MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrexilem Structured version   Visualization version   GIF version

Theorem usgrexilem 29367
Description: Lemma for usgrexi 29368. (Contributed by AV, 12-Jan-2018.) (Revised by AV, 10-Nov-2021.)
Hypothesis
Ref Expression
usgrexi.p 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
Assertion
Ref Expression
usgrexilem (𝑉𝑊 → ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
Distinct variable group:   𝑥,𝑉
Allowed substitution hints:   𝑃(𝑥)   𝑊(𝑥)

Proof of Theorem usgrexilem
StepHypRef Expression
1 f1oi 6838 . . . 4 ( I ↾ 𝑃):𝑃1-1-onto𝑃
2 f1of1 6799 . . . 4 (( I ↾ 𝑃):𝑃1-1-onto𝑃 → ( I ↾ 𝑃):𝑃1-1𝑃)
31, 2ax-mp 5 . . 3 ( I ↾ 𝑃):𝑃1-1𝑃
4 dmresi 6023 . . . 4 dom ( I ↾ 𝑃) = 𝑃
5 f1eq2 6752 . . . 4 (dom ( I ↾ 𝑃) = 𝑃 → (( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1𝑃 ↔ ( I ↾ 𝑃):𝑃1-1𝑃))
64, 5ax-mp 5 . . 3 (( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1𝑃 ↔ ( I ↾ 𝑃):𝑃1-1𝑃)
73, 6mpbir 231 . 2 ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1𝑃
8 usgrexi.p . . . 4 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
98eqcomi 2738 . . 3 {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = 𝑃
10 f1eq3 6753 . . 3 ({𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = 𝑃 → (( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1𝑃))
119, 10mp1i 13 . 2 (𝑉𝑊 → (( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1𝑃))
127, 11mpbiri 258 1 (𝑉𝑊 → ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {crab 3405  𝒫 cpw 4563   I cid 5532  dom cdm 5638  cres 5640  1-1wf1 6508  1-1-ontowf1o 6510  cfv 6511  2c2 12241  chash 14295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518
This theorem is referenced by:  usgrexi  29368  structtousgr  29372
  Copyright terms: Public domain W3C validator