MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrexilem Structured version   Visualization version   GIF version

Theorem usgrexilem 29166
Description: Lemma for usgrexi 29167. (Contributed by AV, 12-Jan-2018.) (Revised by AV, 10-Nov-2021.)
Hypothesis
Ref Expression
usgrexi.p 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
Assertion
Ref Expression
usgrexilem (𝑉𝑊 → ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
Distinct variable group:   𝑥,𝑉
Allowed substitution hints:   𝑃(𝑥)   𝑊(𝑥)

Proof of Theorem usgrexilem
StepHypRef Expression
1 f1oi 6861 . . . 4 ( I ↾ 𝑃):𝑃1-1-onto𝑃
2 f1of1 6822 . . . 4 (( I ↾ 𝑃):𝑃1-1-onto𝑃 → ( I ↾ 𝑃):𝑃1-1𝑃)
31, 2ax-mp 5 . . 3 ( I ↾ 𝑃):𝑃1-1𝑃
4 dmresi 6041 . . . 4 dom ( I ↾ 𝑃) = 𝑃
5 f1eq2 6773 . . . 4 (dom ( I ↾ 𝑃) = 𝑃 → (( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1𝑃 ↔ ( I ↾ 𝑃):𝑃1-1𝑃))
64, 5ax-mp 5 . . 3 (( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1𝑃 ↔ ( I ↾ 𝑃):𝑃1-1𝑃)
73, 6mpbir 230 . 2 ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1𝑃
8 usgrexi.p . . . 4 𝑃 = {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2}
98eqcomi 2733 . . 3 {𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = 𝑃
10 f1eq3 6774 . . 3 ({𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} = 𝑃 → (( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1𝑃))
119, 10mp1i 13 . 2 (𝑉𝑊 → (( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2} ↔ ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1𝑃))
127, 11mpbiri 258 1 (𝑉𝑊 → ( I ↾ 𝑃):dom ( I ↾ 𝑃)–1-1→{𝑥 ∈ 𝒫 𝑉 ∣ (♯‘𝑥) = 2})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  {crab 3424  𝒫 cpw 4594   I cid 5563  dom cdm 5666  cres 5668  1-1wf1 6530  1-1-ontowf1o 6532  cfv 6533  2c2 12264  chash 14287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-br 5139  df-opab 5201  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540
This theorem is referenced by:  usgrexi  29167  structtousgr  29171
  Copyright terms: Public domain W3C validator