MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canthp1 Structured version   Visualization version   GIF version

Theorem canthp1 10685
Description: A slightly stronger form of Cantor's theorem: For 1 < 𝑛, 𝑛 + 1 < 2↑𝑛. Corollary 1.6 of [KanamoriPincus] p. 417. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
canthp1 (1o𝐴 → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)

Proof of Theorem canthp1
Dummy variables 𝑓 𝑎 𝑔 𝑟 𝑠 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1sdom2 9271 . . . . 5 1o ≺ 2o
2 sdomdom 9007 . . . . 5 (1o ≺ 2o → 1o ≼ 2o)
31, 2ax-mp 5 . . . 4 1o ≼ 2o
4 relsdom 8977 . . . . 5 Rel ≺
54brrelex2i 5739 . . . 4 (1o𝐴𝐴 ∈ V)
6 djudom2 10214 . . . 4 ((1o ≼ 2o𝐴 ∈ V) → (𝐴 ⊔ 1o) ≼ (𝐴 ⊔ 2o))
73, 5, 6sylancr 585 . . 3 (1o𝐴 → (𝐴 ⊔ 1o) ≼ (𝐴 ⊔ 2o))
8 canthp1lem1 10683 . . 3 (1o𝐴 → (𝐴 ⊔ 2o) ≼ 𝒫 𝐴)
9 domtr 9034 . . 3 (((𝐴 ⊔ 1o) ≼ (𝐴 ⊔ 2o) ∧ (𝐴 ⊔ 2o) ≼ 𝒫 𝐴) → (𝐴 ⊔ 1o) ≼ 𝒫 𝐴)
107, 8, 9syl2anc 582 . 2 (1o𝐴 → (𝐴 ⊔ 1o) ≼ 𝒫 𝐴)
11 fal 1547 . . 3 ¬ ⊥
12 ensym 9030 . . . . 5 ((𝐴 ⊔ 1o) ≈ 𝒫 𝐴 → 𝒫 𝐴 ≈ (𝐴 ⊔ 1o))
13 bren 8980 . . . . 5 (𝒫 𝐴 ≈ (𝐴 ⊔ 1o) ↔ ∃𝑓 𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o))
1412, 13sylib 217 . . . 4 ((𝐴 ⊔ 1o) ≈ 𝒫 𝐴 → ∃𝑓 𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o))
15 f1of 6844 . . . . . . . . . 10 (𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o) → 𝑓:𝒫 𝐴⟶(𝐴 ⊔ 1o))
16 pwidg 4626 . . . . . . . . . . 11 (𝐴 ∈ V → 𝐴 ∈ 𝒫 𝐴)
175, 16syl 17 . . . . . . . . . 10 (1o𝐴𝐴 ∈ 𝒫 𝐴)
18 ffvelcdm 7096 . . . . . . . . . 10 ((𝑓:𝒫 𝐴⟶(𝐴 ⊔ 1o) ∧ 𝐴 ∈ 𝒫 𝐴) → (𝑓𝐴) ∈ (𝐴 ⊔ 1o))
1915, 17, 18syl2anr 595 . . . . . . . . 9 ((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) → (𝑓𝐴) ∈ (𝐴 ⊔ 1o))
20 dju1dif 10203 . . . . . . . . 9 ((𝐴 ∈ V ∧ (𝑓𝐴) ∈ (𝐴 ⊔ 1o)) → ((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)}) ≈ 𝐴)
215, 19, 20syl2an2r 683 . . . . . . . 8 ((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) → ((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)}) ≈ 𝐴)
22 bren 8980 . . . . . . . 8 (((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)}) ≈ 𝐴 ↔ ∃𝑔 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴)
2321, 22sylib 217 . . . . . . 7 ((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) → ∃𝑔 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴)
24 simpll 765 . . . . . . . . 9 (((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) ∧ 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴) → 1o𝐴)
25 simplr 767 . . . . . . . . 9 (((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) ∧ 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴) → 𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o))
