MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimno1 Structured version   Visualization version   GIF version

Theorem rlimno1 14672
Description: A function whose inverse converges to zero is unbounded. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
rlimno1.1 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
rlimno1.2 (𝜑 → (𝑥𝐴 ↦ (1 / 𝐵)) ⇝𝑟 0)
rlimno1.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
rlimno1.4 ((𝜑𝑥𝐴) → 𝐵 ≠ 0)
Assertion
Ref Expression
rlimno1 (𝜑 → ¬ (𝑥𝐴𝐵) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem rlimno1
Dummy variables 𝑐 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fal 1667 . . . 4 ¬ ⊥
2 rlimno1.3 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
3 rlimno1.4 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵 ≠ 0)
42, 3reccld 11050 . . . . . . . 8 ((𝜑𝑥𝐴) → (1 / 𝐵) ∈ ℂ)
54ralrimiva 3113 . . . . . . 7 (𝜑 → ∀𝑥𝐴 (1 / 𝐵) ∈ ℂ)
65adantr 472 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → ∀𝑥𝐴 (1 / 𝐵) ∈ ℂ)
7 simpr 477 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
8 1re 10295 . . . . . . . . 9 1 ∈ ℝ
9 ifcl 4289 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ 𝑦, 𝑦, 1) ∈ ℝ)
107, 8, 9sylancl 580 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → if(1 ≤ 𝑦, 𝑦, 1) ∈ ℝ)
11 1rp 12035 . . . . . . . . 9 1 ∈ ℝ+
1211a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℝ+)
13 max1 12221 . . . . . . . . 9 ((1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 1 ≤ if(1 ≤ 𝑦, 𝑦, 1))
148, 7, 13sylancr 581 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 1 ≤ if(1 ≤ 𝑦, 𝑦, 1))
1510, 12, 14rpgecld 12112 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → if(1 ≤ 𝑦, 𝑦, 1) ∈ ℝ+)
1615rpreccld 12083 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∈ ℝ+)
17 rlimno1.2 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ (1 / 𝐵)) ⇝𝑟 0)
1817adantr 472 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝑥𝐴 ↦ (1 / 𝐵)) ⇝𝑟 0)
196, 16, 18rlimi 14532 . . . . 5 ((𝜑𝑦 ∈ ℝ) → ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1))))
20 dmmptg 5820 . . . . . . . . . 10 (∀𝑥𝐴 (1 / 𝐵) ∈ ℂ → dom (𝑥𝐴 ↦ (1 / 𝐵)) = 𝐴)
215, 20syl 17 . . . . . . . . 9 (𝜑 → dom (𝑥𝐴 ↦ (1 / 𝐵)) = 𝐴)
22 rlimss 14521 . . . . . . . . . 10 ((𝑥𝐴 ↦ (1 / 𝐵)) ⇝𝑟 0 → dom (𝑥𝐴 ↦ (1 / 𝐵)) ⊆ ℝ)
2317, 22syl 17 . . . . . . . . 9 (𝜑 → dom (𝑥𝐴 ↦ (1 / 𝐵)) ⊆ ℝ)
2421, 23eqsstr3d 3802 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ)
2524adantr 472 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 𝐴 ⊆ ℝ)
26 rexanre 14374 . . . . . . 7 (𝐴 ⊆ ℝ → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦)) ↔ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1))) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦))))
2725, 26syl 17 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦)) ↔ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1))) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦))))
28 rlimno1.1 . . . . . . . . 9 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
29 ressxr 10339 . . . . . . . . . . 11 ℝ ⊆ ℝ*
3024, 29syl6ss 3775 . . . . . . . . . 10 (𝜑𝐴 ⊆ ℝ*)
31 supxrunb1 12354 . . . . . . . . . 10 (𝐴 ⊆ ℝ* → (∀𝑐 ∈ ℝ ∃𝑥𝐴 𝑐𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
3230, 31syl 17 . . . . . . . . 9 (𝜑 → (∀𝑐 ∈ ℝ ∃𝑥𝐴 𝑐𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
3328, 32mpbird 248 . . . . . . . 8 (𝜑 → ∀𝑐 ∈ ℝ ∃𝑥𝐴 𝑐𝑥)
3433adantr 472 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ∀𝑐 ∈ ℝ ∃𝑥𝐴 𝑐𝑥)
35 r19.29 3219 . . . . . . . 8 ((∀𝑐 ∈ ℝ ∃𝑥𝐴 𝑐𝑥 ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))) → ∃𝑐 ∈ ℝ (∃𝑥𝐴 𝑐𝑥 ∧ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))))
