Step | Hyp | Ref
| Expression |
1 | | 1sdom2 8951 |
. . . . 5
⊢
1o ≺ 2o |
2 | | sdomdom 8723 |
. . . . 5
⊢
(1o ≺ 2o → 1o ≼
2o) |
3 | 1, 2 | ax-mp 5 |
. . . 4
⊢
1o ≼ 2o |
4 | | relsdom 8698 |
. . . . 5
⊢ Rel
≺ |
5 | 4 | brrelex2i 5635 |
. . . 4
⊢
(1o ≺ 𝐴 → 𝐴 ∈ V) |
6 | | djudom2 9870 |
. . . 4
⊢
((1o ≼ 2o ∧ 𝐴 ∈ V) → (𝐴 ⊔ 1o) ≼ (𝐴 ⊔
2o)) |
7 | 3, 5, 6 | sylancr 586 |
. . 3
⊢
(1o ≺ 𝐴 → (𝐴 ⊔ 1o) ≼ (𝐴 ⊔
2o)) |
8 | | canthp1lem1 10339 |
. . 3
⊢
(1o ≺ 𝐴 → (𝐴 ⊔ 2o) ≼ 𝒫
𝐴) |
9 | | domtr 8748 |
. . 3
⊢ (((𝐴 ⊔ 1o) ≼
(𝐴 ⊔ 2o)
∧ (𝐴 ⊔
2o) ≼ 𝒫 𝐴) → (𝐴 ⊔ 1o) ≼ 𝒫
𝐴) |
10 | 7, 8, 9 | syl2anc 583 |
. 2
⊢
(1o ≺ 𝐴 → (𝐴 ⊔ 1o) ≼ 𝒫
𝐴) |
11 | | fal 1553 |
. . 3
⊢ ¬
⊥ |
12 | | ensym 8744 |
. . . . 5
⊢ ((𝐴 ⊔ 1o) ≈
𝒫 𝐴 →
𝒫 𝐴 ≈ (𝐴 ⊔
1o)) |
13 | | bren 8701 |
. . . . 5
⊢
(𝒫 𝐴 ≈
(𝐴 ⊔ 1o)
↔ ∃𝑓 𝑓:𝒫 𝐴–1-1-onto→(𝐴 ⊔ 1o)) |
14 | 12, 13 | sylib 217 |
. . . 4
⊢ ((𝐴 ⊔ 1o) ≈
𝒫 𝐴 →
∃𝑓 𝑓:𝒫 𝐴–1-1-onto→(𝐴 ⊔ 1o)) |
15 | | f1of 6700 |
. . . . . . . . . 10
⊢ (𝑓:𝒫 𝐴–1-1-onto→(𝐴 ⊔ 1o) → 𝑓:𝒫 𝐴⟶(𝐴 ⊔ 1o)) |
16 | | pwidg 4552 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴) |
17 | 5, 16 | syl 17 |
. . . . . . . . . 10
⊢
(1o ≺ 𝐴 → 𝐴 ∈ 𝒫 𝐴) |
18 | | ffvelrn 6941 |
. . . . . . . . . 10
⊢ ((𝑓:𝒫 𝐴⟶(𝐴 ⊔ 1o) ∧ 𝐴 ∈ 𝒫 𝐴) → (𝑓‘𝐴) ∈ (𝐴 ⊔ 1o)) |
19 | 15, 17, 18 | syl2anr 596 |
. . . . . . . . 9
⊢
((1o ≺ 𝐴 ∧ 𝑓:𝒫 𝐴–1-1-onto→(𝐴 ⊔ 1o)) → (𝑓‘𝐴) ∈ (𝐴 ⊔ 1o)) |
20 | | dju1dif 9859 |
. . . . . . . . 9
⊢ ((𝐴 ∈ V ∧ (𝑓‘𝐴) ∈ (𝐴 ⊔ 1o)) → ((𝐴 ⊔ 1o) ∖
{(𝑓‘𝐴)}) ≈ 𝐴) |
21 | 5, 19, 20 | syl2an2r 681 |
. . . . . . . 8
⊢
((1o ≺ 𝐴 ∧ 𝑓:𝒫 𝐴–1-1-onto→(𝐴 ⊔ 1o)) → ((𝐴 ⊔ 1o) ∖
{(𝑓‘𝐴)}) ≈ 𝐴) |
22 | | bren 8701 |
. . . . . . . 8
⊢ (((𝐴 ⊔ 1o) ∖
{(𝑓‘𝐴)}) ≈ 𝐴 ↔ ∃𝑔 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓‘𝐴)})–1-1-onto→𝐴) |
23 | 21, 22 | sylib 217 |
. . . . . . 7
⊢
((1o ≺ 𝐴 ∧ 𝑓:𝒫 𝐴–1-1-onto→(𝐴 ⊔ 1o)) →
∃𝑔 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓‘𝐴)})–1-1-onto→𝐴) |
24 | | simpll 763 |
. . . . . . . . 9
⊢
(((1o ≺ 𝐴 ∧ 𝑓:𝒫 𝐴–1-1-onto→(𝐴 ⊔ 1o)) ∧ 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓‘𝐴)})–1-1-onto→𝐴) → 1o ≺
𝐴) |
25 | | simplr 765 |
. . . . . . . . 9
⊢
(((1o ≺ 𝐴 ∧ 𝑓:𝒫 𝐴–1-1-onto→(𝐴 ⊔ 1o)) ∧ 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓‘𝐴)})–1-1-onto→𝐴) → 𝑓:𝒫 𝐴–1-1-onto→(𝐴 ⊔ 1o)) |
26 | | simpr 484 |
. . . . . . . . 9
⊢
(((1o ≺ 𝐴 ∧ 𝑓:𝒫 𝐴–1-1-onto→(𝐴 ⊔ 1o)) ∧ 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓‘𝐴)})–1-1-onto→𝐴) → 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓‘𝐴)})–1-1-onto→𝐴) |