26 simpr 483 . . . . . . . . 9 (((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) ∧ 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴) → 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴)
27 eqeq1 2732 . . . . . . . . . . . 12 (𝑤 = 𝑥 → (𝑤 = 𝐴𝑥 = 𝐴))
28 id 22 . . . . . . . . . . . 12 (𝑤 = 𝑥𝑤 = 𝑥)
2927, 28ifbieq2d 4558 . . . . . . . . . . 11 (𝑤 = 𝑥 → if(𝑤 = 𝐴, ∅, 𝑤) = if(𝑥 = 𝐴, ∅, 𝑥))
3029cbvmptv 5265 . . . . . . . . . 10 (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)) = (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥))
3130coeq2i 5867 . . . . . . . . 9 ((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤))) = ((𝑔𝑓) ∘ (𝑥 ∈ 𝒫 𝐴 ↦ if(𝑥 = 𝐴, ∅, 𝑥)))
32 eqid 2728 . . . . . . . . . 10 {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑠 “ {𝑧})) = 𝑧))} = {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑠 “ {𝑧})) = 𝑧))}
3332fpwwecbv 10675 . . . . . . . . 9 {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑠 “ {𝑧})) = 𝑧))} = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑟 “ {𝑦})) = 𝑦))}
34 eqid 2728 . . . . . . . . 9 dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑠 “ {𝑧})) = 𝑧))} = dom {⟨𝑎, 𝑠⟩ ∣ ((𝑎𝐴𝑠 ⊆ (𝑎 × 𝑎)) ∧ (𝑠 We 𝑎 ∧ ∀𝑧𝑎 (((𝑔𝑓) ∘ (𝑤 ∈ 𝒫 𝐴 ↦ if(𝑤 = 𝐴, ∅, 𝑤)))‘(𝑠 “ {𝑧})) = 𝑧))}
3524, 25, 26, 31, 33, 34canthp1lem2 10684 . . . . . . . 8 ¬ ((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) ∧ 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴)
3635pm2.21i 119 . . . . . . 7 (((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) ∧ 𝑔:((𝐴 ⊔ 1o) ∖ {(𝑓𝐴)})–1-1-onto𝐴) → ⊥)
3723, 36exlimddv 1930 . . . . . 6 ((1o𝐴𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o)) → ⊥)
3837ex 411 . . . . 5 (1o𝐴 → (𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o) → ⊥))
3938exlimdv 1928 . . . 4 (1o𝐴 → (∃𝑓 𝑓:𝒫 𝐴1-1-onto→(𝐴 ⊔ 1o) → ⊥))
4014, 39syl5 34 . . 3 (1o𝐴 → ((𝐴 ⊔ 1o) ≈ 𝒫 𝐴 → ⊥))
4111, 40mtoi 198 . 2 (1o𝐴 → ¬ (𝐴 ⊔ 1o) ≈ 𝒫 𝐴)
42 brsdom 9002 . 2 ((𝐴 ⊔ 1o) ≺ 𝒫 𝐴 ↔ ((𝐴 ⊔ 1o) ≼ 𝒫 𝐴 ∧ ¬ (𝐴 ⊔ 1o) ≈ 𝒫 𝐴))
4310, 41, 42sylanbrc 581 1 (1o𝐴 → (𝐴 ⊔ 1o) ≺ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wfal 1545  wex 1773  wcel 2098  wral 3058  Vcvv 3473  cdif 3946  wss 3949  c0 4326  ifcif 4532  𝒫 cpw 4606  {csn 4632   cuni 4912   class class class wbr 5152  {copab 5214  cmpt 5235   We wwe 5636   × cxp 5680  ccnv 5681  dom cdm 5682  cima 5685  ccom 5686  wf 6549  1-1-ontowf1o 6552  cfv 6553  1oc1o 8486  2oc2o 8487  cen 8967  cdom 8968  csdm 8969  cdju 9929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9672
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-2o 8494  df-er 8731  df-map 8853  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-oi 9541  df-dju 9932  df-card 9970
This theorem is referenced by:  finngch  10686  gchdju1  10687
  Copyright terms: Public domain W3C validator