Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tocycval Structured version   Visualization version   GIF version

Theorem tocycval 30819
 Description: Value of the cycle builder. (Contributed by Thierry Arnoux, 22-Sep-2023.)
Hypothesis
Ref Expression
tocycval.1 𝐶 = (toCyc‘𝐷)
Assertion
Ref Expression
tocycval (𝐷𝑉𝐶 = (𝑤 ∈ {𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ 𝑤))))
Distinct variable group:   𝑢,𝐷,𝑤
Allowed substitution hints:   𝐶(𝑤,𝑢)   𝑉(𝑤,𝑢)

Proof of Theorem tocycval
Dummy variable 𝑑 is distinct from all other variables.
StepHypRef Expression
1 tocycval.1 . 2 𝐶 = (toCyc‘𝐷)
2 df-tocyc 30818 . . 3 toCyc = (𝑑 ∈ V ↦ (𝑤 ∈ {𝑢 ∈ Word 𝑑𝑢:dom 𝑢1-1𝑑} ↦ (( I ↾ (𝑑 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ 𝑤))))
3 wrdeq 13886 . . . . 5 (𝑑 = 𝐷 → Word 𝑑 = Word 𝐷)
4 f1eq3 6549 . . . . 5 (𝑑 = 𝐷 → (𝑢:dom 𝑢1-1𝑑𝑢:dom 𝑢1-1𝐷))
53, 4rabeqbidv 3433 . . . 4 (𝑑 = 𝐷 → {𝑢 ∈ Word 𝑑𝑢:dom 𝑢1-1𝑑} = {𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷})
6 difeq1 4043 . . . . . 6 (𝑑 = 𝐷 → (𝑑 ∖ ran 𝑤) = (𝐷 ∖ ran 𝑤))
76reseq2d 5819 . . . . 5 (𝑑 = 𝐷 → ( I ↾ (𝑑 ∖ ran 𝑤)) = ( I ↾ (𝐷 ∖ ran 𝑤)))
87uneq1d 4089 . . . 4 (𝑑 = 𝐷 → (( I ↾ (𝑑 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ 𝑤)) = (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ 𝑤)))
95, 8mpteq12dv 5116 . . 3 (𝑑 = 𝐷 → (𝑤 ∈ {𝑢 ∈ Word 𝑑𝑢:dom 𝑢1-1𝑑} ↦ (( I ↾ (𝑑 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ 𝑤))) = (𝑤 ∈ {𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ 𝑤))))
10 elex 3459 . . 3 (𝐷𝑉𝐷 ∈ V)
11 eqid 2798 . . . . 5 {𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷} = {𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷}
12 wrdexg 13874 . . . . 5 (𝐷𝑉 → Word 𝐷 ∈ V)
1311, 12rabexd 5201 . . . 4 (𝐷𝑉 → {𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷} ∈ V)
1413mptexd 6969 . . 3 (𝐷𝑉 → (𝑤 ∈ {𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ 𝑤))) ∈ V)
152, 9, 10, 14fvmptd3 6773 . 2 (𝐷𝑉 → (toCyc‘𝐷) = (𝑤 ∈ {𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ 𝑤))))
161, 15syl5eq 2845 1 (𝐷𝑉𝐶 = (𝑤 ∈ {𝑢 ∈ Word 𝐷𝑢:dom 𝑢1-1𝐷} ↦ (( I ↾ (𝐷 ∖ ran 𝑤)) ∪ ((𝑤 cyclShift 1) ∘ 𝑤))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1538   ∈ wcel 2111  {crab 3110  Vcvv 3441   ∖ cdif 3878   ∪ cun 3879   ↦ cmpt 5111   I cid 5425  ◡ccnv 5519  dom cdm 5520  ran crn 5521   ↾ cres 5522   ∘ ccom 5524  –1-1→wf1 6324  ‘cfv 6327  (class class class)co 7140  1c1 10534  Word cword 13864   cyclShift ccsh 14148  toCycctocyc 30817 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5155  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7448  ax-cnex 10589  ax-resscn 10590  ax-1cn 10591  ax-icn 10592  ax-addcl 10593  ax-addrcl 10594  ax-mulcl 10595  ax-mulrcl 10596  ax-mulcom 10597  ax-addass 10598  ax-mulass 10599  ax-distr 10600  ax-i2m1 10601  ax-1ne0 10602  ax-1rid 10603  ax-rnegex 10604  ax-rrecex 10605  ax-cnre 10606  ax-pre-lttri 10607  ax-pre-lttrn 10608  ax-pre-ltadd 10609  ax-pre-mulgt0 10610 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-int 4840  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6119  df-ord 6165  df-on 6166  df-lim 6167  df-suc 6168  df-iota 6286  df-fun 6329  df-fn 6330  df-f 6331  df-f1 6332  df-fo 6333  df-f1o 6334  df-fv 6335  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7568  df-1st 7678  df-2nd 7679  df-wrecs 7937  df-recs 7998  df-rdg 8036  df-1o 8092  df-er 8279  df-map 8398  df-en 8500  df-dom 8501  df-sdom 8502  df-fin 8503  df-card 9359  df-pnf 10673  df-mnf 10674  df-xr 10675  df-ltxr 10676  df-le 10677  df-sub 10868  df-neg 10869  df-nn 11633  df-n0 11893  df-z 11977  df-uz 12239  df-fz 12893  df-fzo 13036  df-hash 13694  df-word 13865  df-tocyc 30818 This theorem is referenced by:  tocycfv  30820  tocycf  30828
 Copyright terms: Public domain W3C validator