MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthp1 Structured version   Visualization version   GIF version

Theorem canthp1 10410
Description: A slightly stronger form of Cantor's theorem: For 1 < 𝑛, 𝑛 + 1 < 2↑𝑛. Corollary 1.6 of [KanamoriPincus] p. 417. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
canthp1 (1o𝐴 → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)

Proof of Theorem canthp1
Dummy variables 𝑓 𝑎 𝑔 𝑟 𝑠 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1sdom2 9021 . . . . 5 1o ≺ 2o
2 sdomdom 8768 . . . . 5 (1o ≺ 2o → 1o ≼ 2o)
31, 2ax-mp 5 . . . 4 1o ≼ 2o
4 relsdom 8740 . . . . 5 Rel ≺
54brrelex2i 5644 . . . 4 (1o𝐴𝐴 ∈ V)
6 djudom2 9939 . . . 4 ((1o ≼ 2o𝐴 ∈ V) → (𝐴 ⊔ 1o) ≼ (𝐴 ⊔ 2o))
73, 5, 6sylancr 587 . . 3 (1o𝐴 → (𝐴 ⊔ 1o) ≼ (𝐴 ⊔ 2o))
8 canthp1lem1 10408 . . 3 (1o𝐴 → (𝐴 ⊔ 2o) ≼ 𝒫 𝐴)
9 domtr 8793 . . 3 (((𝐴 ⊔ 1o) ≼ (𝐴 ⊔ 2o) ∧ (𝐴 ⊔ 2o) ≼ 𝒫 𝐴) → (𝐴 ⊔ 1o) ≼ 𝒫 𝐴)
107, 8, 9syl2anc 584 . 2 (1o𝐴 → (𝐴 ⊔ 1o) ≼ 𝒫 𝐴)
11 fal 1553 . . 3 ¬ ⊥
12 ensym 8789 . . . . 5 ((𝐴 ⊔ 1o) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≈ (𝐴 ⊔ 1o))
13 bren 8743 . . . . 5 (𝒫 𝐴 ≈ (𝐴 ⊔ 1o) ↔ ∃𝑓 𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o))
1412, 13sylib 217 . . . 4 ((𝐴 ⊔ 1o) ≈ 𝒫 𝐴 → ∃𝑓 𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o))
15 f1of 6716 . . . . . . . . . 10 (𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o) → 𝑓:𝒫 𝐴⟶(𝐴 ⊔ 1o))
16 pwidg 4555 . . . . . . . . . . 11 (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴)
175, 16syl 17 . . . . . . . . . 10 (1o𝐴𝐴 ∈ 𝒫 𝐴)
18 ffvelrn 6959 . . . . . . . . . 10 ((𝑓:𝒫 𝐴⟶(𝐴 ⊔ 1o) ∧ 𝐴 ∈ 𝒫 𝐴) → (𝑓𝐴) ∈ (𝐴 ⊔ 1o))
1915, 17, 18syl2anr 597 . . . . . . . . 9 ((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) → (𝑓𝐴) ∈ (𝐴 ⊔ 1o))
20 dju1dif 9928 . . . . . . . . 9 ((𝐴 ∈ V ∧ (𝑓𝐴) ∈ (𝐴 ⊔ 1o)) → ((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)}) ≈ 𝐴)
215, 19, 20syl2an2r 682 . . . . . . . 8 ((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) → ((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)}) ≈ 𝐴)
22 bren 8743 . . . . . . . 8 (((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)}) ≈ 𝐴 ↔ ∃𝑔 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴)
2321, 22sylib 217 . . . . . . 7 ((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) → ∃𝑔 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴)
24 simpll 764 . . . . . . . . 9 (((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) ∧ 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴) → 1o𝐴)
25 simplr 766 . . . . . . . . 9 (((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) ∧ 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴) → 𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o))
26 simpr 485 . . . . . . . . 9 (((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) ∧ 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴) → 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴)
27 eqeq1 2742 . . . . . . . . . . . 12 (𝑤 = 𝑥 → (𝑤 = 𝐴𝑥 = 𝐴))
28 id 22 . . . . . . . . . . . 12 (𝑤 = 𝑥𝑤 = 𝑥)
2927, 28ifbieq2d 4485 . . . . . . . . . . 11 (𝑤 = 𝑥 → if(𝑤 = 𝐴, ∅, 𝑤) = if(𝑥 = 𝐴, ∅, 𝑥))
3029cbvmptv 5187 . . . . . . . . . 10 (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)) = (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))
3130coeq2i 5769 . . . . . . . . 9 ((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤))) = ((𝑔𝑓) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))
32 eqid 2738 . . . . . . . . . 10 {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑠 “ {𝑧})) = 𝑧))} = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑠 “ {𝑧})) = 𝑧))}
3332fpwwecbv 10400 . . . . . . . . 9 {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑠 “ {𝑧})) = 𝑧))} = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑟 “ {𝑦})) = 𝑦))}
34 eqid 2738 . . . . . . . . 9 dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑠 “ {𝑧})) = 𝑧))} = dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑠 “ {𝑧})) = 𝑧))}
3524, 25, 26, 31, 33, 34canthp1lem2 10409 . . . . . . . 8 ¬ ((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) ∧ 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴)
3635pm2.21i 119 . . . . . . 7 (((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) ∧ 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴) → ⊥)
3723, 36exlimddv 1938 . . . . . 6 ((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) → ⊥)
3837ex 413 . . . . 5 (1o𝐴 → (𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o) → ⊥))
3938exlimdv 1936 . . . 4 (1o𝐴 → (∃𝑓 𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o) → ⊥))
4014, 39syl5 34 . . 3 (1o𝐴 → ((𝐴 ⊔ 1o) ≈ 𝒫 𝐴 → ⊥))
4111, 40mtoi 198 . 2 (1o𝐴 → ¬ (𝐴 ⊔ 1o) ≈ 𝒫 𝐴)
42 brsdom 8763 . 2 ((𝐴 ⊔ 1o) ≺ 𝒫 𝐴 ↔ ((𝐴 ⊔ 1o) ≼ 𝒫 𝐴 ∧ ¬ (𝐴 ⊔ 1o) ≈ 𝒫 𝐴))
4310, 41, 42sylanbrc 583 1 (1o𝐴 → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1539  wfal 1551  wex 1782  wcel 2106  wral 3064  Vcvv 3432  cdif 3884  wss 3887  c0 4256  ifcif 4459  𝒫 cpw 4533  {csn 4561   cuni 4839   class class class wbr 5074  {copab 5136  cmpt 5157   We wwe 5543   × cxp 5587  ccnv 5588  dom cdm 5589  cima 5592  ccom 5593  wf 6429  1-1-ontowf1o 6432  cfv 6433  1oc1o 8290  2oc2o 8291  cen 8730  cdom 8731  csdm 8732  cdju 9656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-oi 9269  df-dju 9659  df-card 9697
This theorem is referenced by:  finngch  10411  gchdju1  10412
  Copyright terms: Public domain W3C validator