36 r19.29r 3220 . . . . . . . . . 10 ((∃𝑥𝐴 𝑐𝑥 ∧ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))) → ∃𝑥𝐴 (𝑐𝑥 ∧ (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))))
372adantlr 706 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
383adantlr 706 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ≠ 0)
3937, 38absrpcld 14475 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (abs‘𝐵) ∈ ℝ+)
4039adantr 472 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘𝐵) ∈ ℝ+)
4115ad2antrr 717 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → if(1 ≤ 𝑦, 𝑦, 1) ∈ ℝ+)
428a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → 1 ∈ ℝ)
43 0le1 10807 . . . . . . . . . . . . . . . . . . . . 21 0 ≤ 1
4443a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → 0 ≤ 1)
4540rpred 12073 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘𝐵) ∈ ℝ)
467ad2antrr 717 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → 𝑦 ∈ ℝ)
4710ad2antrr 717 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → if(1 ≤ 𝑦, 𝑦, 1) ∈ ℝ)
48 simpr 477 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘𝐵) ≤ 𝑦)
49 max2 12223 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ≤ if(1 ≤ 𝑦, 𝑦, 1))
508, 46, 49sylancr 581 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → 𝑦 ≤ if(1 ≤ 𝑦, 𝑦, 1))
5145, 46, 47, 48, 50letrd 10450 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘𝐵) ≤ if(1 ≤ 𝑦, 𝑦, 1))
5240, 41, 42, 44, 51lediv2ad 12095 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (1 / if(1 ≤ 𝑦, 𝑦, 1)) ≤ (1 / (abs‘𝐵)))
5341rprecred 12084 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∈ ℝ)
5440rprecred 12084 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (1 / (abs‘𝐵)) ∈ ℝ)
5553, 54lenltd 10439 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → ((1 / if(1 ≤ 𝑦, 𝑦, 1)) ≤ (1 / (abs‘𝐵)) ↔ ¬ (1 / (abs‘𝐵)) < (1 / if(1 ≤ 𝑦, 𝑦, 1))))
5652, 55mpbid 223 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → ¬ (1 / (abs‘𝐵)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)))
5737adantr 472 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → 𝐵 ∈ ℂ)
5838adantr 472 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → 𝐵 ≠ 0)
5957, 58reccld 11050 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (1 / 𝐵) ∈ ℂ)
6059subid1d 10637 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → ((1 / 𝐵) − 0) = (1 / 𝐵))
6160fveq2d 6381 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘((1 / 𝐵) − 0)) = (abs‘(1 / 𝐵)))
62 1cnd 10290 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → 1 ∈ ℂ)
6362, 57, 58absdivd 14482 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘(1 / 𝐵)) = ((abs‘1) / (abs‘𝐵)))
6442, 44absidd 14449 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘1) = 1)
6564oveq1d 6859 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → ((abs‘1) / (abs‘𝐵)) = (1 / (abs‘𝐵)))
6661, 63, 653eqtrd 2803 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘((1 / 𝐵) − 0)) = (1 / (abs‘𝐵)))
6766breq1d 4821 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ↔ (1 / (abs‘𝐵)) < (1 / if(1 ≤ 𝑦, 𝑦, 1))))
6856, 67mtbird 316 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → ¬ (abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)))
6968pm2.21d 119 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) → ⊥))
7069expimpd 445 . . . . . . . . . . . . . . 15 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (((abs‘𝐵) ≤ 𝑦 ∧ (abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1))) → ⊥))
7170ancomsd 457 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦) → ⊥))
