MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimno1 Structured version   Visualization version   GIF version

Theorem rlimno1 15640
Description: A function whose inverse converges to zero is unbounded. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
rlimno1.1 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
rlimno1.2 (𝜑 → (𝑥𝐴 ↦ (1 / 𝐵)) ⇝𝑟 0)
rlimno1.3 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
rlimno1.4 ((𝜑𝑥𝐴) → 𝐵 ≠ 0)
Assertion
Ref Expression
rlimno1 (𝜑 → ¬ (𝑥𝐴𝐵) ∈ 𝑂(1))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem rlimno1
Dummy variables 𝑐 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fal 1547 . . . 4 ¬ ⊥
2 rlimno1.3 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
3 rlimno1.4 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵 ≠ 0)
42, 3reccld 12021 . . . . . . . 8 ((𝜑𝑥𝐴) → (1 / 𝐵) ∈ ℂ)
54ralrimiva 3143 . . . . . . 7 (𝜑 → ∀𝑥𝐴 (1 / 𝐵) ∈ ℂ)
65adantr 479 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → ∀𝑥𝐴 (1 / 𝐵) ∈ ℂ)
7 simpr 483 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → 𝑦 ∈ ℝ)
8 1re 11252 . . . . . . . . 9 1 ∈ ℝ
9 ifcl 4577 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ 1 ∈ ℝ) → if(1 ≤ 𝑦, 𝑦, 1) ∈ ℝ)
107, 8, 9sylancl 584 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → if(1 ≤ 𝑦, 𝑦, 1) ∈ ℝ)
11 1rp 13018 . . . . . . . . 9 1 ∈ ℝ+
1211a1i 11 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 1 ∈ ℝ+)
13 max1 13204 . . . . . . . . 9 ((1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 1 ≤ if(1 ≤ 𝑦, 𝑦, 1))
148, 7, 13sylancr 585 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → 1 ≤ if(1 ≤ 𝑦, 𝑦, 1))
1510, 12, 14rpgecld 13095 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → if(1 ≤ 𝑦, 𝑦, 1) ∈ ℝ+)
1615rpreccld 13066 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∈ ℝ+)
17 rlimno1.2 . . . . . . 7 (𝜑 → (𝑥𝐴 ↦ (1 / 𝐵)) ⇝𝑟 0)
1817adantr 479 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (𝑥𝐴 ↦ (1 / 𝐵)) ⇝𝑟 0)
196, 16, 18rlimi 15497 . . . . 5 ((𝜑𝑦 ∈ ℝ) → ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1))))
20 dmmptg 6251 . . . . . . . . . 10 (∀𝑥𝐴 (1 / 𝐵) ∈ ℂ → dom (𝑥𝐴 ↦ (1 / 𝐵)) = 𝐴)
215, 20syl 17 . . . . . . . . 9 (𝜑 → dom (𝑥𝐴 ↦ (1 / 𝐵)) = 𝐴)
22 rlimss 15486 . . . . . . . . . 10 ((𝑥𝐴 ↦ (1 / 𝐵)) ⇝𝑟 0 → dom (𝑥𝐴 ↦ (1 / 𝐵)) ⊆ ℝ)
2317, 22syl 17 . . . . . . . . 9 (𝜑 → dom (𝑥𝐴 ↦ (1 / 𝐵)) ⊆ ℝ)
2421, 23eqsstrrd 4021 . . . . . . . 8 (𝜑𝐴 ⊆ ℝ)
2524adantr 479 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → 𝐴 ⊆ ℝ)
26 rexanre 15333 . . . . . . 7 (𝐴 ⊆ ℝ → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦)) ↔ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1))) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦))))
2725, 26syl 17 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦)) ↔ (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1))) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦))))
28 rlimno1.1 . . . . . . . . 9 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
29 ressxr 11296 . . . . . . . . . . 11 ℝ ⊆ ℝ*
3024, 29sstrdi 3994 . . . . . . . . . 10 (𝜑𝐴 ⊆ ℝ*)
31 supxrunb1 13338 . . . . . . . . . 10 (𝐴 ⊆ ℝ* → (∀𝑐 ∈ ℝ ∃𝑥𝐴 𝑐𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
3230, 31syl 17 . . . . . . . . 9 (𝜑 → (∀𝑐 ∈ ℝ ∃𝑥𝐴 𝑐𝑥 ↔ sup(𝐴, ℝ*, < ) = +∞))
3328, 32mpbird 256 . . . . . . . 8 (𝜑 → ∀𝑐 ∈ ℝ ∃𝑥𝐴 𝑐𝑥)
