MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimno1 Structured version   Visualization version   GIF version

Theorem rlimno1 15538
Description: A function whose inverse converges to zero is unbounded. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
rlimno1.1 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
rlimno1.2 (𝜑 → (𝑥𝐴 ↦ (1 / 𝐵)) ⇝𝑟 0)
rlimno1.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
rlimno1.4 ((𝜑𝑥𝐴) → 𝐵 ≠ 0)
Assertion
Ref Expression
rlimno1 (𝜑 → ¬ (𝑥𝐴𝐵) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem rlimno1
Dummy variables 𝑐 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fal 1555 . . . 4 ¬ ⊥
2 rlimno1.3 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
3 rlimno1.4 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵 ≠ 0)
42, 3reccld 11924 . . . . . . . 8 ((𝜑𝑥𝐴) → (1 / 𝐵) ∈ ℂ)
54ralrimiva 3143 . . . . . . 7 (𝜑 → ∀𝑥𝐴 (1 / 𝐵) ∈ ℂ)
65adantr 481 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → ∀𝑥𝐴 (1 / 𝐵) ∈ ℂ)
7 simpr 485 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
8 1re 11155 . . . . . . . . 9 1 ∈ ℝ
9 ifcl 4531 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ 𝑦, 𝑦, 1) ∈ ℝ)
107, 8, 9sylancl 586 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → if(1 ≤ 𝑦, 𝑦, 1) ∈ ℝ)
11 1rp 12919 . . . . . . . . 9 1 ∈ ℝ+
1211a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℝ+)
13 max1 13104 . . . . . . . . 9 ((1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 1 ≤ if(1 ≤ 𝑦, 𝑦, 1))
148, 7, 13sylancr 587 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 1 ≤ if(1 ≤ 𝑦, 𝑦, 1))
1510, 12, 14rpgecld 12996 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → if(1 ≤ 𝑦, 𝑦, 1) ∈ ℝ+)
1615rpreccld 12967 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∈ ℝ+)
17 rlimno1.2 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ (1 / 𝐵)) ⇝𝑟 0)
1817adantr 481 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝑥𝐴 ↦ (1 / 𝐵)) ⇝𝑟 0)
196, 16, 18rlimi 15395 . . . . 5 ((𝜑𝑦 ∈ ℝ) → ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1))))
20 dmmptg 6194 . . . . . . . . . 10 (∀𝑥𝐴 (1 / 𝐵) ∈ ℂ → dom (𝑥𝐴 ↦ (1 / 𝐵)) = 𝐴)
215, 20syl 17 . . . . . . . . 9 (𝜑 → dom (𝑥𝐴 ↦ (1 / 𝐵)) = 𝐴)
22 rlimss 15384 . . . . . . . . . 10 ((𝑥𝐴 ↦ (1 / 𝐵)) ⇝𝑟 0 → dom (𝑥𝐴 ↦ (1 / 𝐵)) ⊆ ℝ)
2317, 22syl 17 . . . . . . . . 9 (𝜑 → dom (𝑥𝐴 ↦ (1 / 𝐵)) ⊆ ℝ)
2421, 23eqsstrrd 3983 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ)
2524adantr 481 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 𝐴 ⊆ ℝ)
26 rexanre 15231 . . . . . . 7 (𝐴 ⊆ ℝ → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦)) ↔ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1))) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦))))
2725, 26syl 17 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦)) ↔ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1))) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦))))
28 rlimno1.1 . . . . . . . . 9 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
29 ressxr 11199 . . . . . . . . . . 11 ℝ ⊆ ℝ*
3024, 29sstrdi 3956 . . . . . . . . . 10 (𝜑𝐴 ⊆ ℝ*)
31 supxrunb1 13238 . . . . . . . . . 10 (𝐴 ⊆ ℝ* → (∀𝑐 ∈ ℝ ∃𝑥𝐴 𝑐𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
3230, 31syl 17 . . . . . . . . 9 (𝜑 → (∀𝑐 ∈ ℝ ∃𝑥𝐴 𝑐𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
3328, 32mpbird 256 . . . . . . . 8 (𝜑 → ∀𝑐 ∈ ℝ ∃𝑥𝐴 𝑐𝑥)
3433adantr 481 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ∀𝑐 ∈ ℝ ∃𝑥𝐴 𝑐𝑥)
35 r19.29 3117 . . . . . . . 8 ((∀𝑐 ∈ ℝ ∃𝑥𝐴 𝑐𝑥 ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))) → ∃𝑐 ∈ ℝ (∃𝑥𝐴 𝑐𝑥 ∧ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))))
36 r19.29r 3119 . . . . . . . . . 10 ((∃𝑥𝐴 𝑐𝑥 ∧ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))) → ∃𝑥𝐴 (𝑐𝑥 ∧ (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))))
372adantlr 713 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
3837adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → 𝐵 ∈ ℂ)
393adantlr 713 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ≠ 0)
4039adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → 𝐵 ≠ 0)
4138, 40reccld 11924 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (1 / 𝐵) ∈ ℂ)
4241subid1d 11501 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → ((1 / 𝐵) − 0) = (1 / 𝐵))
4342fveq2d 6846 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘((1 / 𝐵) − 0)) = (abs‘(1 / 𝐵)))
44 1cnd 11150 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → 1 ∈ ℂ)
4544, 38, 40absdivd 15340 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘(1 / 𝐵)) = ((abs‘1) / (abs‘𝐵)))
468a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → 1 ∈ ℝ)
