MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthp1 Structured version   Visualization version   GIF version

Theorem canthp1 10268
Description: A slightly stronger form of Cantor's theorem: For 1 < 𝑛, 𝑛 + 1 < 2↑𝑛. Corollary 1.6 of [KanamoriPincus] p. 417. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
canthp1 (1o𝐴 → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)

Proof of Theorem canthp1
Dummy variables 𝑓 𝑎 𝑔 𝑟 𝑠 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1sdom2 8877 . . . . 5 1o ≺ 2o
2 sdomdom 8656 . . . . 5 (1o ≺ 2o → 1o ≼ 2o)
31, 2ax-mp 5 . . . 4 1o ≼ 2o
4 relsdom 8633 . . . . 5 Rel ≺
54brrelex2i 5606 . . . 4 (1o𝐴𝐴 ∈ V)
6 djudom2 9797 . . . 4 ((1o ≼ 2o𝐴 ∈ V) → (𝐴 ⊔ 1o) ≼ (𝐴 ⊔ 2o))
73, 5, 6sylancr 590 . . 3 (1o𝐴 → (𝐴 ⊔ 1o) ≼ (𝐴 ⊔ 2o))
8 canthp1lem1 10266 . . 3 (1o𝐴 → (𝐴 ⊔ 2o) ≼ 𝒫 𝐴)
9 domtr 8681 . . 3 (((𝐴 ⊔ 1o) ≼ (𝐴 ⊔ 2o) ∧ (𝐴 ⊔ 2o) ≼ 𝒫 𝐴) → (𝐴 ⊔ 1o) ≼ 𝒫 𝐴)
107, 8, 9syl2anc 587 . 2 (1o𝐴 → (𝐴 ⊔ 1o) ≼ 𝒫 𝐴)
11 fal 1557 . . 3 ¬ ⊥
12 ensym 8677 . . . . 5 ((𝐴 ⊔ 1o) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≈ (𝐴 ⊔ 1o))
13 bren 8636 . . . . 5 (𝒫 𝐴 ≈ (𝐴 ⊔ 1o) ↔ ∃𝑓 𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o))
1412, 13sylib 221 . . . 4 ((𝐴 ⊔ 1o) ≈ 𝒫 𝐴 → ∃𝑓 𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o))
15 f1of 6661 . . . . . . . . . 10 (𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o) → 𝑓:𝒫 𝐴⟶(𝐴 ⊔ 1o))
16 pwidg 4535 . . . . . . . . . . 11 (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴)
175, 16syl 17 . . . . . . . . . 10 (1o𝐴𝐴 ∈ 𝒫 𝐴)
18 ffvelrn 6902 . . . . . . . . . 10 ((𝑓:𝒫 𝐴⟶(𝐴 ⊔ 1o) ∧ 𝐴 ∈ 𝒫 𝐴) → (𝑓𝐴) ∈ (𝐴 ⊔ 1o))
1915, 17, 18syl2anr 600 . . . . . . . . 9 ((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) → (𝑓𝐴) ∈ (𝐴 ⊔ 1o))
20 dju1dif 9786 . . . . . . . . 9 ((𝐴 ∈ V ∧ (𝑓𝐴) ∈ (𝐴 ⊔ 1o)) → ((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)}) ≈ 𝐴)
215, 19, 20syl2an2r 685 . . . . . . . 8 ((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) → ((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)}) ≈ 𝐴)
22 bren 8636 . . . . . . . 8 (((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)}) ≈ 𝐴 ↔ ∃𝑔 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴)
2321, 22sylib 221 . . . . . . 7 ((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) → ∃𝑔 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴)
24 simpll 767 . . . . . . . . 9 (((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) ∧ 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴) → 1o𝐴)
25 simplr 769 . . . . . . . . 9 (((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) ∧ 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴) → 𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o))
26 simpr 488 . . . . . . . . 9 (((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) ∧ 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴) → 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴)
27 eqeq1 2741 . . . . . . . . . . . 12 (𝑤 = 𝑥 → (𝑤 = 𝐴𝑥 = 𝐴))
28 id 22 . . . . . . . . . . . 12 (𝑤 = 𝑥𝑤 = 𝑥)
2927, 28ifbieq2d 4465 . . . . . . . . . . 11 (𝑤 = 𝑥 → if(𝑤 = 𝐴, ∅, 𝑤) = if(𝑥 = 𝐴, ∅, 𝑥))
3029cbvmptv 5158 . . . . . . . . . 10 (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)) = (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))
3130coeq2i 5729 . . . . . . . . 9 ((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤))) = ((𝑔𝑓) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))
32 eqid 2737 . . . . . . . . . 10 {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑠 “ {𝑧})) = 𝑧))} = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑠 “ {𝑧})) = 𝑧))}
3332fpwwecbv 10258 . . . . . . . . 9 {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑠 “ {𝑧})) = 𝑧))} = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑟 “ {𝑦})) = 𝑦))}
34 eqid 2737 . . . . . . . . 9 dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑠 “ {𝑧})) = 𝑧))} = dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑠 “ {𝑧})) = 𝑧))}
3524, 25, 26, 31, 33, 34canthp1lem2 10267 . . . . . . . 8 ¬ ((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) ∧ 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴)
3635pm2.21i 119 . . . . . . 7 (((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) ∧ 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴) → ⊥)
3723, 36exlimddv 1943 . . . . . 6 ((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) → ⊥)
3837ex 416 . . . . 5 (1o𝐴 → (𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o) → ⊥))
3938exlimdv 1941 . . . 4 (1o𝐴 → (∃𝑓 𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o) → ⊥))
4014, 39syl5 34 . . 3 (1o𝐴 → ((𝐴 ⊔ 1o) ≈ 𝒫 𝐴 → ⊥))
4111, 40mtoi 202 . 2 (1o𝐴 → ¬ (𝐴 ⊔ 1o) ≈ 𝒫 𝐴)
42 brsdom 8651 . 2 ((𝐴 ⊔ 1o) ≺ 𝒫 𝐴 ↔ ((𝐴 ⊔ 1o) ≼ 𝒫 𝐴 ∧ ¬ (𝐴 ⊔ 1o) ≈ 𝒫 𝐴))
4310, 41, 42sylanbrc 586 1 (1o𝐴 → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wfal 1555  wex 1787  wcel 2110  wral 3061  Vcvv 3408  cdif 3863  wss 3866  c0 4237  ifcif 4439  𝒫 cpw 4513  {csn 4541   cuni 4819   class class class wbr 5053  {copab 5115  cmpt 5135   We wwe 5508   × cxp 5549  ccnv 5550  dom cdm 5551  cima 5554  ccom 5555  wf 6376  1-1-ontowf1o 6379  cfv 6380  1oc1o 8195  2oc2o 8196  cen 8623  cdom 8624  csdm 8625  cdju 9514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-inf2 9256
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-oi 9126  df-dju 9517  df-card 9555
This theorem is referenced by:  finngch  10269  gchdju1  10270
  Copyright terms: Public domain W3C validator