hash 14045 df-word 14218 df-tocyc 31374 |
This theorem is referenced by: tocycfv 31376 tocycf 31384 |
Copyright terms: Public domain | W3C validator |