47 0le1 11678 . . . . . . . . . . . . . . . . . . . . 21 0 ≤ 1
4847a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → 0 ≤ 1)
4946, 48absidd 15307 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘1) = 1)
5049oveq1d 7372 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → ((abs‘1) / (abs‘𝐵)) = (1 / (abs‘𝐵)))
5143, 45, 503eqtrd 2780 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘((1 / 𝐵) − 0)) = (1 / (abs‘𝐵)))
5215ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → if(1 ≤ 𝑦, 𝑦, 1) ∈ ℝ+)
5352rprecred 12968 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∈ ℝ)
5437, 39absrpcld 15333 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (abs‘𝐵) ∈ ℝ+)
5554adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘𝐵) ∈ ℝ+)
5655rprecred 12968 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (1 / (abs‘𝐵)) ∈ ℝ)
5755rpred 12957 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘𝐵) ∈ ℝ)
587ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → 𝑦 ∈ ℝ)
5910ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → if(1 ≤ 𝑦, 𝑦, 1) ∈ ℝ)
60 simpr 485 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘𝐵) ≤ 𝑦)
61 max2 13106 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ≤ if(1 ≤ 𝑦, 𝑦, 1))
628, 58, 61sylancr 587 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → 𝑦 ≤ if(1 ≤ 𝑦, 𝑦, 1))
6357, 58, 59, 60, 62letrd 11312 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘𝐵) ≤ if(1 ≤ 𝑦, 𝑦, 1))
6455, 52, 46, 48, 63lediv2ad 12979 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (1 / if(1 ≤ 𝑦, 𝑦, 1)) ≤ (1 / (abs‘𝐵)))
6553, 56, 64lensymd 11306 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → ¬ (1 / (abs‘𝐵)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)))
6651, 65eqnbrtrd 5123 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → ¬ (abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)))
6766pm2.21d 121 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) → ⊥))
6867expimpd 454 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (((abs‘𝐵) ≤ 𝑦 ∧ (abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1))) → ⊥))
6968ancomsd 466 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦) → ⊥))
7069imim2d 57 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦)) → (𝑐𝑥 → ⊥)))
7170impcomd 412 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝑐𝑥 ∧ (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))) → ⊥))
7271rexlimdva 3152 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → (∃𝑥𝐴 (𝑐𝑥 ∧ (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))) → ⊥))
7336, 72syl5 34 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → ((∃𝑥𝐴 𝑐𝑥 ∧ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))) → ⊥))
7473rexlimdvw 3157 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (∃𝑐 ∈ ℝ (∃𝑥𝐴 𝑐𝑥 ∧ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))) → ⊥))
7535, 74syl5 34 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((∀𝑐 ∈ ℝ ∃𝑥𝐴 𝑐𝑥 ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))) → ⊥))
7634, 75mpand 693 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦)) → ⊥))
7727, 76sylbird 259 . . . . 5 ((𝜑𝑦 ∈ ℝ) → ((∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1))) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦)) → ⊥))
7819, 77mpand 693 . . . 4 ((𝜑𝑦 ∈ ℝ) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦) → ⊥))
791, 78mtoi 198 . . 3 ((𝜑𝑦 ∈ ℝ) → ¬ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦))
8079nrexdv 3146 . 2 (𝜑 → ¬ ∃𝑦 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦))
8124, 2elo1mpt 15416 . . 3 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑦 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦)))
82 rexcom 3273 . . 3 (∃𝑐 ∈ ℝ ∃𝑦 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦) ↔ ∃𝑦 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦))
8381, 82bitrdi 286 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦)))
8480, 83mtbird 324 1 (𝜑 → ¬ (𝑥𝐴𝐵) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1541  wfal 1553  wcel 2106  wne 2943  wral 3064  wrex 3073  wss 3910  ifcif 4486   class class class wbr 5105  cmpt 5188  dom cdm 5633  cfv 6496  (class class class)co 7357  supcsup 9376  cc 11049  cr 11050  0cc0 11051  1c1 11052  +∞cpnf 11186  *cxr 11188   < clt 11189  cle 11190  cmin 11385   / cdiv 11812  +crp 12915  abscabs 15119  𝑟 crli 15367  𝑂(1)co1 15368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-ico 13270  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-rlim 15371  df-o1 15372  df-lo1 15373
This theorem is referenced by:  logno1  25991
  Copyright terms: Public domain W3C validator