MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthp1 Structured version   Visualization version   GIF version

Theorem canthp1 10723
Description: A slightly stronger form of Cantor's theorem: For 1 < 𝑛, 𝑛 + 1 < 2↑𝑛. Corollary 1.6 of [KanamoriPincus] p. 417. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
canthp1 (1o𝐴 → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)

Proof of Theorem canthp1
Dummy variables 𝑓 𝑎 𝑔 𝑟 𝑠 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1sdom2 9303 . . . . 5 1o ≺ 2o
2 sdomdom 9040 . . . . 5 (1o ≺ 2o → 1o ≼ 2o)
31, 2ax-mp 5 . . . 4 1o ≼ 2o
4 relsdom 9010 . . . . 5 Rel ≺
54brrelex2i 5757 . . . 4 (1o𝐴𝐴 ∈ V)
6 djudom2 10253 . . . 4 ((1o ≼ 2o𝐴 ∈ V) → (𝐴 ⊔ 1o) ≼ (𝐴 ⊔ 2o))
73, 5, 6sylancr 586 . . 3 (1o𝐴 → (𝐴 ⊔ 1o) ≼ (𝐴 ⊔ 2o))
8 canthp1lem1 10721 . . 3 (1o𝐴 → (𝐴 ⊔ 2o) ≼ 𝒫 𝐴)
9 domtr 9067 . . 3 (((𝐴 ⊔ 1o) ≼ (𝐴 ⊔ 2o) ∧ (𝐴 ⊔ 2o) ≼ 𝒫 𝐴) → (𝐴 ⊔ 1o) ≼ 𝒫 𝐴)
107, 8, 9syl2anc 583 . 2 (1o𝐴 → (𝐴 ⊔ 1o) ≼ 𝒫 𝐴)
11 fal 1551 . . 3 ¬ ⊥
12 ensym 9063 . . . . 5 ((𝐴 ⊔ 1o) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≈ (𝐴 ⊔ 1o))
13 bren 9013 . . . . 5 (𝒫 𝐴 ≈ (𝐴 ⊔ 1o) ↔ ∃𝑓 𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o))
1412, 13sylib 218 . . . 4 ((𝐴 ⊔ 1o) ≈ 𝒫 𝐴 → ∃𝑓 𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o))
15 f1of 6862 . . . . . . . . . 10 (𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o) → 𝑓:𝒫 𝐴⟶(𝐴 ⊔ 1o))
16 pwidg 4642 . . . . . . . . . . 11 (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴)
175, 16syl 17 . . . . . . . . . 10 (1o𝐴𝐴 ∈ 𝒫 𝐴)
18 ffvelcdm 7115 . . . . . . . . . 10 ((𝑓:𝒫 𝐴⟶(𝐴 ⊔ 1o) ∧ 𝐴 ∈ 𝒫 𝐴) → (𝑓𝐴) ∈ (𝐴 ⊔ 1o))
1915, 17, 18syl2anr 596 . . . . . . . . 9 ((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) → (𝑓𝐴) ∈ (𝐴 ⊔ 1o))
20 dju1dif 10242 . . . . . . . . 9 ((𝐴 ∈ V ∧ (𝑓𝐴) ∈ (𝐴 ⊔ 1o)) → ((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)}) ≈ 𝐴)
215, 19, 20syl2an2r 684 . . . . . . . 8 ((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) → ((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)}) ≈ 𝐴)
22 bren 9013 . . . . . . . 8 (((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)}) ≈ 𝐴 ↔ ∃𝑔 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴)
2321, 22sylib 218 . . . . . . 7 ((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) → ∃𝑔 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴)
24 simpll 766 . . . . . . . . 9 (((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) ∧ 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴) → 1o𝐴)
25 simplr 768 . . . . . . . . 9 (((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) ∧ 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴) → 𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o))
26 simpr 484 . . . . . . . . 9 (((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) ∧ 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴) → 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴)
27 eqeq1 2744 . . . . . . . . . . . 12 (𝑤 = 𝑥 → (𝑤 = 𝐴𝑥 = 𝐴))
28 id 22 . . . . . . . . . . . 12 (𝑤 = 𝑥𝑤 = 𝑥)
2927, 28ifbieq2d 4574 . . . . . . . . . . 11 (𝑤 = 𝑥 → if(𝑤 = 𝐴, ∅, 𝑤) = if(𝑥 = 𝐴, ∅, 𝑥))
3029cbvmptv 5279 . . . . . . . . . 10 (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)) = (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))
3130coeq2i 5885 . . . . . . . . 9 ((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤))) = ((𝑔𝑓) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))
32 eqid 2740 . . . . . . . . . 10 {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑠 “ {𝑧})) = 𝑧))} = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑠 “ {𝑧})) = 𝑧))}
3332fpwwecbv 10713 . . . . . . . . 9 {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑠 “ {𝑧})) = 𝑧))} = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑟 “ {𝑦})) = 𝑦))}
34 eqid 2740 . . . . . . . . 9 dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑠 “ {𝑧})) = 𝑧))} = dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑠 “ {𝑧})) = 𝑧))}
3524, 25, 26, 31, 33, 34canthp1lem2 10722 . . . . . . . 8 ¬ ((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) ∧ 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴)
3635pm2.21i 119 . . . . . . 7 (((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) ∧ 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴) → ⊥)
3723, 36exlimddv 1934 . . . . . 6 ((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) → ⊥)
3837ex 412 . . . . 5 (1o𝐴 → (𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o) → ⊥))
3938exlimdv 1932 . . . 4 (1o𝐴 → (∃𝑓 𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o) → ⊥))
4014, 39syl5 34 . . 3 (1o𝐴 → ((𝐴 ⊔ 1o) ≈ 𝒫 𝐴 → ⊥))
4111, 40mtoi 199 . 2 (1o𝐴 → ¬ (𝐴 ⊔ 1o) ≈ 𝒫 𝐴)
42 brsdom 9035 . 2 ((𝐴 ⊔ 1o) ≺ 𝒫 𝐴 ↔ ((𝐴 ⊔ 1o) ≼ 𝒫 𝐴 ∧ ¬ (𝐴 ⊔ 1o) ≈ 𝒫 𝐴))
4310, 41, 42sylanbrc 582 1 (1o𝐴 → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wfal 1549  wex 1777  wcel 2108  wral 3067  Vcvv 3488  cdif 3973  wss 3976  c0 4352  ifcif 4548  𝒫 cpw 4622  {csn 4648   cuni 4931   class class class wbr 5166  {copab 5228  cmpt 5249   We wwe 5651   × cxp 5698  ccnv 5699  dom cdm 5700  cima 5703  ccom 5704  wf 6569  1-1-ontowf1o 6572  cfv 6573  1oc1o 8515  2oc2o 8516  cen 9000  cdom 9001  csdm 9002  cdju 9967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-oi 9579  df-dju 9970  df-card 10008
This theorem is referenced by:  finngch  10724  gchdju1  10725
  Copyright terms: Public domain W3C validator