Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tocycval | Structured version Visualization version GIF version |
Description: Value of the cycle builder. (Contributed by Thierry Arnoux, 22-Sep-2023.) |
Ref | Expression |
---|---|
tocycval.1 | ⊢ 𝐶 = (toCyc‘𝐷) |
Ref | Expression |
---|---|
tocycval | ⊢ (𝐷 ∈ 𝑉 → 𝐶 = (𝑤 ∈ {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tocycval.1 | . 2 ⊢ 𝐶 = (toCyc‘𝐷) | |
2 | df-tocyc 31093 | . . 3 ⊢ toCyc = (𝑑 ∈ V ↦ (𝑤 ∈ {𝑢 ∈ Word 𝑑 ∣ 𝑢:dom 𝑢–1-1→𝑑} ↦ (( I ↾ (𝑑 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤)))) | |
3 | wrdeq 14091 | . . . . 5 ⊢ (𝑑 = 𝐷 → Word 𝑑 = Word 𝐷) | |
4 | f1eq3 6612 | . . . . 5 ⊢ (𝑑 = 𝐷 → (𝑢:dom 𝑢–1-1→𝑑 ↔ 𝑢:dom 𝑢–1-1→𝐷)) | |
5 | 3, 4 | rabeqbidv 3396 | . . . 4 ⊢ (𝑑 = 𝐷 → {𝑢 ∈ Word 𝑑 ∣ 𝑢:dom 𝑢–1-1→𝑑} = {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷}) |
6 | difeq1 4030 | . . . . . 6 ⊢ (𝑑 = 𝐷 → (𝑑 ∖ ran 𝑤) = (𝐷 ∖ ran 𝑤)) | |
7 | 6 | reseq2d 5851 | . . . . 5 ⊢ (𝑑 = 𝐷 → ( I ↾ (𝑑 ∖ ran 𝑤)) = ( I ↾ (𝐷 ∖ ran 𝑤))) |
8 | 7 | uneq1d 4076 | . . . 4 ⊢ (𝑑 = 𝐷 → (( I ↾ (𝑑 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤)) = (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤))) |
9 | 5, 8 | mpteq12dv 5140 | . . 3 ⊢ (𝑑 = 𝐷 → (𝑤 ∈ {𝑢 ∈ Word 𝑑 ∣ 𝑢:dom 𝑢–1-1→𝑑} ↦ (( I ↾ (𝑑 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤))) = (𝑤 ∈ {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤)))) |
10 | elex 3426 | . . 3 ⊢ (𝐷 ∈ 𝑉 → 𝐷 ∈ V) | |
11 | eqid 2737 | . . . . 5 ⊢ {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} = {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} | |
12 | wrdexg 14079 | . . . . 5 ⊢ (𝐷 ∈ 𝑉 → Word 𝐷 ∈ V) | |
13 | 11, 12 | rabexd 5226 | . . . 4 ⊢ (𝐷 ∈ 𝑉 → {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} ∈ V) |
14 | 13 | mptexd 7040 | . . 3 ⊢ (𝐷 ∈ 𝑉 → (𝑤 ∈ {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤))) ∈ V) |
15 | 2, 9, 10, 14 | fvmptd3 6841 | . 2 ⊢ (𝐷 ∈ 𝑉 → (toCyc‘𝐷) = (𝑤 ∈ {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤)))) |
16 | 1, 15 | syl5eq 2790 | 1 ⊢ (𝐷 ∈ 𝑉 → 𝐶 = (𝑤 ∈ {𝑢 ∈ Word 𝐷 ∣ 𝑢:dom 𝑢–1-1→𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ ◡𝑤)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 {crab 3065 Vcvv 3408 ∖ cdif 3863 ∪ cun 3864 ↦ cmpt 5135 I cid 5454 ◡ccnv 5550 dom cdm 5551 ran crn 5552 ↾ cres 5553 ∘ ccom 5555 –1-1→wf1 6377 ‘cfv 6380 (class class class)co 7213 1c1 10730 Word cword 14069 cyclShift ccsh 14353 toCycctocyc 31092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-er 8391 df-map 8510 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-n0 12091 df-z 12177 df-uz 12439 df-fz 13096 df-fzo 13239 df-hash 13897 df-word 14070 df-tocyc 31093 |
This theorem is referenced by: tocycfv 31095 tocycf 31103 |
Copyright terms: Public domain | W3C validator |