| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgrexilem | Structured version Visualization version GIF version | ||
| Description: Lemma for usgrexi 29368. (Contributed by AV, 12-Jan-2018.) (Revised by AV, 10-Nov-2021.) |
| Ref | Expression |
|---|---|
| usgrexi.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} |
| Ref | Expression |
|---|---|
| usgrexilem | ⊢ (𝑉 ∈ 𝑊 → ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi 6838 | . . . 4 ⊢ ( I ↾ 𝑃):𝑃–1-1-onto→𝑃 | |
| 2 | f1of1 6799 | . . . 4 ⊢ (( I ↾ 𝑃):𝑃–1-1-onto→𝑃 → ( I ↾ 𝑃):𝑃–1-1→𝑃) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ( I ↾ 𝑃):𝑃–1-1→𝑃 |
| 4 | dmresi 6023 | . . . 4 ⊢ dom ( I ↾ 𝑃) = 𝑃 | |
| 5 | f1eq2 6752 | . . . 4 ⊢ (dom ( I ↾ 𝑃) = 𝑃 → (( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→𝑃 ↔ ( I ↾ 𝑃):𝑃–1-1→𝑃)) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ (( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→𝑃 ↔ ( I ↾ 𝑃):𝑃–1-1→𝑃) |
| 7 | 3, 6 | mpbir 231 | . 2 ⊢ ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→𝑃 |
| 8 | usgrexi.p | . . . 4 ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} | |
| 9 | 8 | eqcomi 2738 | . . 3 ⊢ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = 𝑃 |
| 10 | f1eq3 6753 | . . 3 ⊢ ({𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = 𝑃 → (( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→𝑃)) | |
| 11 | 9, 10 | mp1i 13 | . 2 ⊢ (𝑉 ∈ 𝑊 → (( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→𝑃)) |
| 12 | 7, 11 | mpbiri 258 | 1 ⊢ (𝑉 ∈ 𝑊 → ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {crab 3405 𝒫 cpw 4563 I cid 5532 dom cdm 5638 ↾ cres 5640 –1-1→wf1 6508 –1-1-onto→wf1o 6510 ‘cfv 6511 2c2 12241 ♯chash 14295 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 |
| This theorem is referenced by: usgrexi 29368 structtousgr 29372 |
| Copyright terms: Public domain | W3C validator |