| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > usgrexilem | Structured version Visualization version GIF version | ||
| Description: Lemma for usgrexi 29412. (Contributed by AV, 12-Jan-2018.) (Revised by AV, 10-Nov-2021.) |
| Ref | Expression |
|---|---|
| usgrexi.p | ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} |
| Ref | Expression |
|---|---|
| usgrexilem | ⊢ (𝑉 ∈ 𝑊 → ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1oi 6797 | . . . 4 ⊢ ( I ↾ 𝑃):𝑃–1-1-onto→𝑃 | |
| 2 | f1of1 6758 | . . . 4 ⊢ (( I ↾ 𝑃):𝑃–1-1-onto→𝑃 → ( I ↾ 𝑃):𝑃–1-1→𝑃) | |
| 3 | 1, 2 | ax-mp 5 | . . 3 ⊢ ( I ↾ 𝑃):𝑃–1-1→𝑃 |
| 4 | dmresi 5998 | . . . 4 ⊢ dom ( I ↾ 𝑃) = 𝑃 | |
| 5 | f1eq2 6711 | . . . 4 ⊢ (dom ( I ↾ 𝑃) = 𝑃 → (( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→𝑃 ↔ ( I ↾ 𝑃):𝑃–1-1→𝑃)) | |
| 6 | 4, 5 | ax-mp 5 | . . 3 ⊢ (( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→𝑃 ↔ ( I ↾ 𝑃):𝑃–1-1→𝑃) |
| 7 | 3, 6 | mpbir 231 | . 2 ⊢ ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→𝑃 |
| 8 | usgrexi.p | . . . 4 ⊢ 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} | |
| 9 | 8 | eqcomi 2739 | . . 3 ⊢ {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = 𝑃 |
| 10 | f1eq3 6712 | . . 3 ⊢ ({𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = 𝑃 → (( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→𝑃)) | |
| 11 | 9, 10 | mp1i 13 | . 2 ⊢ (𝑉 ∈ 𝑊 → (( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→𝑃)) |
| 12 | 7, 11 | mpbiri 258 | 1 ⊢ (𝑉 ∈ 𝑊 → ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2110 {crab 3393 𝒫 cpw 4548 I cid 5508 dom cdm 5614 ↾ cres 5616 –1-1→wf1 6474 –1-1-onto→wf1o 6476 ‘cfv 6477 2c2 12172 ♯chash 14229 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 |
| This theorem is referenced by: usgrexi 29412 structtousgr 29416 |
| Copyright terms: Public domain | W3C validator |