27 | | eqeq1 2742 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑥 → (𝑤 = 𝐴 ↔ 𝑥 = 𝐴)) |
28 | | id 22 |
. . . . . . . . . . . 12
⊢ (𝑤 = 𝑥 → 𝑤 = 𝑥) |
29 | 27, 28 | ifbieq2d 4482 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑥 → if(𝑤 = 𝐴, ∅, 𝑤) = if(𝑥 = 𝐴, ∅, 𝑥)) |
30 | 29 | cbvmptv 5183 |
. . . . . . . . . 10
⊢ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)) = (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)) |
31 | 30 | coeq2i 5758 |
. . . . . . . . 9
⊢ ((𝑔 ∘ 𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤))) = ((𝑔 ∘ 𝑓) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))) |
32 | | eqid 2738 |
. . . . . . . . . 10
⊢
{〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 (((𝑔 ∘ 𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(◡𝑠 “ {𝑧})) = 𝑧))} = {〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 (((𝑔 ∘ 𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(◡𝑠 “ {𝑧})) = 𝑧))} |
33 | 32 | fpwwecbv 10331 |
. . . . . . . . 9
⊢
{〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 (((𝑔 ∘ 𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(◡𝑠 “ {𝑧})) = 𝑧))} = {〈𝑥, 𝑟〉 ∣ ((𝑥 ⊆ 𝐴 ∧ 𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦 ∈ 𝑥 (((𝑔 ∘ 𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(◡𝑟 “ {𝑦})) = 𝑦))} |
34 | | eqid 2738 |
. . . . . . . . 9
⊢ ∪ dom {〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 (((𝑔 ∘ 𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(◡𝑠 “ {𝑧})) = 𝑧))} = ∪ dom
{〈𝑎, 𝑠〉 ∣ ((𝑎 ⊆ 𝐴 ∧ 𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧 ∈ 𝑎 (((𝑔 ∘ 𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(◡𝑠 “ {𝑧})) = 𝑧))} |
35 | 24, 25, 26, 31, 33, 34 | canthp1lem2 10340 |
. . . . . . . 8
⊢ ¬
((1o ≺ 𝐴
∧ 𝑓:𝒫 𝐴–1-1-onto→(𝐴 ⊔ 1o)) ∧ 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓‘𝐴)})–1-1-onto→𝐴) |
36 | 35 | pm2.21i 119 |
. . . . . . 7
⊢
(((1o ≺ 𝐴 ∧ 𝑓:𝒫 𝐴–1-1-onto→(𝐴 ⊔ 1o)) ∧ 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓‘𝐴)})–1-1-onto→𝐴) →
⊥) |
37 | 23, 36 | exlimddv 1939 |
. . . . . 6
⊢
((1o ≺ 𝐴 ∧ 𝑓:𝒫 𝐴–1-1-onto→(𝐴 ⊔ 1o)) →
⊥) |
38 | 37 | ex 412 |
. . . . 5
⊢
(1o ≺ 𝐴 → (𝑓:𝒫 𝐴–1-1-onto→(𝐴 ⊔ 1o) →
⊥)) |
39 | 38 | exlimdv 1937 |
. . . 4
⊢
(1o ≺ 𝐴 → (∃𝑓 𝑓:𝒫 𝐴–1-1-onto→(𝐴 ⊔ 1o) →
⊥)) |
40 | 14, 39 | syl5 34 |
. . 3
⊢
(1o ≺ 𝐴 → ((𝐴 ⊔ 1o) ≈ 𝒫
𝐴 →
⊥)) |
41 | 11, 40 | mtoi 198 |
. 2
⊢
(1o ≺ 𝐴 → ¬ (𝐴 ⊔ 1o) ≈ 𝒫
𝐴) |
42 | | brsdom 8718 |
. 2
⊢ ((𝐴 ⊔ 1o) ≺
𝒫 𝐴 ↔ ((𝐴 ⊔ 1o) ≼
𝒫 𝐴 ∧ ¬
(𝐴 ⊔ 1o)
≈ 𝒫 𝐴)) |
43 | 10, 41, 42 | sylanbrc 582 |
1
⊢
(1o ≺ 𝐴 → (𝐴 ⊔ 1o) ≺ 𝒫
𝐴) |