3433adantr 479 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ∀𝑐 ∈ ℝ ∃𝑥𝐴 𝑐𝑥)
35 r19.29 3111 . . . . . . . 8 ((∀𝑐 ∈ ℝ ∃𝑥𝐴 𝑐𝑥 ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))) → ∃𝑐 ∈ ℝ (∃𝑥𝐴 𝑐𝑥 ∧ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))))
36 r19.29r 3113 . . . . . . . . . 10 ((∃𝑥𝐴 𝑐𝑥 ∧ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))) → ∃𝑥𝐴 (𝑐𝑥 ∧ (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))))
372adantlr 713 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℂ)
3837adantr 479 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → 𝐵 ∈ ℂ)
393adantlr 713 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ≠ 0)
4039adantr 479 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → 𝐵 ≠ 0)
4138, 40reccld 12021 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (1 / 𝐵) ∈ ℂ)
4241subid1d 11598 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → ((1 / 𝐵) − 0) = (1 / 𝐵))
4342fveq2d 6906 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘((1 / 𝐵) − 0)) = (abs‘(1 / 𝐵)))
44 1cnd 11247 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → 1 ∈ ℂ)
4544, 38, 40absdivd 15442 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘(1 / 𝐵)) = ((abs‘1) / (abs‘𝐵)))
468a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → 1 ∈ ℝ)
47 0le1 11775 . . . . . . . . . . . . . . . . . . . . 21 0 ≤ 1
4847a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → 0 ≤ 1)
4946, 48absidd 15409 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘1) = 1)
5049oveq1d 7441 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → ((abs‘1) / (abs‘𝐵)) = (1 / (abs‘𝐵)))
5143, 45, 503eqtrd 2772 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘((1 / 𝐵) − 0)) = (1 / (abs‘𝐵)))
5215ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → if(1 ≤ 𝑦, 𝑦, 1) ∈ ℝ+)
5352rprecred 13067 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∈ ℝ)
5437, 39absrpcld 15435 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (abs‘𝐵) ∈ ℝ+)
5554adantr 479 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘𝐵) ∈ ℝ+)
5655rprecred 13067 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (1 / (abs‘𝐵)) ∈ ℝ)
5755rpred 13056 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘𝐵) ∈ ℝ)
587ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → 𝑦 ∈ ℝ)
5910ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → if(1 ≤ 𝑦, 𝑦, 1) ∈ ℝ)
60 simpr 483 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘𝐵) ≤ 𝑦)
61 max2 13206 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℝ ∧ 𝑦 ∈ ℝ) → 𝑦 ≤ if(1 ≤ 𝑦, 𝑦, 1))
628, 58, 61sylancr 585 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → 𝑦 ≤ if(1 ≤ 𝑦, 𝑦, 1))
6357, 58, 59, 60, 62letrd 11409 . . . . . . . . . . . . . . . . . . 19 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (abs‘𝐵) ≤ if(1 ≤ 𝑦, 𝑦, 1))
6455, 52, 46, 48, 63lediv2ad 13078 . . . . . . . . . . . . . . . . . 18 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → (1 / if(1 ≤ 𝑦, 𝑦, 1)) ≤ (1 / (abs‘𝐵)))
6553, 56, 64lensymd 11403 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → ¬ (1 / (abs‘𝐵)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)))
6651, 65eqnbrtrd 5170 . . . . . . . . . . . . . . . 16 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → ¬ (abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)))
