MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrexilem Structured version   Visualization version   GIF version

Theorem usgrexilem 29420
Description: Lemma for usgrexi 29421. (Contributed by AV, 12-Jan-2018.) (Revised by AV, 10-Nov-2021.)
Hypothesis
Ref Expression
usgrexi.p 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
Assertion
Ref Expression
usgrexilem (𝑉𝑊 → ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
Distinct variable group:   𝑥,𝑉
Allowed substitution hints:   𝑃(𝑥)   𝑊(𝑥)

Proof of Theorem usgrexilem
StepHypRef Expression
1 f1oi 6820 . . . 4 ( I ↾ 𝑃):𝑃1-1-onto𝑃
2 f1of1 6781 . . . 4 (( I ↾ 𝑃):𝑃1-1-onto𝑃 → ( I ↾ 𝑃):𝑃1-1𝑃)
31, 2ax-mp 5 . . 3 ( I ↾ 𝑃):𝑃1-1𝑃
4 dmresi 6012 . . . 4 dom ( I ↾ 𝑃) = 𝑃
5 f1eq2 6734 . . . 4 (dom ( I ↾ 𝑃) = 𝑃 → (( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1𝑃 ↔ ( I ↾ 𝑃):𝑃1-1𝑃))
64, 5ax-mp 5 . . 3 (( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1𝑃 ↔ ( I ↾ 𝑃):𝑃1-1𝑃)
73, 6mpbir 231 . 2 ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1𝑃
8 usgrexi.p . . . 4 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
98eqcomi 2738 . . 3 {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = 𝑃
10 f1eq3 6735 . . 3 ({𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = 𝑃 → (( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1𝑃))
119, 10mp1i 13 . 2 (𝑉𝑊 → (( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1𝑃))
127, 11mpbiri 258 1 (𝑉𝑊 → ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {crab 3402  𝒫 cpw 4559   I cid 5525  dom cdm 5631  cres 5633  1-1wf1 6496  1-1-ontowf1o 6498  cfv 6499  2c2 12217  chash 14271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506
This theorem is referenced by:  usgrexi  29421  structtousgr  29425
  Copyright terms: Public domain W3C validator