| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tocycval | Structured version Visualization version GIF version | ||
| Description: Value of the cycle builder. (Contributed by Thierry Arnoux, 22-Sep-2023.) |
| Ref | Expression |
|---|---|
| tocycval.1 | ⊢ 𝐶 = (toCyc‘𝐷) |
| Ref | Expression |
|---|---|
| tocycval | ⊢ (𝐷 ∈ 𝑉 → 𝐶 = (𝑤 ∈ {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tocycval.1 | . 2 ⊢ 𝐶 = (toCyc‘𝐷) | |
| 2 | df-tocyc 33083 | . . 3 ⊢ toCyc = (𝑑 ∈ V ↦ (𝑤 ∈ {𝑢 ∈ Word 𝑑 ∣ 𝑢:dom 𝑢–1-1→𝑑} ↦ (( I ↾ (𝑑 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤)))) | |
| 3 | wrdeq 14445 | . . . . 5 ⊢ (𝑑 = 𝐷 → Word 𝑑 = Word 𝐷) | |
| 4 | f1eq3 6721 | . . . . 5 ⊢ (𝑑 = 𝐷 → (𝑢:dom 𝑢–1-1→𝑑 ↔ 𝑢:dom 𝑢–1-1→𝐷)) | |
| 5 | 3, 4 | rabeqbidv 3414 | . . . 4 ⊢ (𝑑 = 𝐷 → {𝑢 ∈ Word 𝑑 ∣ 𝑢:dom 𝑢–1-1→𝑑} = {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷}) |
| 6 | difeq1 4068 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (𝑑 ∖ ran 𝑤) = (𝐷 ∖ ran 𝑤)) | |
| 7 | 6 | reseq2d 5932 | . . . . 5 ⊢ (𝑑 = 𝐷 → ( I ↾ (𝑑 ∖ ran 𝑤)) = ( I ↾ (𝐷 ∖ ran 𝑤))) |
| 8 | 7 | uneq1d 4116 | . . . 4 ⊢ (𝑑 = 𝐷 → (( I ↾ (𝑑 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤)) = (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤))) |
| 9 | 5, 8 | mpteq12dv 5180 | . . 3 ⊢ (𝑑 = 𝐷 → (𝑤 ∈ {𝑢 ∈ Word 𝑑 ∣ 𝑢:dom 𝑢–1-1→𝑑} ↦ (( I ↾ (𝑑 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤))) = (𝑤 ∈ {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤)))) |
| 10 | elex 3458 | . . 3 ⊢ (𝐷 ∈ 𝑉 → 𝐷 ∈ V) | |
| 11 | eqid 2733 | . . . . 5 ⊢ {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} = {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} | |
| 12 | wrdexg 14433 | . . . . 5 ⊢ (𝐷 ∈ 𝑉 → Word 𝐷 ∈ V) | |
| 13 | 11, 12 | rabexd 5280 | . . . 4 ⊢ (𝐷 ∈ 𝑉 → {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} ∈ V) |
| 14 | 13 | mptexd 7164 | . . 3 ⊢ (𝐷 ∈ 𝑉 → (𝑤 ∈ {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤))) ∈ V) |
| 15 | 2, 9, 10, 14 | fvmptd3 6958 | . 2 ⊢ (𝐷 ∈ 𝑉 → (toCyc‘𝐷) = (𝑤 ∈ {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤)))) |
| 16 | 1, 15 | eqtrid 2780 | 1 ⊢ (𝐷 ∈ 𝑉 → 𝐶 = (𝑤 ∈ {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 {crab 3396 Vcvv 3437 ∖ cdif 3895 ∪ cun 3896 ↦ cmpt 5174 I cid 5513 ◡ccnv 5618 dom cdm 5619 ran crn 5620 ↾ cres 5621 ∘ ccom 5623 –1-1→wf1 6483 ‘cfv 6486 (class class class)co 7352 1c1 11014 Word cword 14422 cyclShift ccsh 14697 toCycctocyc 33082 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-fzo 13557 df-hash 14240 df-word 14423 df-tocyc 33083 |
| This theorem is referenced by: tocycfv 33085 tocycf 33093 |
| Copyright terms: Public domain | W3C validator |