6766pm2.21d 121 . . . . . . . . . . . . . . 15 ((((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) ∧ (abs‘𝐵) ≤ 𝑦) → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) → ⊥))
6867expimpd 452 . . . . . . . . . . . . . 14 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (((abs‘𝐵) ≤ 𝑦 ∧ (abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1))) → ⊥))
6968ancomsd 464 . . . . . . . . . . . . 13 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → (((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦) → ⊥))
7069imim2d 57 . . . . . . . . . . . 12 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦)) → (𝑐𝑥 → ⊥)))
7170impcomd 410 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ) ∧ 𝑥𝐴) → ((𝑐𝑥 ∧ (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))) → ⊥))
7271rexlimdva 3152 . . . . . . . . . 10 ((𝜑𝑦 ∈ ℝ) → (∃𝑥𝐴 (𝑐𝑥 ∧ (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))) → ⊥))
7336, 72syl5 34 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ) → ((∃𝑥𝐴 𝑐𝑥 ∧ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))) → ⊥))
7473rexlimdvw 3157 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ) → (∃𝑐 ∈ ℝ (∃𝑥𝐴 𝑐𝑥 ∧ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))) → ⊥))
7535, 74syl5 34 . . . . . . 7 ((𝜑𝑦 ∈ ℝ) → ((∀𝑐 ∈ ℝ ∃𝑥𝐴 𝑐𝑥 ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦))) → ⊥))
7634, 75mpand 693 . . . . . 6 ((𝜑𝑦 ∈ ℝ) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → ((abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1)) ∧ (abs‘𝐵) ≤ 𝑦)) → ⊥))
7727, 76sylbird 259 . . . . 5 ((𝜑𝑦 ∈ ℝ) → ((∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘((1 / 𝐵) − 0)) < (1 / if(1 ≤ 𝑦, 𝑦, 1))) ∧ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦)) → ⊥))
7819, 77mpand 693 . . . 4 ((𝜑𝑦 ∈ ℝ) → (∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦) → ⊥))
791, 78mtoi 198 . . 3 ((𝜑𝑦 ∈ ℝ) → ¬ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦))
8079nrexdv 3146 . 2 (𝜑 → ¬ ∃𝑦 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦))
8124, 2elo1mpt 15518 . . 3 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ∃𝑐 ∈ ℝ ∃𝑦 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦)))
82 rexcom 3285 . . 3 (∃𝑐 ∈ ℝ ∃𝑦 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦) ↔ ∃𝑦 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦))
8381, 82bitrdi 286 . 2 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝑂(1) ↔ ∃𝑦 ∈ ℝ ∃𝑐 ∈ ℝ ∀𝑥𝐴 (𝑐𝑥 → (abs‘𝐵) ≤ 𝑦)))
8480, 83mtbird 324 1 (𝜑 → ¬ (𝑥𝐴𝐵) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1533  wfal 1545  wcel 2098  wne 2937  wral 3058  wrex 3067  wss 3949  ifcif 4532   class class class wbr 5152  cmpt 5235  dom cdm 5682  cfv 6553  (class class class)co 7426  supcsup 9471  cc 11144  cr 11145  0cc0 11146  1c1 11147  +∞cpnf 11283  *cxr 11285   < clt 11286  cle 11287  cmin 11482   / cdiv 11909  +crp 13014  abscabs 15221  𝑟 crli 15469  𝑂(1)co1 15470
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-er 8731  df-pm 8854  df-en 8971  df-dom 8972  df-sdom 8973  df-sup 9473  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-n0 12511  df-z 12597  df-uz 12861  df-rp 13015  df-ico 13370  df-seq 14007  df-exp 14067  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-rlim 15473  df-o1 15474  df-lo1 15475
This theorem is referenced by:  logno1  26590
  Copyright terms: Public domain W3C validator