| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgrexilem | Structured version Visualization version GIF version | ||
| Description: Lemma for usgrexi 29458. (Contributed by AV, 12-Jan-2018.) (Revised by AV, 10-Nov-2021.) |
| Ref | Expression |
|---|---|
| usgrexi.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} |
| Ref | Expression |
|---|---|
| usgrexilem | ⊢ (𝑉 ∈ 𝑊 → ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi 6886 | . . . 4 ⊢ ( I ↾ 𝑃):𝑃–1-1-onto→𝑃 | |
| 2 | f1of1 6847 | . . . 4 ⊢ (( I ↾ 𝑃):𝑃–1-1-onto→𝑃 → ( I ↾ 𝑃):𝑃–1-1→𝑃) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ( I ↾ 𝑃):𝑃–1-1→𝑃 |
| 4 | dmresi 6070 | . . . 4 ⊢ dom ( I ↾ 𝑃) = 𝑃 | |
| 5 | f1eq2 6800 | . . . 4 ⊢ (dom ( I ↾ 𝑃) = 𝑃 → (( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→𝑃 ↔ ( I ↾ 𝑃):𝑃–1-1→𝑃)) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ (( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→𝑃 ↔ ( I ↾ 𝑃):𝑃–1-1→𝑃) |
| 7 | 3, 6 | mpbir 231 | . 2 ⊢ ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→𝑃 |
| 8 | usgrexi.p | . . . 4 ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} | |
| 9 | 8 | eqcomi 2746 | . . 3 ⊢ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = 𝑃 |
| 10 | f1eq3 6801 | . . 3 ⊢ ({𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = 𝑃 → (( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→𝑃)) | |
| 11 | 9, 10 | mp1i 13 | . 2 ⊢ (𝑉 ∈ 𝑊 → (( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→𝑃)) |
| 12 | 7, 11 | mpbiri 258 | 1 ⊢ (𝑉 ∈ 𝑊 → ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 {crab 3436 𝒫 cpw 4600 I cid 5577 dom cdm 5685 ↾ cres 5687 –1-1→wf1 6558 –1-1-onto→wf1o 6560 ‘cfv 6561 2c2 12321 ♯chash 14369 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 |
| This theorem is referenced by: usgrexi 29458 structtousgr 29462 |
| Copyright terms: Public domain | W3C validator |