MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthp1 Structured version   Visualization version   GIF version

Theorem canthp1 10648
Description: A slightly stronger form of Cantor's theorem: For 1 < 𝑛, 𝑛 + 1 < 2↑𝑛. Corollary 1.6 of [KanamoriPincus] p. 417. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
canthp1 (1o𝐴 → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)

Proof of Theorem canthp1
Dummy variables 𝑓 𝑎 𝑔 𝑟 𝑠 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1sdom2 9239 . . . . 5 1o ≺ 2o
2 sdomdom 8975 . . . . 5 (1o ≺ 2o → 1o ≼ 2o)
31, 2ax-mp 5 . . . 4 1o ≼ 2o
4 relsdom 8945 . . . . 5 Rel ≺
54brrelex2i 5726 . . . 4 (1o𝐴𝐴 ∈ V)
6 djudom2 10177 . . . 4 ((1o ≼ 2o𝐴 ∈ V) → (𝐴 ⊔ 1o) ≼ (𝐴 ⊔ 2o))
73, 5, 6sylancr 586 . . 3 (1o𝐴 → (𝐴 ⊔ 1o) ≼ (𝐴 ⊔ 2o))
8 canthp1lem1 10646 . . 3 (1o𝐴 → (𝐴 ⊔ 2o) ≼ 𝒫 𝐴)
9 domtr 9002 . . 3 (((𝐴 ⊔ 1o) ≼ (𝐴 ⊔ 2o) ∧ (𝐴 ⊔ 2o) ≼ 𝒫 𝐴) → (𝐴 ⊔ 1o) ≼ 𝒫 𝐴)
107, 8, 9syl2anc 583 . 2 (1o𝐴 → (𝐴 ⊔ 1o) ≼ 𝒫 𝐴)
11 fal 1547 . . 3 ¬ ⊥
12 ensym 8998 . . . . 5 ((𝐴 ⊔ 1o) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≈ (𝐴 ⊔ 1o))
13 bren 8948 . . . . 5 (𝒫 𝐴 ≈ (𝐴 ⊔ 1o) ↔ ∃𝑓 𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o))
1412, 13sylib 217 . . . 4 ((𝐴 ⊔ 1o) ≈ 𝒫 𝐴 → ∃𝑓 𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o))
15 f1of 6826 . . . . . . . . . 10 (𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o) → 𝑓:𝒫 𝐴⟶(𝐴 ⊔ 1o))
16 pwidg 4617 . . . . . . . . . . 11 (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴)
175, 16syl 17 . . . . . . . . . 10 (1o𝐴𝐴 ∈ 𝒫 𝐴)
18 ffvelcdm 7076 . . . . . . . . . 10 ((𝑓:𝒫 𝐴⟶(𝐴 ⊔ 1o) ∧ 𝐴 ∈ 𝒫 𝐴) → (𝑓𝐴) ∈ (𝐴 ⊔ 1o))
1915, 17, 18syl2anr 596 . . . . . . . . 9 ((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) → (𝑓𝐴) ∈ (𝐴 ⊔ 1o))
20 dju1dif 10166 . . . . . . . . 9 ((𝐴 ∈ V ∧ (𝑓𝐴) ∈ (𝐴 ⊔ 1o)) → ((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)}) ≈ 𝐴)
215, 19, 20syl2an2r 682 . . . . . . . 8 ((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) → ((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)}) ≈ 𝐴)
22 bren 8948 . . . . . . . 8 (((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)}) ≈ 𝐴 ↔ ∃𝑔 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴)
2321, 22sylib 217 . . . . . . 7 ((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) → ∃𝑔 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴)
24 simpll 764 . . . . . . . . 9 (((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) ∧ 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴) → 1o𝐴)
25 simplr 766 . . . . . . . . 9 (((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) ∧ 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴) → 𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o))
26 simpr 484 . . . . . . . . 9 (((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) ∧ 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴) → 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴)
27 eqeq1 2730 . . . . . . . . . . . 12 (𝑤 = 𝑥 → (𝑤 = 𝐴𝑥 = 𝐴))
28 id 22 . . . . . . . . . . . 12 (𝑤 = 𝑥𝑤 = 𝑥)
2927, 28ifbieq2d 4549 . . . . . . . . . . 11 (𝑤 = 𝑥 → if(𝑤 = 𝐴, ∅, 𝑤) = if(𝑥 = 𝐴, ∅, 𝑥))
3029cbvmptv 5254 . . . . . . . . . 10 (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)) = (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))
3130coeq2i 5853 . . . . . . . . 9 ((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤))) = ((𝑔𝑓) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))
32 eqid 2726 . . . . . . . . . 10 {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑠 “ {𝑧})) = 𝑧))} = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑠 “ {𝑧})) = 𝑧))}
3332fpwwecbv 10638 . . . . . . . . 9 {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑠 “ {𝑧})) = 𝑧))} = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑟 “ {𝑦})) = 𝑦))}
34 eqid 2726 . . . . . . . . 9 dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑠 “ {𝑧})) = 𝑧))} = dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑠 “ {𝑧})) = 𝑧))}
3524, 25, 26, 31, 33, 34canthp1lem2 10647 . . . . . . . 8 ¬ ((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) ∧ 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴)
3635pm2.21i 119 . . . . . . 7 (((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) ∧ 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴) → ⊥)
3723, 36exlimddv 1930 . . . . . 6 ((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) → ⊥)
3837ex 412 . . . . 5 (1o𝐴 → (𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o) → ⊥))
3938exlimdv 1928 . . . 4 (1o𝐴 → (∃𝑓 𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o) → ⊥))
4014, 39syl5 34 . . 3 (1o𝐴 → ((𝐴 ⊔ 1o) ≈ 𝒫 𝐴 → ⊥))
4111, 40mtoi 198 . 2 (1o𝐴 → ¬ (𝐴 ⊔ 1o) ≈ 𝒫 𝐴)
42 brsdom 8970 . 2 ((𝐴 ⊔ 1o) ≺ 𝒫 𝐴 ↔ ((𝐴 ⊔ 1o) ≼ 𝒫 𝐴 ∧ ¬ (𝐴 ⊔ 1o) ≈ 𝒫 𝐴))
4310, 41, 42sylanbrc 582 1 (1o𝐴 → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1533  wfal 1545  wex 1773  wcel 2098  wral 3055  Vcvv 3468  cdif 3940  wss 3943  c0 4317  ifcif 4523  𝒫 cpw 4597  {csn 4623   cuni 4902   class class class wbr 5141  {copab 5203  cmpt 5224   We wwe 5623   × cxp 5667  ccnv 5668  dom cdm 5669  cima 5672  ccom 5673  wf 6532  1-1-ontowf1o 6535  cfv 6536  1oc1o 8457  2oc2o 8458  cen 8935  cdom 8936  csdm 8937  cdju 9892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-inf2 9635
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-1o 8464  df-2o 8465  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-oi 9504  df-dju 9895  df-card 9933
This theorem is referenced by:  finngch  10649  gchdju1  10650
  Copyright terms: Public domain W3C validator