MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrexilem Structured version   Visualization version   GIF version

Theorem usgrexilem 29429
Description: Lemma for usgrexi 29430. (Contributed by AV, 12-Jan-2018.) (Revised by AV, 10-Nov-2021.)
Hypothesis
Ref Expression
usgrexi.p 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
Assertion
Ref Expression
usgrexilem (𝑉𝑊 → ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
Distinct variable group:   𝑥,𝑉
Allowed substitution hints:   𝑃(𝑥)   𝑊(𝑥)

Proof of Theorem usgrexilem
StepHypRef Expression
1 f1oi 6809 . . . 4 ( I ↾ 𝑃):𝑃1-1-onto𝑃
2 f1of1 6770 . . . 4 (( I ↾ 𝑃):𝑃1-1-onto𝑃 → ( I ↾ 𝑃):𝑃1-1𝑃)
31, 2ax-mp 5 . . 3 ( I ↾ 𝑃):𝑃1-1𝑃
4 dmresi 6008 . . . 4 dom ( I ↾ 𝑃) = 𝑃
5 f1eq2 6723 . . . 4 (dom ( I ↾ 𝑃) = 𝑃 → (( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1𝑃 ↔ ( I ↾ 𝑃):𝑃1-1𝑃))
64, 5ax-mp 5 . . 3 (( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1𝑃 ↔ ( I ↾ 𝑃):𝑃1-1𝑃)
73, 6mpbir 231 . 2 ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1𝑃
8 usgrexi.p . . . 4 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
98eqcomi 2742 . . 3 {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = 𝑃
10 f1eq3 6724 . . 3 ({𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = 𝑃 → (( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1𝑃))
119, 10mp1i 13 . 2 (𝑉𝑊 → (( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1𝑃))
127, 11mpbiri 258 1 (𝑉𝑊 → ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wcel 2113  {crab 3397  𝒫 cpw 4551   I cid 5515  dom cdm 5621  cres 5623  1-1wf1 6486  1-1-ontowf1o 6488  cfv 6489  2c2 12190  chash 14247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496
This theorem is referenced by:  usgrexi  29430  structtousgr  29434
  Copyright terms: Public domain W3C validator