7271imim2d 57 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦)) → (𝑐𝑥 → ⊥)))
7372com23 86 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (𝑐𝑥 → ((𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦)) → ⊥)))
7473impd 398 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝑐𝑥 ∧ (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))) → ⊥))
7574rexlimdva 3178 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → (∃𝑥𝐴 (𝑐𝑥 ∧ (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))) → ⊥))
7636, 75syl5 34 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → ((∃𝑥𝐴 𝑐𝑥 ∧ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))) → ⊥))
7776rexlimdvw 3181 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (∃𝑐 ∈ ℝ (∃𝑥𝐴 𝑐𝑥 ∧ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))) → ⊥))
7835, 77syl5 34 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((∀𝑐 ∈ ℝ ∃𝑥𝐴 𝑐𝑥 ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))) → ⊥))
7934, 78mpand 686 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦)) → ⊥))
8027, 79sylbird 251 . . . . 5 ((𝜑𝑦 ∈ ℝ) → ((∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1))) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦)) → ⊥))
8119, 80mpand 686 . . . 4 ((𝜑𝑦 ∈ ℝ) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦) → ⊥))
821, 81mtoi 190 . . 3 ((𝜑𝑦 ∈ ℝ) → ¬ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦))
8382nrexdv 3147 . 2 (𝜑 → ¬ ∃𝑦 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦))
8424, 2elo1mpt 14553 . . 3 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑦 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦)))
85 rexcom 3246 . . 3 (∃𝑐 ∈ ℝ ∃𝑦 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦) ↔ ∃𝑦 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦))
8684, 85syl6bb 278 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦)))
8783, 86mtbird 316 1 (𝜑 → ¬ (𝑥𝐴𝐵) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1652  wfal 1665  wcel 2155  wne 2937  wral 3055  wrex 3056  wss 3734  ifcif 4245   class class class wbr 4811  cmpt 4890  dom cdm 5279  cfv 6070  (class class class)co 6844  supcsup 8555  cc 10189  cr 10190  0cc0 10191  1c1 10192  +∞cpnf 10327  *cxr 10329   < clt 10330  cle 10331  cmin 10522   / cdiv 10940  +crp 12031  abscabs 14262  𝑟 crli 14504  𝑂(1)co1 14505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7149  ax-cnex 10247  ax-resscn 10248  ax-1cn 10249  ax-icn 10250  ax-addcl 10251  ax-addrcl 10252  ax-mulcl 10253  ax-mulrcl 10254  ax-mulcom 10255  ax-addass 10256  ax-mulass 10257  ax-distr 10258  ax-i2m1 10259  ax-1ne0 10260  ax-1rid 10261  ax-rnegex 10262  ax-rrecex 10263  ax-cnre 10264  ax-pre-lttri 10265  ax-pre-lttrn 10266  ax-pre-ltadd 10267  ax-pre-mulgt0 10268  ax-pre-sup 10269
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-iun 4680  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-riota 6805  df-ov 6847  df-oprab 6848  df-mpt2 6849  df-om 7266  df-2nd 7369  df-wrecs 7612  df-recs 7674  df-rdg 7712  df-er 7949  df-pm 8065  df-en 8163  df-dom 8164  df-sdom 8165  df-sup 8557  df-pnf 10332  df-mnf 10333  df-xr 10334  df-ltxr 10335  df-le 10336  df-sub 10524  df-neg 10525  df-div 10941  df-nn 11277  df-2 11337  df-3 11338  df-n0 11541  df-z 11627  df-uz 11890  df-rp 12032  df-ico 12386  df-seq 13012  df-exp 13071  df-cj 14127  df-re 14128  df-im 14129  df-sqrt 14263  df-abs 14264  df-rlim 14508  df-o1 14509  df-lo1 14510
This theorem is referenced by:  logno1  24676
  Copyright terms: Public domain W3C validator