Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tocycval Structured version   Visualization version   GIF version

Theorem tocycval 31375
Description: Value of the cycle builder. (Contributed by Thierry Arnoux, 22-Sep-2023.)
Hypothesis
Ref Expression
tocycval.1 𝐶 = (toCyc‘𝐷)
Assertion
Ref Expression
tocycval (𝐷𝑉𝐶 = (𝑤 ∈ {𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ 𝑤))))
Distinct variable group:   𝑢,𝐷,𝑤
Allowed substitution hints:   𝐶(𝑤,𝑢)   𝑉(𝑤,𝑢)

Proof of Theorem tocycval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 tocycval.1 . 2 𝐶 = (toCyc‘𝐷)
2 df-tocyc 31374 . . 3 toCyc = (𝑑 ∈ V ↦ (𝑤 ∈ {𝑢 ∈ Word 𝑑𝑢:dom 𝑢1-1𝑑} ↦ (( I ↾ (𝑑 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ 𝑤))))
3 wrdeq 14239 . . . . 5 (𝑑 = 𝐷 → Word 𝑑 = Word 𝐷)
4 f1eq3 6667 . . . . 5 (𝑑 = 𝐷 → (𝑢:dom 𝑢1-1𝑑𝑢:dom 𝑢1-1𝐷))
53, 4rabeqbidv 3420 . . . 4 (𝑑 = 𝐷 → {𝑢 ∈ Word 𝑑𝑢:dom 𝑢1-1𝑑} = {𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷})
6 difeq1 4050 . . . . . 6 (𝑑 = 𝐷 → (𝑑 ∖ ran 𝑤) = (𝐷 ∖ ran 𝑤))
76reseq2d 5891 . . . . 5 (𝑑 = 𝐷 → ( I ↾ (𝑑 ∖ ran 𝑤)) = ( I ↾ (𝐷 ∖ ran 𝑤)))
87uneq1d 4096 . . . 4 (𝑑 = 𝐷 → (( I ↾ (𝑑 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ 𝑤)) = (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ 𝑤)))
95, 8mpteq12dv 5165 . . 3 (𝑑 = 𝐷 → (𝑤 ∈ {𝑢 ∈ Word 𝑑𝑢:dom 𝑢1-1𝑑} ↦ (( I ↾ (𝑑 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ 𝑤))) = (𝑤 ∈ {𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ 𝑤))))
10 elex 3450 . . 3 (𝐷𝑉𝐷 ∈ V)
11 eqid 2738 . . . . 5 {𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷} = {𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷}
12 wrdexg 14227 . . . . 5 (𝐷𝑉 → Word 𝐷 ∈ V)
1311, 12rabexd 5257 . . . 4 (𝐷𝑉 → {𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷} ∈ V)
1413mptexd 7100 . . 3 (𝐷𝑉 → (𝑤 ∈ {𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ 𝑤))) ∈ V)
152, 9, 10, 14fvmptd3 6898 . 2 (𝐷𝑉 → (toCyc‘𝐷) = (𝑤 ∈ {𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ 𝑤))))
161, 15eqtrid 2790 1 (𝐷𝑉𝐶 = (𝑤 ∈ {𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ 𝑤))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  {crab 3068  Vcvv 3432  cdif 3884  cun 3885  cmpt 5157   I cid 5488  ccnv 5588  dom cdm 5589  ran crn 5590  cres 5591  ccom 5593  1-1wf1 6430  cfv 6433  (class class class)co 7275  1c1 10872  Word cword 14217   cyclShift ccsh 14501  toCycctocyc 31373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-tocyc 31374
This theorem is referenced by:  tocycfv  31376  tocycf  31384
  Copyright terms: Public domain W3C validator